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Abstract—Quantifying the permeability of intestinal epithelia is
a central task in assessing tissue dysfunctions. This can be
achieved conveniently by determining the electric resistance of
the epithelial tissue by impedance spectroscopy. While in clinical
practice this parameter is often estimated by manual extrapo-
lation of discrete two-dimensional plots of impedance spectra,
this approach is known to be particularly unprecise for spectra
that deviate from a semicircular shape. Previous computational
approaches achieved less then ten percent deviation from the
known target value on average, but outliers exhibited significantly
larger maximum deviations. Here, we show that systematic
feature extraction and selection allow estimation of the epithelial
resistance with less than one percent deviation from the known
target value on average and less than ten percent at maximum. As
a result of detailed modeling of cell culture lines and functional
states, epithelial resistance for the cell lines HT-29/B6, IPEC-]J2
and MDCK I can be quantified reliably under control conditions,
as well as under influence of EGTA and nystatin.

Keywords—Physiology; Epithelia; Impedance Spectroscopy; Fea-
ture Selection; Artificial Neural Networks; Random Forests.

I. INTRODUCTION

Intestinal epithelial cells form the primary barrier of the gut
between the body’s interior and the exterior environment (i.e.,
the gut contents). In general, all epithelial and endothelial cells
are connected by arrays of transmembrane proteins, called
tight junctions that seal the space between two neighbouring
cells. Tight junction properties are determined by their major
constituents, the members of the claudin protein family. While
certain claudins strengthen the barrier function (e.g., claudin-1
in skin, claudin-5 in the blood-brain barrier [1]), others convey
specific charge and/or size selectivity [1][2]. Regulation and
dysregulation of these channel-forming claudins appear to be
paramount in the pathophysiology of numerous diseases [3].

As a whole, the epithelium regulates transport of molecules
and establishes a tight barrier against toxins and pathogens.
The permeability of epithelial tissue to ions is reflected by its
electric resistance, called transepithelial resistence (R, often
also abbreviated as TER). R” is the sum of the subepithelial
resistance R’ and the epithelial resistance R*”". These partial
resistances are individual and independent parameters of the
tissue, and exact knowledge of their values is crucial in the
analysis of epithelial dysfunctions. For patients with inflam-
matory intestinal diseases, e.g, it was observed that due to the
inflammation R** increased whereas R°” decreased.
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The most common way to assess tissue permeability is a di-
rect measurement of fluxes, e.g., by using radioactive isotopes
or labelled substances. Alternatively, permeability of the two
major extracellular ion species, Na* and CI, is determined
by measuring tissue conductance or its reciprocal, resistance,
e.g., by using “chopstick electrodes” or Ussing chambers
[4]. A more convenient way to assess tissue permeability is
impedance spectroscopy. Typically, up to 50 complex-valued
impedances Z are obtained by measuring current-voltage rela-
tionships under alternate current (AC) with varying frequencies
[5]. A common representation of these measurements are
Nyquist diagrams, where the real part R(Z) of an impedance is
plotted against the imaginary part J(Z) (Figure 1). To analyze
samples, an equivalent electric circuit of appropriate complex-
ity is modeled [6]. The simplest circuit that incorporates R¢”!
is a resistor-capacitor (RC) circuit (Figure 2a). To represent
physiological polarity of epithelial cells, a circuit with two
RC subcircuits in series and a resistor in parallel may be
used (Figure 2b). In both cases, the subepithelium can be
represented by a further resistor in series.

In contrast to DC resistance measurements, impedanc¢
spectroscopy allows to distinguish between R* and R
Under in vivo conditions the subepithelium does not contribute
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Figure 1. Overlay of two semi- and two non-semicircular impedance
spectra with 42 frequencies where real (R) and imaginary (J) part
of each complex-valued impedance Z are plotted against each other.
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to the barrier function as subepithelial capillaries are in close
contact with the basolateral membrane of the epithelial cells.
Further, impedances reflect not only conductive but also capac-
itive properties and allow to derive the epithelial capacitance
which directly depends on the epithelial surface area [7].

In previous work, we have demonstrated that traditional
ways to estimate R° from an impedance spectrum, e.g. visual
extrapolation, can lead to serious errors in analysis of epithelial
characteristics. We have also demonstrated that estimations
can be improved by applying machine learning techniques on
complex-valued impedances of error-prone [8] or on extracted
features of ideal impedance spectra, respectively [9]. We have
introduced detailed and realistic models of the electric behavior
of three epithelial cell lines [10]: the human colon carcinoma
cell line HT-29/B6, the porcine jejunum cell line IPEC-J2 and
the canine kidney cell line MDCK I under control conditions,
as well as under influence of EGTA, nystatin or both. Rationale
behind these models is that for a given electric circuit, the
theoretical impedance at a given frequency can be calculated
if the values of all circuit components are given.

Here, we combine systematic modeling of impedance
spectra with systematic feature extraction in order to improve
quantification of R°?’. We show that employing a mixture of
both measured and extracted features reduces relative devia-
tion from the target value when applying supervised learning
techniques like random forests. Compared with previous ap-
proaches, the estimation error is significantly reduced.

II. METHODS
A. Modeling Impedance Spectra
For all three modeled cell lines, an equivalent circuit
consisting of two RC subcircuits a (R,, C,) and b (Rp, Cp)
located in series and a resistor in parallel (R,,) is assumed (Fig-
ure 2). In accordance with Kirchhoff’s laws, the corresponding
impedance Z at an angular frequency w can be derived from
the impedances of the circuit components:
Ry(Rq + Rp) + iw[Rp(RaTp + RpT4)]
Ry + Ry + Ry(1 = W2T,Tp) + iw[Ry(Tq + Tp) + RaTp + Rp74]

where i = V-1, and 7, = R,C, and 7, = R,C},.

In the measurements to be modeled, ten frequencies per
decade are used. Based on a lowest frequency f; of 1.3 Hz,

Z(w) = (1

Cepi_ Repi

(a) (b)

Figure 2. Equivalent circuits. (a) A simple resistor-capacitor (RC)
circuit yields semicircular impedance spectra. (b) A 2-RC circuit
yields semicircular or non-semicircular impedance spectra.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-639-2

higher frequencies f; with 1 < i < n = 42 are multiples by a
factor of 10%!' (~1.26). Note that the value of f; is a chosen
to a avoid obtaining multiples of 50 Hz (mains frequency) and
that for application with Eq. 1, w; = 27/ f; is calculated.

Further, we model and apply synthetic data scatter reflect-
ing deviations from the theoretical impedance value caused
by the electrophysiological measurement set-up. This scatter
is here modeled based on relative deviations of real part R
and imaginary part J of measured impedances from theoretical
values. For a given impedance Z at frequency f = 27w, relative
deviation o~ of R(Z) is approximated as second-order Fourier
series (n=2) and relative deviations of J(Z) is approximated
as fourth-order polynomial function (n=4):

ox(f) = ap+ Z a; - cos(nwf) + b; - sin(nwf) (2)
i=1

o5(f) = a+ ) af (3)
i=1

where coefficients w, ag, ay, by, ax, by or ag, ai, a, as,
ay respectively were determined by function fitting and ag
is modeled as dependend on R?. For further details and
comparison with measured data, see [8] or [10].

For all synthetic samples used in the following, first com-
plex impedances are calculated according to model parameters.
Then data scatter is added, and finally, polar impedances are
calculated from the scattered complex impedances.

B. Sampling Cell Lines and Functional States

While IPEC-J2 and MDCK T cells typically show rela-
tively high R” values under physiological conditions, for HT-
29/B6 cells relatively low values are measured. Based on
these findings, as well as on further published measurement
results, parameter ranges of the components of the equivalent
circuit were defined and confirmed in previous work [10]. By
extending this modeling approach for individual or combined
application of EGTA and nystatin, impedance spectra for a
total of 11 measurement scenarios are synthesized; note that
for MDCK 1 cells, only measurements for Control, nystatin and
EGTA were available for modeling [10]. Randomized samples
of each scenario are combined to a data set of 275,000 samples
(Tab. 1), which is then split into a training set of 200,000 and
a test set of 75,000 samples.

C. Reference Methods to Quantify Epithelial Resistance

Reliability of the hereby introduced approach was com-
pared to a conventional approach to estimate R/, as well as
to two approaches that we have proposed in previous work.

TABLE 1. SAMPLE SIZES FOR MODELED EPITHELIAL CELL LINES
AND THEIR FUNCTIONAL CONDITIONS.

Condition HT-29/B6 IPEC-J2 MDCK I
Control 25.000 25.000 25.000
Nystatin 25.000 25.000 25.000
EGTA 25.000 25.000 25.000
EGTA +nystatin 25.000 25.000 —
9
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1) Frequency-blind Circle Fit (Method MI1): Each
impedance spectrum was regarded as Nyquist diagram and
a Cole-Cole fit [11] was applied, i.e., a circle was fitted as
described by Kasa [12]. For this task, the R package conicfit
and its function CircleFitByKasa was used. The intercept
with the x-axis at the low frequency end was taken as R/

2) Neural Network Prediction (Method M2): Complex-
valued impedances Z,...,Z;¢ of the first decade of frequencies
(f1,---»f10) were used to train an artificial neural network. This
implies a 20-dimensional input feature space I:

Iy = {R(Z), ..., R(Z19), 3(Z)), ..., B(Z10)} 4)

While this approach follows a method previously published by
us [8], we improved the precision of predictions by using the
Rprop algorithm [13] instead of conventional backprogation.
Employed Rprop parameters were p7=1.2, 57=1.2, A,,,,=50.0,
Ayin=0.000001 and Ay=0.07. We used the Fast Artificial Neu-
ral Network library [14] to perform automated evaluation of 30
feed-forward networks with one hidden layer and n € {1, ..., 30}
hidden neurons (20-n-1 architecture). Training these networks
in parallel with the same data, the architecture 20-9-1 was
identified as best performer and used for predictions.

3) Magnitude at 1.3 Hz (Method M3): In previous eval-
uations of features for prediction of R’ from an impedance
spectrum, we found that the magnitude r observed at 1.3 Hz
is a reliable approximation for semicircular spectra [9]. While
reliability decreases with non-semicircular spectra, this one-
feature approach is ultimately easy to implement and a feasible
method for comparison. For a given spectrum, we simply used
the value of r(Z;) € S, as prediction for R°”.

D. Feature Extraction-based Approach

To improve prediction of R¢”" from impedance spectra,
we suggest a supervised learning approach that uses system-
atic feature extraction and selection. After extracting implicit
features for each spectrum, we ranked explicit and implicit
features. Finally, subsets of these features were assessed by
applying supervised learning.

From calculations, n=42 tupels of real and imaginary parts
((R(wp), F(wp)), - .., (R(w,—1), F(w,-1))), are obtained. Real
and imaginary parts of a spectrum can be regarded as separate
feature sets S and Sy:

S = {R(wo), ..., R(wy-1)} &)
Sg ={3(wo), ..., I(wy-1)} (6)

As an alternative representation, these complex values were
transformed into polar coordinates, i.e., into phase angle ¢ and
magnitude r. This resulted in two alternative sets Sy and S ,:

Sy = {¢(wo), ... plwy-1)} (7
S = {r(wo), ... (wp-1)} ®)

1) Feature Extraction: Based on the features that can be
explicitly measured or synthesized, respectively, a set I, of
explicit input features was defined:

I, =Sx XSgxS§4xS, ©))
where S, Sy, S4 and S, contained n=42 features each.
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Additionally, the development of magnitude and phase over
time was represented in sets of differential features:

S a¢ {APIAY; = P(wir1) — d(w;),0 <i<n-1} (10)
S ar {Ar|Ar; = r(wiy1) — H(w),0<i<n-1} (11)
which are combined to a set /; of differential input features:
Iy =Sap X Sar (12)
where S a4 and S, contained n=41 features each.

Further, a total of 16 statistical properties like minimum,
maximum and range were determined for each feature set (for
details see appendix).

Gy = {x|x = statistical property of S} (13)

Gs = {x| x £ statistical property of Sg} (14)

Gy = {x | x = statistical property of S ¢} (15)

G, = {x|x £ statistical property of S} (16)

Gprpy = {x | x = statistical property of S A¢} an

Gar = {x| x = statistical property of S»,}  (18)

which were combined to a set [; of implicit input features:

Ii = Gx X Gg X Gy X G, X Gpg X Gar (19)

By combining explicit, differential and implicit features, an
346-dimensional input feature space I was obtained that rep-
resents 42 measured impedances:

I=1xI;xI, (20)

2) Feature Selection: Three alternative feature selection
approaches were employed and assessed:

e  Filter-based approach. We applied Correlation-based
Feature Selection (CFS) on the input space I of the
200,000 training samples. For this task, the R package
FSelector and its function cfs was used. In contrast to
other multivariate filters, CFS evaluates feature subsets
instead of single features [15]. In particular, CFS
returns not a ranking of features but a fixed subset
of features. Here, CFS evaluated a one-dimensional
subset best that consists only of the range of S,.

e  Expert knowledge-based approach (EXP). As a matter
of theory, low-frequency impedances are closely re-
lated to R°” [6]. Also, the magnitude of an impedance
is more meaningful than other representations. There-
fore, we manually selected the feature sets G, and
Gar, as well as magnitudes of the low-frequency
impedances Zi,...,Zs and related differences (#(Z;;1)-
r(Z;)). This yielded a 42-dimensional representation.

e  Wrapper-based approach (RFg4). Variable importance
was assessed for the input space I of the 200,000
training samples. Using the R package randomfForest,
a random forest (RF) consisting of 500 trees was
trained to predict R°”' and used in a wrapper-like way.
After training, variable importance values were used to
rank the input features, and a subset of 84 top-ranked
features was chosen as representation of an impedance
spetrum. This number of selected features is simply
motivated by the initial number of 84 features per
spectrum. Automated wrapper techniques like sequen-
tial feature selection or recursive feature elimination
were omitted here due to the high computational costs.

10
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(a) Semicircular test data (n=33,069)
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(b) Non-semicircular test data (n=41,906)

Figure 3. Relative deviations of estimated values from true R*”'. Deviations achieved by the feature extraction-based approach RFg4, as well
as for the two best performing reference methods (M2, M3) are plotted against the respective true target value. Values shown refer either to
(a) semicircular or (b) nonsemicircular spectra, which are discriminated by the relation between apical and basolateral time constants.

3) Evaluation: All three feature selection approaches CFS,
EXP and RFgs were used to estimate R¢” for the 75,000
samples of the test data. Deviations of the obtained estimations
from the target were compared to reference methods M1, M2
and M3.

III. REsurrs

The reliability of estimations for R°” was assessed. For
each approach, the relative deviation of an predicted value 7,
from the target value #, or error At respectively, was used:

=t
t

Based on At, both absolute-valued deviations, as well as signed
deviations were analyzed.

At =

ey

A. Absolute-valued Deviations

Assessing absolute-valued relative deviation from the target
|At|, for reference methods, as well as feature extraction-based
approaches a mean deviation of less than +2.0 % was observed.
Maximum deviations, however, laid between +54.4 % and
+92.1 % for the reference methods and between +9.8 % and
+85.9 % for feature extraction-based approaches. Maximum
deviations for the 84- and 20-dimensional cartesian represen-
tations M1 and M2 were comparable to maximum deviations
of the two one-dimensional polar representations M3 and
CFS. The mixed 42- and mixed 84-dimensional representations
learned by random forests both showed significantly lower
maximum deviations. Lowest mean and maximum deviations
of all methods assessed were obtained by the random forest
trained with the 84 top-ranked features. Figure 4 shows box-
plots of |Af| for all methods evaluated.

B. Estimations for Semi- and Non-semicircular Spectra

Deviations of the random forest trained with the 84 top-
ranked features (RFs4) were further assessed by separating
semicircular and non-semicircular spectra of the 75,000 test
samples. In continuity with our previous work [7], spectra from
equivalent circuits with 7, < 5-1;, or 7, < 5-7, were considered
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as semicircular spectra; all spectra with greater difference
between 7, and 7, were considered as non-semicircular.

As Figure 3 illustrates, estimations by reference methods
M2 and M3 tended to become unprecise with low values of
ReP': this held true for both semi- and non-semicircular spectra.
Using the feature extraction-based approach RFg4, deviations
for high and low target values laid below 10 % and thereby in
a significantly smaller range than for M2 and M3.

For semicircular spectra with larger target values (Fig-
ure 3a), deviations of estimations by the feature extraction-
based approach RFg, laid in a range comparable to M2 and
M3. For non-semicircular spectra with larger target values
(Figure 3b), RFg4 showed in most cases small improvements
over M2; using method M3 appeared to induce systematic error
that causes greater deviations than for M2 and RFgy.

100
80
60

40

20

Absolute-valued relative deviation from target value [%]

o0 :

I L
M1 M2 M3 CFS EXP RFy,

REFERENCE METHODS FEATURE EXTRACTION

Figure 4. Boxplots of absolute-valued relative deviations from true
values of R°”" [+%]. Each box reflects median, 1. and 3. quartile.
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Figure 5. Usage of feature subsets. The approaches RFg4 and RF3s0 use
features from all subsets, EXP only from the subsets S, S, G and Ga,.

IV. DiscussioN
A. Comparison of Problem Representations

Evaluation of the test samples showed that the filter-
based (CFS), as well as the expert-based (EXP) and wrapper-
based subset (RFs4) yielded estimations with little average
deviation from the target. While using the one-dimensional
CFS representation exhibits similiar maximum error as refer-
ence methods, EXP and RFg, allowed for significantly lower
maximum error than the reference methods. Yet, the features
used in both approaches exhibited different characteristics
(Figure 5). EXP employed only features of direct physical
relevance and only half as many dimensions as RFgs. RFgy
on the other hand employed more features, but reduced the
maximum error to a level comparable to a much more high-
dimensional representation of 350 features (Tab. II).

B. Use of Random Forests

Exploiting the variable importance determined by random
forests allowed to efficiently combine supervised learning with
a wrapper-based feature selection. As in previous studies [16],
the ranking of all 350 features by a random forests could be
used to identify features appropriate for the given task. In
particular, top-ranked features yielded estimations with lesser
deviations than a feature set determined by filter-based CFS.

TABLE II. RELATIVE DEVIATIONS FROM REP! [+%].

EXP RFg, RF;s0
Maximum 12.9 9.81 9.24
3. Quartile 0.30 0.23 0.25
Mean 0.29 0.22 0.23
Median 0.12 0.10 0.11
1. Quartile 0.05 0.04 0.05
Minimum 0.00 0.00 0.00

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-639-2

Compared with the previously developed ANN approach
(M2), the random forest approaches EXP and RFg, performed
with similar precision for samples with large target values and
with much better precision for small target values (R®” <
25 Qcm?). This is in accordance with findings in previous
comparisons of random forests with ANNs [16]. As a result,
both EXP and RFg,4 allowed for the first time reliable estima-
tions for impedance spectra reflecting epithelia with low R/,

C. Limitations

The feature extraction-based approach suggested here to
estimate R’ work equally well for cell types and conditions
where time constants of the apical and basolateral cell mem-
branes are similar (as usually found in cell culture) as for
conditions where these time constants differ considerably (as
found in many tissues). Moreover, Figure 3 illustrates that
reliable quantification of R°?" from an impedance spectrum
is feasible for resistance values spanning several orders of
magnitude. As the presented method involves modeled spectra,
however, applicability is naturally depending on modeling and
sampling of the data. The previously modeled data that is used
here is in good accordance with measured data [10]. While a
variety of cell lines and functional states is considered, results
and estimations obtained here are still limited to the scenarios
modeled. Also, characteristics of the training and test data
influence characteristics of estimation methods. For example,
precision of supervised learning methods tends to decrease if
the number of samples decreases. To this end, e.g., the density
of target values needs to be considered (cf. Figure 6).

HT-29/B6

e T T | 1PEC2

MDCK 1

I T T T T 1
2000 4000 6000 8000 10000

[=}

True epithelial resistance [Q-cm?]

Figure 6. R°P target values [Q-cm?] of the test data (n=75,000) grouped by
cell lines. Each box reflects median, 1. and 3 quartile.

D. Relevance for Biomedical Applications

Impedance spectroscopic techniques are increasingly gain-
ing importance in biomedical applications like monitoring
growth of cultured epithelial and endothelial cells (e.g., retinal
pigment epithelium, gastrointestinal tract cells, pulmonary
cells, blood-brain-barrier models [17][18]), or alterations of
barrier function during pharmacological studies [19][20][17].
Furthermore, impedance spectroscopy is the only technique
that allows functional distinction between epithelial and subep-
ithelial properties of ex vivo tissue, such as intestinal biopsies
of patients with suspected barrier impairment.

12



BIOTECHNO 2018 : The Tenth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

If the technique is to be used on a routine basis, however,
reliable automatization for the evaluation of impedance spectra
is indispensible. On one hand, manual evaluation of impedance
spectra to extract the physiologically relevant parameter, R,
requires extensive user training and is time consuming, as
individual spectra need to be fitted by complex equations [9].
On the other hand, currently available systems usually only
record RT (i.e., the sum of the subepithelial and epithelial
resistance) or even only relative alterations in R” over the time-
course of an experiment, as estimation of absolute RT values
is too error-prone [21][17].

V. CONCLUSIONS

While impedance spectroscopy is a convenient measure-
ment technique, determining the resistance of an epithelial
tissue with traditional approaches is error-prone under certain
circumstances. Here, we have shown that this clinically im-
portant parameter can be quantified with high precision by
training random forests with features extracted from modeled
impedance spectra. In particular, we have shown that this
approach outperforms both traditional estimation techniques
and a state-of-the-art artificial neural network approach. Due
to detailed and realistic modeling, we suggest this approach
is valid for the epithelial cell lines HT-29/B6, IPEC-J2 and
MDCK I under control conditions, as well as under the
influence of nystatin and EGTA.

APPENDIX

For the explicit feature sets Sx, Sy, Sg and §,, as well
as for the differential feature sets Spy and S, a total of 16
statistical features (Tab. III) was calculated. By combining
these statistical features of set S, a novel set G of related
global features was extracted.

TABLE III. STATISTICAL FEATURES FOR FEATURE SET S .

Feature Definition Description
with x; € Sx and n = #(Sg)

min(Sy) fx:x<x YxeSx} Minimum
max(Sx) fx:x;<x VxeSn} Maximum
R(S®) max(Sg) — min(Sy) Range
Poi(SR) X[0,1-n+1] 1. Percentile
Q025(SR) X[0,25n+1] 1. Quartile
Qo75(S%) X[0,75n+1) 3. Quartile
Poo(Sy) X[0.9-n+1] 9. Percentile
Rio(Sx) Q075 (S;{) - QO.ZS(S;Q Interquartile distance
Rip(Sx) Qo.9(S %) - Qo1 (S;{) Interpercentile distance

X(nsl > if n odd
Xmed(S ) ] 2 ) Median

E(x(%) +x(%+1>),1fn even
TarinmS®) 1 ¥ x Arithmetic mean
Xgeom(S®) VL Geometric mean
Xnarm(SR) 27:}: = Harmonic mean
s*(Sw) L (% = Xarin (S »))> Variance
s(Sw) v s2(SR) Standard deviation
Rum(S%) Tred(S 1) = Earigm(S %) Distance between median and

arithmetic mean
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