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Abstract—Cell segmentation is a critical task in fully automatic
computer cytology diagnosis. Overlapping cells pose a major
challenge to cell segmentation because of blurred edges and
inhomogeneous cytoplasm. In this paper, we propose a novel
energy functional and formulate the boundary identification
problem as a problem to minimize this energy functional together
with a shape prior. The terms of our energy functional are
designed to exploit both the edge and regional features, and
the shape prior is derived from low rank optimization. For
the non-convex minimization problem, we formulate an effi-
cient monotone Accelerated Proximal Gradient with Linesearch
(APGL) algorithm. We evaluate our proposed method using
the International Symposium on Biomedical Imaging (ISBI)
2014 and 2015 challenge datasets. Results demonstrate that our
method produces competitive accuracy compared to state-of-the-
art methods.
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I. INTRODUCTION

Cervical cancer, which arises from abnormal growth of
cervical cells, is the fourth most common cause of women’s
deaths from cancer. About 70% of these deaths occur in
developing countries [1]. Fortunately, the incidence of cervical
cancer has been significantly reduced by more than 50% over
the past 30 years, mainly due to the widespread cervical
cytology screening [2]. Until now, inspection of the cytology
image has been done mainly manually, and the inspection
process is labor intensive and suffers from inter and intra-
observer variability. Hence, fully automatic computer diagnosis
has attained great attention.

Cell segmentation is one of the critical steps in computer-
aided diagnosis. In this step, individual cells are identified
and their nuclei and cytoplasm are detected. The segmentation
of overlapping cytoplasm is particularly challenging because
of weak edges and inhomogeneous cytoplasm. Numerous
attempts have been made to address the problem of overlapping
cells. Lu et al. [3] proposed a joint optimization method using
multiple level set functions, where different constraints are
imposed including contour length, edge strength, cell shape
and area of the overlapping regions. However, as pointed
out by the authors, the traditional level set method used has
issues with the initial segmentation and the re-initialization
of the distance function. Hansang Lee et al. [4] proposed an
improved algorithm by combining superpixels and cell-wise
contour refinement through graph cuts, thus enhancing the
oversegmentation method, which suffers from noisy and in-
accurate boundaries, especially for overlapping regions. How-
ever, their contour refinement has the drawback of sometimes
extracting boundaries along nucleus due to the nucleus having

the strongest boundary with large contrast. Phoulady et al. [5]
proposed to use multiple images each with a different focal to
delineate the cytoplasm corresponding to each nucleus. Since
the edge features are not fully exploited for the cytoplasm
segmentation, the performance of the algorithm is insufficient.
Ushizima et al. [6] proposed a new algorithm for cytoplasm
segmentation using a combination of nuclear narrow-band
seeding, Voronoi diagram and graph-based region growing.
They partition the cell mass into convex polygons such that
only one nucleus is located in each Voronoi polygon. However,
they assume that all segment lines have equal distances to the
nearest nucleus - an assumption that is unrealistic for most
overlapping cells. Nosrati et al. [7] proposed a variational
approach for segmenting overlapping cells in Pap smear im-
ages. They exploit the regional prior, distance prior between
a nucleus and its corresponding cytoplasm boundary, elliptical
shape prior, and an overlap constraint that induces neighbour-
ing cytoplasm to be excluded from one another. Compared to
overlapping cytoplasm detection, nucleus detection is easier.
Al-Kofahi et al. [8] proposed to segment cell nucleus using
a combination of approaches. In their proposal, nuclear seed
points are detected by multiscale Laplacian-of-Gaussian fil-
tering constrained by adaptive scale selection and are used
to perform an initial segmentation. A graph cuts algorithm
incorporating alpha expansions and graph coloring is used to
refine the segmentation. Plissiti et al. [9] used morphological
analysis to detect the candidate nucleus centroids and refine
the segmentation based on prior knowledge.

An outline of our method is summarized in Figure 1. Our
approach consists of four main steps: nucleus localization,
mass detection, coarse cytoplasm formation, and fine cyto-
plasm refinement. In step one, cell nuclei are detected by a
Maximally Stable Extremal Regions (MSER) [10] detector and
outliers which are tiny areas with low circularity are removed.
In step two, the cell masses are extracted through triangle
thresholding [11]. In step three, the coarse cytoplasm are
generated via Simple Linear Iterative Clustering (SLIC) [12].
The superpixels are clustered based on distance measurement.
In the final step, we apply an effective energy functional to
refine the coarse cytoplasm. The energy functional consists
of four terms: shape prior, regional prior, edge prior and
regularized prior. The main contributions of our work are the
shape prior construction, energy functional formulation, and
the optimization strategy to minimize the energy functional.

In Section II, we give details on the construction of the
shape prior using low rank optimization and the formulation
of the energy terms that attract the active contour to different
types of features. In Section III, we present a novel and effi-
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cient algorithm that solves the energy minimization problem.
In Section IV, we address the applicability of our method
to cervical cell segmentation and present the performance of
our method compared to three existing algorithms. Results
demonstrate that our method generally shows competitive
performance for the ISBI 2014 and 2015 public challenge
datasets. Finally, Section V discusses some issues and provides
a summary for our work.

Figure 1. The workflow for overlapping cell segmentation.

II. MODEL SETUP AND PROBLEM FORMULATION

In this section, we show the construction of the shape
prior using low rank optimization and the formulation of the
energy terms that attract the active contour to different types
of features.

A. Shape similarity
To cope with misleading features in images, shape prior is

widely used to guide the segmentation process. It has been
shown [13] [14] that for a matrix made up of parametric
contours of shapes as column vectors, the rank of the matrix
can act as a measure of the similarity of the shapes.

We use a vector c = [x1, . . . , xn, y1, . . . , yn]T ∈ R2n as a
parametric contour on the 2D plane, where (xi, yi) is a point
on the contour. Assume there are k contours c1, . . ., ck, and
ci(i 6= 1) is produced by c1 via affine transformation (i.e.,
translation, rotation and scaling). Then, the matrix made up of
these contours has the following property

rank([c1, ..., ck]) ≤ 6 (1)

This property is well-known but a quick proof is given here.
p′ and p, the coordinates of a point before and after a shape
change through affine transformation, follow the following
relation: p′ = Ap + T. Since ci is generated by c1 through
affine transformation, we can express ci as ci = C1w where

C1 =

[
c1x 0 c1y 0 1 0

0 c1x 0 c1y 0 1

]
,

wi = [ai11, a
i
21, a

i
12, a

i
22, t

i
1, t

i
2]T .

Here, c1x = [x1, . . . , xn]T , c1y = [y1, . . . , yn]T , and aijk
and tij denote the elements of A and T. It is straightforward
that [c1, ..., ck] = C1[w1, ...,wk], and wi has 6 rows. There-
fore, rank([c1, ..., ck]) ≤ 6.

Essentially, the rank of the matrix [c1, ..., ck] represents
the degrees of freedom of these shape changes. If we impose
a low rank constraint on the matrix, shape changes such as,
translation, rotation, and scaling will be allowed.

B. Active contour
In classical active contour models, there are generally two

types of energy functional: edge-based [15] and region-based
[16]. Next, we briefly review these models.

Let Ω, ∂Ω denote a bounded open set of R2 and the
boundary of Ω respectively.

The edge-based snake model is to find the contour that
produces:

inf
C(s)

E(C(s)) (2)

where

E(C(s)) = µ

∫ 1

0

|C ′(s)|2ds+ ν

∫ 1

0

|C ′′(s)|ds

− λ
∫ 1

0

|∇I0(C(s))|2ds

is the energy functional.
Here, C(s) ∈ ∂Ω denotes a parameterized curve, I0

denotes a given image, and µ, ν, λ are positive parameters.
The first two terms in the energy functional are considered the
internal energy, which controls the smoothness of the curve.
The last term is considered the external energy, which attracts
the curve to stop at the points of maxima |∇I0|. Through
minimizing E(C(s)), we are trying to locate the curve at the
boundary of the object while keeping the curve itself as smooth
as possible.

The region-based snake model is to find the contour that
produces

inf
C(x,y),v1,v2

E(C(x, y), v1, v2) (3)

where

E(C(x, y), v1, v2) = µ · Length(C(x, y))

+ ν ·Area(in(C(x, y)))

+ λ1

∫∫
in(C(x,y))

|I0(x, y)− v1|2dxdy

+ λ2

∫∫
out(C(x,y))

|I0(x, y)− v2|2dxdy

Here, C(x, y) ∈ Ω is a curve specified by a collection of
points (xi, yi), I0 denotes a given image, and v1, v2 respec-
tively represent the average intensity of I0 inside and outside
C(x, y). µ, ν, λ1, λ2 represent positive parameters. The first
two terms are regularizing terms, which control the length of
curve C and the area inside curve C. The last two terms are
fitting terms. The basic idea of this model can be explained
by a simple case. Assume the image I0 is made up of two
homogenous regions. The fitting terms are zero if and only if
the curve is located at the boundary of the two regions.

C. Energy functional with shape prior
To fully exploit the edge-based and region-based active

contour models, we propose to revise the energy functional
and include a shape prior such that the problem becomes:

inf
C(x,y),v1,v2

E(C(x, y), v1, v2)

s.t. rank(Φt(C(x, y))) ≤ N
(4)

where,
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E(C(x, y)) = µ

∫∫
on(C(x,y))

|∇C(x, y)|2dxdy

+ ν

∫∫
on(C(x,y))

|4C(x, y)|2dxdy

+ λ1

∫∫
on(C(x,y))

1

1 + |∇Gσ ∗ I0|2
dxdy

+ λ2

∫∫
in(C(x,y))

|I0 − v1|2dxdy

+ λ3

∫∫
out(C(x,y))

|I0 − v2|2dxdy

Here, C(x, y) denotes a curve. For simplicity, we replace
C(x, y) by C for the rest of the paper. µ, ν, λ1, λ2, λ3 are
determined by validation on the ISBI datasets. v1, v2 respec-
tively represent the average intensity of I0 inside and outside
C. To smooth the image, we use a 2-dimensional Gaussian
kernel

Gσ =
1√

2πσ2
e

x2 + y2

2σ2 .

Let Φt(C) = [Cprior, C
∗
1 , ...C

∗
t , C]. It contains the shape prior

contour and a set of sub-optimal contour candidates and an
unknown contour. Cprior can be arbitrary shape. Here, Cprior
is a circular shape contour based on our task, and C∗1 , ..., C

∗
t

are generated during the low rank minimization according to
(5).

In general, the rank minimization problem is NP-hard.
Therefore, relaxation is a common way to make the problem
tractable. We use nuclear norm, which is proven to be the
tightest convex surrogate of rank [17], to approximate the rank
function, and relax the origin problem (4) to:

inf
C
E(C) + λ ‖Φt(C)‖∗ (5)

where ‖Φt(C)‖∗ denotes the nuclear norm of the matrix
Φt(C). Suppose the rank of Φt(C) is r, then ‖Φt‖∗ =∑r
i=1 σi, where σi is the singular value of Φt. Hence, the

nuclear norm can be viewed as the l1-norm of the vector of
singular values.

III. THE PROPOSED MINIMIZATION ALGORITHM

Proximal gradient is one of the most popular methods
for solving the problem in (5). To illustrate it, we consider
a general unconstrained non-smooth non-convex optimization
minimization problem:

min
X

F (X) + λG(X) (6)

where F is a differentiable and G is a convex func-
tion. Further, F is assumed to be Lipschitz continuous:
‖∇F (X1)−∇F (X2)‖ < τ ‖X1 −X2‖. Therefore, F can be
approximated locally as a quadratic function at Xk such that:

Qτ (X,Xk) =F (Xk) + 〈∇F (Xk),X−Xk〉

+
τ

2
||X−Xk ‖2F +λG(X)

=
τ

2
‖ X− [Xk − 1

τ
∇F (Xk)] ‖2F +F (Xk)

+ λG(X)− 1

2τ
‖ ∇F (Xk) ‖2F

(7)

where τ is a given positive parameter, 〈·, ·〉 denotes the
inner product, and ‖ · ‖F denotes the Frobenius norm. It is
straightforward that (7) is a convex function of X, and hence
there exists a unique minimizer X∗ such that:

X∗ = arg min
X

Qτ (X,Xk)

= arg min
X

τ

2
‖ X− [Xk − 1

τ
∇F (Xk)] ‖2F

+ λG(X) + const

(8)

Now, we consider a special case of (8),

min
X

τ

2
‖X− S‖2F + λ ‖X‖∗ (9)

where G(X) = ‖X‖∗. For convenience, we replace Xk −
1

τ
∇F (Xk) with S ⊂ Rm×n and ignore the constant term.

Problem (9) has an analytical solution via Singular Value
Decomposition (SVD) of S, as has been proved in [18].

S = UΣVT ,Σ = Diag(σ) (10)

Here, U,V are respectively the left and right eigenvector
matrices, and Σ is the diagonal matrix containing the singular
values arranged in descending order. Let x+ = max {x,0},
and the solution X∗ to (9) is given in closed-form as

X∗ = UDiag((σ − λ

τ
)+)VT (11)

In [19], usual Accelerated Proximal Gradient (APG) is
extended to the general non-convex case by introducing a
monitor variable that satisfies the sufficient descent property.
The algorithm consists of the following steps:

Yk = Xk +
tk−1

tk
(Zk −Xk) +

tk−1 − 1

tk
(Xk −Xk−1) (12)

Zk+1 = prox(Yk − τy∇F (Yk)) (13)

Mk+1 = prox(Xk − τx∇F (Xk)) (14)

tk+1 =
1 +

√
1 + 4 (tk)

2

2
(15)

Xk+1 =

{
Zk+1, if F (Zk+1) ≤ F (Mk+1)

Mk+1, otherwise
(16)

where τx, τy are constants satisfying τx ≤ τ and τy ≤ τ . The
proximal mapping is defined as prox(X) = arg minUG(X)+
τ ‖U−X‖2. The algorithm is an extension of monotone APG
for the convex case. The difference lies in the introduction of
the extra M matrix, which serves as the role of the monitor,
and is used in the correction step during the X-update in (16).

To accelerate the convergence of the monotone APG al-
gorithm, we propose to use a linesearch-like technique. In
practice, it is desirable to set a smaller value for τ in (11)
by performing a linesearch-like technique.

Now, we formally present the monotone accelerated prox-
imal gradient with linesearch (APGL) algorithm, which is
outlined as Algorithm 1.
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Figure 2. Monotone APGL.

IV. EXPERIMENT AND RESULTS

The outline of our cytoplasm segmentation method is
summarized in Figure 2 and Figure 3. Now we describe our
complete method in six steps: image smoothing, edge detec-
tion, mass extraction, nucleus localization, coarse cytoplasm
estimation and fine cytoplasm refinement. An example input
image is shown in Figure 3(a). First, we apply a bilateral filter
to reduce noise and preserve edges. Result is shown in Figure
3(b). Then cell masses are extracted by triangle method [13],
and result is shown in Figure 3(c). Edges are detected by
SLIC [12], as shown in Figure 3(d). Cell nuclei are segmented
by MSER, as shown in Figure 3(e). The coarse cytoplasm
is generated by clustering the superpixels near the nucleus
based on distance measurement. Finally, the fine cytoplasm
is obtained by our proposed method, as shown in Figure 3(f).

We test our method on datasets released by recent ISBI
challenges held in 2014 and 2015. The dataset consists of 16
EDF real cervical cytology images and 945 sythetic images.
The 810 synthetic images are used for testing in the quantita-
tive evaluation. The 2015 dataset consists of a collection of 17
multi-layer cervical cell volumes, from which 8 will be used
for training and 9 for testing. They are realistic images with
overlapping cells and poor contrast. We evaluate our method
quantitatively by a set of four metrics. Specifically, first, the

Dice coefficient(DC) is measured as DC =
2 |A ∩B|
|A|+ |B|

. For

individual cytoplasm segmentation, the Dice coefficient is
computed over valid cytoplasm segmentation. A valid segmen-
tation is defined as DC > 0.7. Second, the false negative
rate (FNo) is calculated as the proportion of segmentation
with DC ≤ 0.7. In addition, for valid segmentation, the true
positive rate (TPp) and false positive rate (FPp) are also

Figure 3. The workflow and methods for overlapping cell segmentation.

Figure 4. The images of workflow for cytoplasm segmentation. (a) Filtered
image (b) Nucleus image (c) Mass image (d) Edge image (e) Coarse cytoplasm
image (f) Fine cytoplasm image.

presented as the third and fourth metrics.
We compare our method with existing methods [21].

Specifically, [6], [7] are the winners of ISBI 2014 challenge
and [5], [20] are the the winners of ISBI 2015 challenge. In
Table I, our proposed method achieves the lowest object-based
false negative rate on both datasets. Especially, the object-
based false negative rate has been significantly reduced. This
means our method generates many more instances of valid
segmentation than other existing methods.

Figure 4 displays the segmentation results under different
degrees of overlapping cells. As shown in the first row,
we divide the overlapping cells into three categories: non-
overlapping cells, pair overlapping cells, and multiple overlap-
ping cells. The second row shows the results after the coarse
contour formation, and the third row displays the results after
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Figure 5. Results of our cytoplasm segmentation results. The top row shows original images. The middle row shows the output after coarse cytoplasm
formation. The bottom row shows results of fine cytoplasm refinement.

TABLE I. EVALUATION AND COMPARISON OF OUR CYTOPLASM SEGMENTATION RESULTS WITH THREE STATE-OF-THE-ART METHODS.

Datasets Method FNo TPp FPp DC

ISBI 2014 Ushizima [6] 0.267 0.841 0.002 0.872
Nosrati [7] 0.111 0.875 0.004 0.871
Lu [3] 0.316 0.905 0.004 0.893
Lee [4] 0.137 0.882 0.002 0.897
Ours 0.098 0.901 0.004 0.875

ISBI 2015 Phoulady [5] 0.408 0.927 0.003 0.831
Ramalho [20] 0.501 0.899 0.002 0.856
Lee [4] 0.434 0.877 0.001 0.879
Ours 0.285 0.861 0.001 0.856

fine cytoplasm refinement. Our method successfully segments
all cell cytoplasm in the first two columns with a Dice
coefficient around 0.95 for both cases. Our method misses one
cytoplasm in the last column due to the severe overlap and
weak contrast. The Dice coefficient of the last column is above
0.85, which is still an acceptable result. The segmentation
results show a good delineation of the overlapping cytoplasm,
and indicate the strong ability of our proposed method in
extracting the cell cytoplasm.

In addition, the average running time of our method is
about 2.5 seconds for each cell. Our code is written in Matlab
and run in Ubuntu. The configuration is a notebook with Intel
core i7 and 16 GB RAM.

V. DISCUSSION AND CONCLUSION

In the experimental results, our proposed method in general
achieves better performance than the three existing methods.
Especially, we observe that the object-based false negative
rate has been greatly reduced. We attribute the improvement
to the cytoplasm refinement via our proposed method. Since
we achieve the highest true positive rate, it is reasonable that
our false positive rate is slightly higher than other methods.
According to the qualitative results in Figure 4, our approach
successfully segments the individual cytoplasm for most cells
under different degrees of overlap. Examining the results in
Figure 4, we can see that the shape prior plays an important
role in fine cytoplasm refinement. The shape prior makes the
cytoplasm more elliptical. It is the key factor for improving
the false negative rate. But, a point that needs to be addressed
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is that, as shown in the first column of Figure 4, the fine
cytoplasm refinement actually degrades the result for the cell
in green because the shape prior rejects the non-elliptical
protrusion on the left-side of the cell.

In conclusion, we have proposed a novel fully automatic
segmentation method for overlapping cells. The main contribu-
tions of our work are the shape prior construction, energy func-
tional formulation, and the optimization strategy to minimize
the energy functional. The shape prior is modeled using low
rank optimization to deal with the weak edges and low contrast
in overlapping cells. The terms of the energy functional are
designed to exploit both the edge and regional features. The
monotone APGL algorithm presented solves our non-smooth
non-convex problem efficiently. We test our proposed method
on the ISBI 2014 and 2015 challenge datasets, and our method
shows competitive accuracy compared with existing state-of-
the-art methods.
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