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Abstract— We established a new theory of discriminant 
analysis after R. Fisher. We developed two methods and four 
Optimal Linear Discriminant Functions (OLDFs) in order to 
solve five serious problems of discriminant analysis. Over than 
30 years, many researchers could not select cancer genes from 
gene datasets such as microarray datasets (Problem 5). The 
Matryoshka feature selection method (Method 2) could 
separate the dataset to several linearly separable subspaces 
(Small Matryoshka, SM) and non-linearly separable subspace 
definitely. We consider genes including each SM are cancer 
genes because they can discriminate cancer patients versus 
normal patients completely. On the other hand, other genes 
cannot discriminate two classes correctly and are noise. 
Therefore, Method 2 can separate the dataset to several signal 
SMs and noise subspace naturally. In this study, we introduce 
how to analyze all SMs of six datasets using common statistical 
methods and propose malignancy indexes for cancer gene 
diagnosis. Because our standard statistical approach obtains 
almost the same successful results, we explain the results by 
Alon et al. dataset. Researchers can analyze their dataset by 
our approach. 

Keywords—Cancer Gene Analysis; Cancer Gene Diagnosis; 
Microarray Dataset; Matryoshka Feature Selection Method; 
Small Matryoshka (SM); Basic Gene Set (BGS); NP-hard; large 
p small n.  

I. INTRODUCTION  

We established a new theory, which in this paper will be 
referred to as Theory, of discriminant analysis [28] after 
Fisher [8] and solved five serious problems of discriminant 
analysis [16][19]. We developed four Optimal Linear 
Discriminant Functions (OLDFs) and two new methods. 
Integer Programming (IP) defines IP-OLDF and Revised IP-
OLDF (RIP) based on Minimum NM (MNM) instead of 
Number of Misclassifications (NM). Linear Programming 
(LP) defines Revised LP-OLDF. Revised IPLP-OLDF is a 
mixture model of Revised LP-OLDF and RIP. IP-OLDF 
found two new facts about discriminant analysis such as 1) 
the relation of NM and LDF, 2) MNM monotonic decrease 
(MNMk>=MNM(k+1)).  

In Section 2, we explain the Matryoshka feature selection 
method achieved by LINGO [14] Program 3, which we call 
Method 2. Program 3 found all SMs of six datasets in Table 
1. In Section 3, we analyze all 64 SMs of Alon et al. dataset 
[1] by common statistical methods. Those are one-way 
ANOVA with t-test, Ward cluster analysis, Principal 

Component Analysis (PCA), logistic regression [5][7], 
Fisher’s Linear Discriminant Function (LDF) and a 
Quadratic Discriminant Functions (QDF). In Section 4, we 
analyze 64 RIP discriminant score data of 64 SMs; we get 
straightforward and surprising results. In Section 5, we 
discuss the reason why statistical methods cannot analyze the 
datasets with noise because of the large p small n problem 
[6] and NP-hard [3]. In Section 6, we conclude that RIP 
discriminant scores data is very useful because we can 
propose malignancy indexes for cancer gene diagnosis. 

II. NEW THEORY OF DISCRIMINANT ANALYSIS 

In this section, we introduce Theory outlook and all SMs 
of six datasets found by LINGO Program 3 [28].  

A. Five Serious Problems of Discriminant Analysis 

   The five problems that we address in this paper are the 
following. Only RIP can discriminate the cases on the 
discriminant hyperplane  correctly (we will refer to this as 
Problem 1). Because other LDFs cannot discriminate those 
cases correctly, their NMs may increase. Other LDFs, 
except for RIP and a Hard margin SVM (H-SVM) [35], 
cannot discriminate linearly separable data (LSD) (we will 
refer to this as Problem 2). Moreover, error rates of Fisher’s 
LDF are very high for LSD discrimination. Problem 3 is the 
defect of the generalized inverse. QDF misclassifies all 
cases in class 1 to class 2 if some variable including class 1 
is constant and its values including class 2 vary. If we add 
slight random numbers to the variable, we can solve 
Problem 3. The discriminant analysis is not traditional 
inference statistics that offer standard error (SE) equation 
derived from the normal distribution (we will refer to this as 
Problem 4). The 100-fold cross-validation method (Method 
1) offers the 95% confidence intervals (CIs) of error rates 
and discriminant coefficients by the computer-intensive 
approach [15]. Over more than 30 years [10], many medical 
and statistical researchers were struggling to select cancer 
genes from the high-dimensional datasets with noise (we 
will refer to this as Problem 5). We call all linearly 
separable gene space as Matryoshka. We downloaded six 
microarray datasets from Higgins HP [12] on October 28th, 
2015. When we discriminate these datasets, all NMs of three 
Revised OLDFs are zero and few coefficients less than case 
number “n” are not zero. We will refer to this subspaces as 
first Small Matryoshka (SM1). Next, when we discriminate 
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the modified dataset with SM1 removed, we find second 
SM (SM2). If we cannot find other SM anymore, we stop 
this iteration. This process is Method 2. Therefore, Program 
3 finds the microarray dataset is disjoint unions of several 
SMs and non-linearly separable subspace. Because six 
microarray datasets are LSD, we believed other microarray 
datasets are LSD and have the Matryoshka structure, also. 
Moreover, “MNM monotonic decrease” explains the 
Matryoshka structure of LSD. Until now, there are no clear 
explanations about cancer genes. Most researchers do not 
know the microarray dataset is LSD. We consider genes 
including each SM as “cancer genes” because MNM using 
these genes is zero and we can discriminate cancer patients 
versus normal patients. Therefore, Program 3 can separate 
the microarray dataset into multiple signals and noise by 
only discriminating the dataset. Researchers at LASSO [31] 
[34] tried to zero some discrimination coefficients, and there 
were many filtering methods [2], but Method 2 has both 
abilities of LASSO and filtering method. Statistical methods 
could not be successful by analyzing noise containing 
microarray datasets, but these SMs are small samples and 
can be analyzed very easy. In this study, we introduce how 
to analyze all SMs by the standard statistical approach, and 
propose several malignancy indexes for cancer gene 
diagnosis.  

B. Six MP-based LDFs and Two Statistical LDFs 

Although we developed a diagnostic logic of 
Electrocardiogram data by Fisher’s LDF and QDF, our 
research was inferior to the decision tree logic developed by 
the medical doctor. This experience is our motivation to 
develop Theory. After many experiences of the discriminant 
analysis, we developed IP-OLDF expressed in (1). Because 
we fix the intercept of IP-OLDF to 1, IP-OLDF is defined in 
the p-dimensional coefficient space omitting the intercept. 
Although yi*(txib+1) is discriminant scores, yi*(txib+ 1) = 0 
is a linear hyperplane and divides discriminant space to two 
half planes such as plus half plane (yi*(txib+1) > 0) and 
minus half plane (yi*(txib+1) < 0). If we choose bk in plus 
hyperplane as LDF, LDF such as yi*(tbkxi+1) discriminates 
xi correctly because of yi*(tbkxi+1) = yi*(txibk+1) > 0. On the 
other hand, if we choose bk in minus hyperplane, LDF 
misclassifies xi because of yi*(tbkxi+1) = yi*(txibk+1) < 0.   

MIN = Σ ei; yi*(txib + 1) >= - ei ;                             (1) 
ei: 0/1 integer variable corresponding to    

classified/misclassified cases.  
yi: 1/-1 for class1/class2 or object variable.   
xi: p-independent variables.                
b: discriminant coefficients.  

Because IP-OLDF has a defect if data is not a general 
position, we developed RIP that looks for the interior point 
of true Optimal Convex Polyhedron (OCP) defined in (2) 
directly, NM of which is MNM. Because b0 is free variable, 
RIP is defined in (p+1)-dimensional coefficient space. If it 
discriminates xi correctly, ei = 0 and yi*(txib+b0) >= 1. If it 
cannot discriminate xi correctly, ei = 1 and yi* (txib+b0) >= -

9999. Although Support Vector (SV) for classified cases are 
yi*(txib+b0) = 1, SV for misclassified cases are yi*(txib+b0) 
= -9999. Therefore, we expect a discriminant score of 
misclassified cases to be less than -1; there are no cases 
within SV. Because there are no cases on the discriminant 
hyperplane, we must understand that the optimal solution is 
an interior point of OCP defined by IP-OLDF [15], NM of 
which is MNM. Because all LDFs except for RIP cannot 
solve Problem 1 theoretically, these LDFs must check the 
number of cases (h) on the discriminant hyperplane. Correct 
NM may increase (NM + h). If ei is non-negative real 
variable, equation (2) changes Revised LP-OLDF. Revised 
IPLP-OLDF is a mixture model of Revised LP-OLDF in the 
first phase and RIP in the second phase. 
              MIN = Σei ;   yi* ( txib + b0) >= 1 - M* ei ;          (2) 

b0: free decision variables. 
M: 10,000 (Big M constant). 

When we discriminate Swiss banknote data with six 
variables [29], IP-OLDF finds that two variables models, 
such as (X4, X6), are linearly separable. By the monotonic 
decrease of MNN, 16 MNMs including these two variables 
are zero among 63 models (= 26-1 = 63). Other 47 MNMs 
are greater than 1. This fact is important for gene analysis 
because (X4, X6) can list all Matryoshkas. Therefore, (X4, 
X6) is called cancer Basic Gene Set (BGS). 

C. Theory Outlook 

We established Theory and solved five serious problems 
of discriminant analysis. Let us consider two-class 
discrimination with n-cases and p-variables. IP-OLDF is 
defined on p-discriminant coefficient space. N-linear 
hyperplanes made by n-cases values as coefficients divide 
this space into finite Convex Polyhedron (CP). All LDFs 
corresponding to interior points of CP have unique NM and 
misclassify the same NM cases. Therefore, the relation 
between NM and LDF coefficient was first clarified. If we 
consider that all LDFs corresponding to the same interior 
points are equivalent, there are finite LDFs as same as finite 
CPs. There is an OCP. MNM decreases monotonously 
(MNMk >= MNM(k+1)) because k-coefficient space is sub-
space of (k+1)-coefficient spaces. If MNMk = 0 and k is a 
minimum number of variables, all MNMs including these k-
variable are zero. This fact means LSD has Matryoshka 
structure. Therefore, MNM is a critical statistic of LSD 
discrimination. We call the k-variable model a cancer BGS, 
that is the smallest SM in gene analysis because it can 
explain the Matryoshka structure of high-dimensional dataset 
by BGS. IP-OLDF finds the right vertex of OCP if data is a 
general position. However, it may not find the right vertex of 
OCP if data is not general position. Therefore, we develop 
RIP that looks for interior point of OCP directly. All LDFs 
except for RIP cannot discriminate the cases on discriminant 
hyperplane correctly if they choose the vertex or edge of CP. 
Therefore, NM of these LDFs may not be correct (Problem 
1). Only H-SVM and RIP can discriminate LSD correctly 
(Problem 2). Although Revised LP-OLDF tends to collect 
the cases on the discriminant hyperplane, it can discriminate 
LSD correctly. Logistic regression almost discriminate LSD. 
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However, Fisher’s LDF and QDF often cannot discriminate 
LSD. QDF and Regularized Discriminant Analysis (RDA) 
[9] misclassify all cases to another class because of the 
defect of a generalized inverse (Problem 3). Fisher proposed 
Fisher’s LDF based on Fisher’s assumption and established 
the discriminant theory based on variance-covariance 
matrices. Although many data do not satisfy Fisher’s 
assumption and there is no real test statistics for it, Fisher’s 
LDF solves many applications. Because there is no equation 
of SE of LDFs, the discriminant analysis is not the inferential 
statistical method (Problem 4). Therefore, we developed 
Method 1 [17] and LINGO Program 2 that can offer the 95% 
CIs of discriminant coefficients and error rates [18]. 
Moreover, we developed useful and simple model selection 
method such as the best model with a minimum mean of 
error rate in the validation samples (M2) [29]. After 
examining all the models, we concluded that the best models 
of RIP were almost better than other seven LDFs such as two 
OLDFs, three SVMs, logistic regression and Fisher’s LDF. 
About Problem 5, we discuss in section D. 

D. Problem 5 and Matryoshka Feature Selection Method 

First of all, we developed Program 3 for RIP. However, 
Program 3 can discriminate the dataset with Revised LP-
OLDF, H-SVM, and two Soft-margin SVMs (S-SVMs). 
Two S-SVMs are SVM 4 (penalty c = 10000) and SVM 1 
(penalty c = 1). Revised LP-OLDF and Revised IPLP-OLDF 
can find SM1 and stop the iteration. Although NMs of three 
SVMs are zero, most coefficients are not zero. Therefore, 
three SVMs are not helpful for cancer gene selection because 
we must survey all possible models [11] to find SM and it is 
NM-hard. Because NMs of Fisher’s LDF by JMP are not 
zero, Fisher’s LDF is not useful for gene analysis. Therefore, 
only three Revised OLDFs could find that the dataset 
consisted disjoint unions of several SMs and another noise 
subspace. To the best of our knowledge, there was no 
absolute definition of cancer gene, and the purpose of cancer 
gene analysis was not clear until now. Now, we can define 
cancer gene set that can discriminate cancer patients versus 
normal patients or just two different types of cancer. 
Moreover, because Program 3 separated several signal SMs 
and noise subspace, Program 3 is a good filtering system that 
removes noise subspace from the dataset. Program 3 could 
find all SMs of six datasets in Table 1 [26]. Moreover, we 
confirmed and validated Program 3 using Swiss banknote 
data  and Japanese automobile data [27] also. Therefore, we 
claim cancer gene analysis is very easy and exciting theme. 
When we discriminated Shipp et al. dataset [30] on Oct. 28, 
2015, RIP could select 32 genes among 7129 genes. We 
thought the discrimination having 7129 variables needed 
huge CPU time by NP-hard. However, Fisher’s LDF  [13] 
and six MP-based LDFs [14] can solve the datasets in less 
than 20 seconds because the datasets are LSD. Generally 
speaking, MP-based six LDFs are difficult by NM-hard. If 
datasets are LSD, these LDFs are free from NP-hard. 
However, most coefficients of three SVMs are not zero. 
Therefore, SVMs are not helpful for feature selection for 
gene analysis in addition to common data. Because Revised 

LP-OLDF minimizes the summation of misclassified case 
distance from the discriminant hyperplane, which is the 
second objective function of S-SVM, it can discriminate 
LSD correctly because this standard is the same as MNM 
standard only for LSD. However, this standard tends to 
gather cases on discrimination planes (Problem 1). The SV 
distance maximization criterion solved by the Quadratic 
Programming (QP) seems to be preventing the SVM 
discriminant coefficient from becoming zero. Table 1 shows 
the summary of six datasets found until December 20th, 
2015. Rows “Size” are the case number by the gene number. 
Rows “SM: Gene” are the number of SM: the total number 
of genes including in all SMs. Six papers [20] - [25] include 
full gene name including each SM. Rows “JMP12” are two 
by two tables of the discrimination by Fisher’s LDF. Six 
NMs are 5, 3, 8, 3, 10 and 29 and error rates are very high. If 
BGS has k genes, the dataset with p variables includes many 
smaller Matryoshka from (p - 1) variables to k variables. 
Program 3 finds that the datasets are the disjoint union of 
SMs with h-variables (p > h >= k) and another high-
dimension gene subspace with “MNM >= 1.” Now, we must 
survey the BGSs from SM by manual operation. If Revised 
LINGO Program 3 can find all list of BGSs, we can 
understand the Matryoshka structure of the dataset by these 
BGSs completely. Because we can analyze each SM using 
common statistical methods, we expect to obtain new facts 
of gene analysis and hope many researchers try to analyze 
these SMs. By our breakthrough, the cancer gene analysis 
becomes an interesting theme.  

TABLE I.  SUMMARY OF SIX MICROARRAY DATASETS 

Data Alone et al. [1] Chiaretti et al. [4]

Size 62 *2000 128*12625 

SM: Gene 64 [22]:1999  269 [25]:5220 

JMP12 20:2 / 3:37 94:1 / 2:31 

Data Golub et al. [10] Shipp et al. [30] 

Size 72*7129 77 *7130 

SM: Gene 67 [21]:1203  214 [20]:3040 

JMP12 20:5 / 3:44 17:2 / 1:51 

Data Singh et al. [32] Tian et al. [33] 

Size 102 *12626 173 *12625 

SM: Gene 178 [23]:3984  159 [24]:7221 

JMP12 46:4/6:46 16:20/9:128 

III. ANALYSIS OF 64 SMS 

In this section, we analyze 64 SMs by common 
statistical methods because all SMs are small samples. 

A. 64  SMs of Alon et al. Dataset found by Method 2 

We discriminate Alon et al. [1] dataset by LINGO 
Program 3. Table 2 tells us the dataset consists of disjoint 
unions of 64 SMs from SM=1 to SM=64 and one gene. 
Therefore, Alon et al. were successful in separating signals 
and noise although they may drop some signals. “Gene” 

3Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-560-9

BIOTECHNO 2017 : The Ninth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



column is the number of genes in each subspace. All NMs of 
logistic regression and QDF are zero; we omit two columns 
from the table. “LDF2 and LDF1” are NMs of two different 
prior probability options of Fisher’s LDFs. The prior 
probabilities of LDF2 are proportional to the 22 cases in 
class 1 and 40 cases in class 2. Those of LDF1 are the same 
and are the default setting in most statistical software. 
However, we use the former prior probability because we 
wish to compare NMs of six MP-based LDFs. Ten NMs of 
LDF2 are greater than NMs of LDF1, and 13 NMs of LDF2 
are less than NMs of LDF1. “SR” is the range of RIP 
discriminant scores. “RatioSV” is the value calculated by 
2/SR*100 % that indicates the ratio of the distance of SV for 
the range of RIP discriminant scores. “t” column is t-value of 
the discriminant score. Last four rows are maximum, mean, 
minimum and summation of 64 SMs. The range of Gene is 
[21, 42], and 64 SMs include 1999 genes. The ranges of 
LDF2 and LDF1 are [0, 8] and [0, 9], respectively. The 13 
NMs of LDF2 are zero, and 12 NMs of LDF1 are zero. The 
ranges of SR and RatioSV are [7.5, 84.9] and [2.4%, 26.8%], 
respectively. The maximum RatioSV 26.8% means SV 
width is 26.8%  of RIP discriminant scores and separates two 
classes. Moreover, the 23 values of RatioSVs are over 5%. 
We must survey the proper threshold for malignancy indexes 
by validation in the near future. In this paper, we assume the 
threshold is 5% or 10%. The range of t-values is [-1.1, 4.6]. 
Nevertheless, 64 SMs are linearly separable; t-test is not 
helpful to find linearly separable signs. 

TABLE II.  SUMMARY OF 64 SMS (OMITTED 54 SMS) 

SM GENE LDF2 LDF1 SR RatioSV t

8 31 0 0 7.5 26.8 0.3

1 29 2 2 13.5 14.8 2.3

2 33 1 1 14.7 13.6 1.7

60 34 5 6 18 11.1 4.2

4 27 3 3 20.8 9.6 1

44 33 3 4 21.8 9.2 2.5

45 29 1 2 21.7 9.2 1.6

37 30 5 5 23.8 8.4 1.9

14 26 0 0 39.8 5 0.5

64 42 8 9 84.9 2.4 3.5

Max 42 8 9 84.9 26.8 4.6

Mean 30.8 2.1 2.2 19 12.8 1.7

Min 21 0 0 7.5 2.4 -1.1

SUM 1999 134 139 1218.5 821.6 109.8

B. Histogram and Correlation 

Because 64 SMs of logistic regression and QDF are zero, 
these discriminant functions confirm 64 SMs are linearly 
separable and the quality of Program 3.  

 
Fig. 1. The Histograms of Gene, LDF2, SR, RatioSV and t. 

Figure 1 shows the histograms of SR, RatioSV, and t-
value. We select 19 SMs with “RatioSV < 10% and show the 
portion of 19 SMs by the dark green. The  “SR >= 20” are 
the same as 19 SMs with “RatioSV < 10%. These RIPs using 
19 SMs probably need the validation by Method 1 because 
19 RIPs may misclassify some patients. Dark green t-value 
almost cover the ranges. Although most researchers use the t-
test, we think t-test is not helpful for gene analysis because 
we cannot find the useful meaning of all genes included in 
64 SMs by t-tests. 

C. Ward  Cluster Analysis 

Because four NMs of logistic regression, QDF, LDF2, 
and LDF1 are zero, we focus on this SM9. We analyze the 
dataset by Ward cluster analysis. Figure 2 is the heat map of 
SM9 with 33 genes. Right dendrogram shows cases, and 
lower dendrogram shows variables. It tells us Ward cluster 
cannot classify two classes by two clusters clearly. We 
categorize two clusters. We omit upper cluster including 33 
cases that consist of 13 normal cases marked by □ and 20 
cancer patients marked by ×.  The lower cluster includes 29 
cases that include nine normal and 20 cancer cases. This 
result shows the cluster analysis is not helpful for gene 
analysis. 

 
Fig. 2. Heat Map and Dendrogram of Cases. 

 
Figure 3 is the dendrogram of 33 genes. We expect the 
specialist explains this result. Due to the small distance 
between X471 and X201, these genes may be able to replace 
other genes with each other. 

 
Fig. 3. Dendrogram of Genes. 
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Figure 4 is  PCA output. Left figure is an eigenvalue. Nine 
principal component eigenvalues are greater than 1. The 
middle figure is a scatter plot. The right figure is factor 
loading plot. Although MNM of two classes is zero, scatter 
plot shows two classes overlap. We confirm 64 SMs scatter 
plots overlap and cannot find the linearly separable sign. We 
conclude it is difficult to find the useful meaning of these 
results. Comparison with Figure 6 confirms our claim. 

 
Fig. 4. Three Figures of PCA. 

IV. ANALYSIS OF 64 RIP DISCRIMINANT SCORES 

    We claimed we could analyze SM by common statistical 
methods. However, we cannot obtain useful results. In this 
section, we analyze 64 RIP discriminant scores data by 
common statistical methods and obtain the surprising results. 
The data consists 62 patients (cases) with 64 discriminant 
scores (variables). 

A. Examination of 64 RIP Discriminant Scores and 
RarioSV 

Table 3 shows the summary of 64 RIP discriminant 
scores. Min and Max columns are the range of normal class 
1. MIN and MAX are the range of tumor class 2. SR and 
RatioSV are the same in Table 2. The 22 normal cases are 
less than or equal to -1, and the 40 cancer cases are greater 
than or equal to 1. RIP SV separate two classes of 64 SMs 
completely. RatioSVs of SM8, SM14 and SM64 are 26.76%, 
5.03% and 2.35%, respectively. We guess that the 63 RIPs 
whose RatioSVs are over 5% may be good malignancy 
indexes for cancer gene diagnosis. 

TABLE III.  SUMMARY OF 64 DISCRIMINANT SCORES OMIT 59 SM) 

SM Min Max MIN MAX SR RatioSV

8 -3.35 -1 1 4.12 7.47 26.76

35 -2.58 -1 1 5.92 8.51 23.52

11 -4.15 -1 1 5.52 9.67 20.68

59 -15.25 -1 1 21.91 37.17 5.38

14 -21.94 -1 1 17.85 39.79 5.03

64 -3.94 -1 1 81 84.94 2.35

MAX -2.58 -1 1 81 84.94 26.76

MIN -21.94 -1 1 4.12 7.47 2.35

B. Ward Cluster Analysis and PCA 

Ward cluster analyzes the discriminant scores data that 
consists of 62 patients (cases) with 64 RIP discriminant 
scores (variables); see Figure 5. The upper cluster is 22 
normal cases, and the lower cluster is 40 cancer cases. Ward 
cluster separates two classes. However, it cannot separate 
two classes in Figure 2. The 62 cases dendrogram becomes 
over ten clusters. The 64 discriminant scores dendrogram 
has more complex clustering.  

 

 
Fig. 5. Ward Cluster Analysis. 

Figure 6 is three plots of PCA. The eigenvalue of the 
first principal component (Prin1) is enormous. Scatter plot 
shows two classes are completely separable. The 22 normal 
cases are on a negative axis of Prin1. The 40 cancer cases 
scatter on the first and fourth quadrants that look like a fan, 
same as factor loading plot. If we obtain the validation cases, 
we can judge whether the scatter plot is useful for 
malignancy index. Although we could not separate two 
classes in Figure 4, we can separate two classes in Figure 6 
very clearly. 

 

 
Fig. 6. Three Figures of PCA. 

Table 4 is the ranking of four principal components. “R1” is 
the ranking of Prin1 of 62 cases in descending order. We 
expect “Prin1” to be the malignant degree of cancer. 
Because the Prin1 values of tumor class are greater than 
0.02 and those of normal class are less than -5.55, RatioSV 
of Prin1 is 30.37% (= (0.02+5.55) / (8.77+9.57) *  100). We 
believe cancer patients of ID = 46, 36 and 53 are malignant 
patients. Moreover, normal patients of ID =18, 20, 17 may 
become cancer. If medical doctors confirm these patients are 
serious patients and normal patients with risk (possibility to 
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become cancer), we can use PCA as a cancer diagnosis. If 
these indexes misclassify cancer patients cured with some 
treatment to the normal class, the doctor can decide that the 
patient is cured earlier than the diagnosis by  before 5-years 
survival rate because their measurements belong to the 
range of normal class. 

TABLE IV.  MALIGNANCY INDEX OF PCA 

ID Prin1 R1 Prin2 R2 Prin3 R3 Prin4 R4

46 8.77 1 -1.35 58 -2.17 59 -1.29 56

36 8.69 2 1.8 4 2.62 5 0.47 18

53 8.29 3 -2.12 59 0.83 14 -0.91 47

58 0.43 38 -0.31 40 -0.14 36 -0.02 30

52 0.14 39 -0.19 37 0 30 0.43 20

55 0.02 40 -0.23 39 -0.2 37 0.29 25

18 -5.55 41 0.01 29 0.1 27 0.03 28

20 -5.64 42 0.22 22 0.13 25 -0.05 31

17 -6.8 43 -0.43 43 -0.81 47 -0.19 38

21 -9.12 60 -0.07 35 -0.05 32 0.72 14

10 -9.33 61 -0.62 51 0.15 23 -1.05 52

4 -9.57 62 -0.52 44 0.02 29 -1.04 51

C. Analysis of Transpose Data 

We examine three figures of PCA using transpose data 
with 64 discriminant scores (cases) by 62 cases (variables) 
in Figure 7. Factor loading plot shows 22 normal cases 
(variable) locate in the 2nd quadrant, and 40 cancer cases 
(variables) locate in the first and fourth quadrants. Scatter 
plot shows most discriminant scores are placed on the line 
of -45 degrees with the Prin1. The 13th, 14th, 28th, 63th and 
64th discriminant scores are outliers. The first eigenvalue is 
not large compared with Figure 9. 

 
Fig. 7. Three Figures of PCA. 

      Figure 8 is four scatter plots of PCA. The x-axis is the 
Prin1. Y-axes are Prin2 and Prin3.  

 
Figure 8. Four Figures of PCA. 

 

There are four RIPs different from other RIPs. These RIPs 
may show different malignancy indexes. This remains to be 
validated by medical specialists in future work 

D. Summary of Six Datasets 

Table 5 is the overview of six datasets. Alon et al. and 
Singh et al. are normal class versus cancer class 
discrimination. Other four datasets are just two different 
types of cancer discrimination. However, we obtained 
almost the same results as 64SMs of Alon et al. dataset. 
“SM” column shows the number of SMs. Because we find 
130 BGSs of Alon et al. dataset, we analyze 130 BGSs in 
the first row. The range of 130 RIP RatioSVs and 64 RIP 
SMs are [0.00%, 0.9%] and [2.4%, 26.8%], respectively. 
Therefore, 130 RatioSVs of BGS are not helpful for 
malignancy indexes. However, we expect medical 
specialists examine the gene combination including each 
BGS and find useful results. “>=5%” column shows the 
number of SMs with RatioSV over 5%. All 95 RatioSVs of 
Chiaretti et al. are greater than 5%. Most RatioSVs of Alon 
et al. and Shipp et al. are greater than 5%, also. Therefore, 
we conclude Alon et al., Chiaretti et al. and Shipp et al. 
discriminate two classes easier than other three datasets. 
“PCA” column shows the RatioSVs of Prin1 that are greater 
than maximum RatioSVs of RIPs. All NMs of logistic 
regression are zero. “QDF and LDF2” columns are the 
number of  NM=0 of QDF and LDF2. Although logistic 
regression and QDF discriminate 159 and 158 SMs by 
NM=0, Tian et al. dataset has 27 SMs with “>=5%”. 
Although logistic regression and QDF discriminate 159 and 
158 SMs by NM=0, Tian et al. [33] has 27 SMs with 
“>=5%”. Tien et al. dataset is easier to discriminate two 
classes by logistic regression and QDF. Nevertheless, 
Fisher’s LDF are not useful for the datasets except for 
Chiaretti et al.; statistical discriminant functions can 
sometimes discriminate SMs correctly. 

TABLE V.  SUMMARY OF SIX MICROARRAY DATASETS 

Data SM >=5% PCA QDF LDF2

Alon et al. (BGS) 130 0 4.50% 60 0

Alon et al. 64 63 30.40% 64 13

Singh et al. 179 38 14.40% 26 0

Golub et al. 69 13 34.90% 16 1

Tien et al. 159 27 24.00% 158 1

Chiaretti et al. 95 95 51.50% 95 92

Shipp et al. 130 129 31.70% 121 46

Figure 9 is three plots of PCA using Chiaretti et al. 
dataset. Eigenvalue of Prin1 is gigantic compared with Fig. 
7 because we guess two classes are apart from each other. 
Right factor loading plot locates on the first and fourth 
quadrants that look like a fan. Center scatter plot shows two 
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classes are completely separable. The 95 B-cell patients in 
class 1 locate on negative first principal axis (Prin1). The 33 
T-cell patients locate on the positive Prin1. Figure 6 is a 
typical pattern of cancer prediction. On the other hand, 
Figure 9 may be a typical pattern of just two different types 
of cancer (cancer classification) introduced by Golub et al.. 

 
Fig. 9 Three plots of PCA (Chiaretti et al. dataset) 

V. WHY IS CANCER GENE ANALYSIS DIFFICULT ? 

Golub et al. said: “Although cancer classification has 
improved over the past 30 years, there has been no general 
approach for identifying cancer classes (class discovery) or 
for assigning tumors to known classes (class prediction).” 
We are unfamiliar with the history of cancer gene analysis 
and show “over ten years” in the book [28]. We knew some 
statisticians tried to discriminate gene data by Fisher’s LDF 
about 20 years ago. Now, it is hard for us to find these 
studies because these trials were judged to be not useful for 
cancer gene analysis. We understood that most researchers 
are disappointed in the statistical discriminant analysis. At 
least, many scientists approached this theme by engineering 
methods [12] and restricted statistical methods, such as t-test, 
cluster analysis, and SVM. In this Section, we discuss the 
reason why cancer gene analysis was difficult. 

Diao and Vidyashanker [6] explain cancer gene analysis 
“large p small n problem.” In general, statistical methods 
treat small sample (small p small n problem) very easy. Now, 
statistical methods are difficult to analyze a big data (large p 
and large n) with noise. However, most statistical methods 
are easy to analyze the data with small p large n problem 
because of hardware and software ability improvement. 
Because one-way ANOVA with t-test analyzes each one 
variable, it is easy to analyze the datasets. On the other hand, 
some statistical methods are difficult to analyze the datasets 
with large p small n problem. Regression analysis and 
discriminant analysis based on variance-covariance matrices 
are difficult to the datasets with large p small n problem 
because it is hard to construct large p variance-covariance 
matrices using small n cases in addition to select feature. In 
Japan, although JMP released Fisher’s LDF for large p small 
n problem in 2015, the error rate of six datasets are very high 
in Table 1 because Fisher’s LDF cannot discriminate LSD 
correctly. Charikar et al. [3] introduced the problem called 
“combinatorial feature selection problems” is NP-hard. Their 
study gave a significant impact for gene feature selection 
researchers. In general, their claim is correct, especially for 
IP models such as RIP. However, six MP-based LDFs 
including RIP can discriminate each dataset in less than 20 
seconds because the datasets are LSD. Until now, there was 

no study about LSD discrimination. RIP found six datasets 
are LSD. LSD has the Matryoshka structure because it 
includes small Matryoshkas in it. Alon et al. and Singh et al. 
discriminate two classes such as cancer and normal, and 
other datasets discriminate just two different types of cancer. 
Both types of dataset consist disjoint unions of several SMs 
(signals) and other subspace (noise) that is not linearly 
separable. Our last goal is to find BGS in each SM. BGSs 
can explain the Matryoshka structure of each dataset 
uniquely. Medical gene specialist will be able to explain the 
useful meaning of the genes combination including all SMs 
shortly. However, we can show the useful results using RIP 
discriminant scores of 64 SMs of Alon et al.. We already 
obtain the same results of other five datasets in Table 5, also. 

Why did many researchers spend to analyze the datasets 
over more than 30 years ? Our claims are as follows: 

1) Many scientists analyze a dataset with noise by 
statistical methods. Because they could not obtain useful 
results, they trusted on engineering approaches, such as 
several filtering techniques. However, RIP can separate 
disjoint signals (SMs and BGSs) and noise subspace very 
easy. 

2)  If most gene data are LSD, the cancer gene analysis 
is very easy and straightforward. What is the cancer gene? 
The answer is very simple. It is the combination of genes 
including BGS. If we drop one gene from BGS, we can not 
discriminate this subspace correctly and misclassify some 
patients.  

3) Because NMs of Fisher’s LDF are not zero, it is not 
useful for cancer gene analysis. Because NMs of three 
SVMs are zero and most coefficients are not zero, SVM is 
not helpful for cancer gene analysis. If SVM computes all 
possible models, it can find BGS. However, this trial is NP-
hard.  
      Our conclusion is as follows: Only RIP and Revised LP-
OLDF can select gene feature naturally and find SMs. Now, 
we can find BGSs by manual operation after finding SMs. 
Every researcher can easily analyze SMs and BGs by 
standard statistical approaches. Moreover, we find several 
malignancy indexes. We must confirm our claim by the 
validation samples.  

VI. CONCLUSION 

We claimed common statistical methods could analyze 
SM easily because these subspaces were small samples [28]. 
However, our examination shows that it is difficult for us to 
obtain good results showed in Section 3. However, we can 
get clear results from the RIP discriminant scores in Section 
4. Especially, the 63 RIPs with RatioSV over than 5% may 
be useful malignancy indexes for cancer gene diagnosis. If 
medical specialists examine and confirm our results and 
claims, our collaboration will open a new frontier of cancer 
gene diagnosis from cancer gene analysis. Moreover, the 
Ward cluster analysis can identify two clusters completely in 
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Figure 5. Usually, cluster analysis cannot cluster two classes 
clearly. Figure 6 and Table 3 of PCA show another reliable 
malignancy index. Healthy patients are located on the 
negative segment of the Prin1 axis, especially malignant 
tumor patients widely scatter in the first and fourth quadrants 
as in Figure 6. Furthermore, the scatter plot of Figure 8 
shows the diversity of various tumor patients. We can find 
64 SMs and analyze it successfully. However, these results 
are obtained using the statistical approach. We need co-
operation with experts such as medical doctors as follows: 

1) We already listed up all genes lists including SMs of six 
datasets. If the specialists check it, they may find the 
useful meaning of the combination of genes in each SM. 

2) We expect the specialists examine the ranking on the 
Prin1 and confirm it shows the malignancy indexes.  

3) If the specialists offer three types of validation samples 
such as normal cases, cancer patients and patients with 
cancer cured, we can discriminate those cases and 
expect the following result; 1) The normal cases are 
classified to the normal class. 2) The cancer patients are 
classified to the cancer class. 3) The patients with cancer 
cured are classified to the normal class. The 
misclassified number of the third group shows the 
degree of cure. If 63 RIPs misclassify the patients in the 
third group, they may be cured completely, and are 
relieved from the anxiety of five years. 
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