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Abstract—The target identification is the first step on drug
discovery pipeline. Thus, techniques which address the selection
of potential “druggable targets” and potential “therapeutical
targets” are very relevant to the discovery of new drugs
and therapies. Nowadays, public databases with drug target
indication provide target similarity searching based on BLAST.
We demonstrate that the current protein annotation terms may
be used on the development of semantic-based measures to
provide target similarity searching. This approach allows to
predict target similarities based on known signatures of a given
protein even without the knowledge of the whole sequence.
Our method produces a semantic ordering of the drug targets
and provides a tool for latent information retrieving and for
clustering analysis. New candidates may be compared against
the known targets in a reduced space vector defined by singular
value decomposition.
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I. INTRODUCTION

The drug discovery pipeline has the target identification
and validation as the very first phases. Recently, known
drug usage has been optimized addressing it to different
targets [1], [2], [3]. The purpose is to use the known chem-
ical properties and response of compounds with acceptable
ADMET (administration, distribution, metabolism, excretion
and toxicity) properties on developing new therapies (re-
purposing approved drugs) and/or on developing new lead
compounds on a information-driven rational approach. The
study of target similarity may be also helpful for predicting
promiscuous binding sites and some kind of side-effects.

Public resources with drug target indication (as TTD
[4] and DrugBank [5]) provide target similarity searching
based on BLAST algorithm. But it is known that there are
also important correlations (structural similarity and off-
target similarity) even for low-similar sequences. Known
signatures of targets (as annotated on GO, InterPro, Pfam,
PROSITE and other resources) may be used for predicting
correlations among different targets and/or among different
target subsets. Indeed, 130 InterPro entries were identified
on “druggable genome” searching [6]. It was also shown
that Pfam annotation may be used for the same purpose [7].

The objective of this study was to evaluate whether
semantic similarity across protein annotation terms can be

used as an alternative to sequence alignment for predicting
target similarities.

In general, semantics is the study of meaning. Semantic
similarity is a concept whereby a metric is assigned to terms
or documents in a set of terms or documents according
to the likeness of their meaning in a pragmatic approach
(i.e., considering how the context contributes to meaning).
Broadly speaking, “two objects are semantically similar if
they are related to similar objects” [8]. A semantic similarity
measure may reveal new correlations, which are not possible
by strictly direct queries onto relational databases. It is called
latent information retrieving. Furthermore, semantic-based
similarities may be determined over data hold in the form
of annotation, which are more suitable for humans, and
may be used to knowledge discovery exploring scientific
data resources. Indeed, the use of semantic-based similarities
across the Gene Ontology (GO) has been evaluated in the
literature [9], [10].

Firstly, a protein drug target was represented by a binary
column vector with m rows, each one representing the pres-
ence or absence of one InterPro signature in the sequence.
A database with n protein drug targets is represented by a
mxn binary matrix A, that is submitted to singular value
decomposition [11] in order to develop a similarity measure
among human protein drug targets.

The methodology can be expanded to incorporate different
kinds of descriptors (e.g., MeSH terms) to discover more
specific drug target relationships.

A. Singular Value Decomposition
The Singular Value Decomposition (SVD) establishes

non-obvious but relevant relationships among clustered en-
tities [11], [12], [13]. The rationale behind SVD is that
a mxn matrix A can be represented by a set of derived
matrices [13], which allows by a numerically different data
representation without loss of semantic meaning.

Let A be any mxn matrix of ranking r. Then there exist
a mxm matrix Uf , a nxn matrix V and a mxn matrix S
for which:

A = UfSV
T , (1)
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where:
• Uf is an mxm orthogonal matrix, which columns are

the eigenvectors of the matrix AAT ;
• S is a mxn diagonal matrix with the singular values

of A along its main diagonal in decreasing order;
• V is an nxn orthogonal matrix, which columns are the

eigenvectors of the matrix ATA.
These dimensions are for what is called the full SVD.

Since all the elements of S below the nth row are zero,
partitioning the matrix U it can be taken the so called thin
SVD[12]:

A = USV T , (2)

where:
• U is an mxn orthogonal matrix;
• S is a nxn diagonal matrix with the singular values

of A along its main diagonal in decreasing order;
• V is an nxn orthogonal matrix.
Taking only the k most significant singular values of A,

where k < r, the matrix A can be approximated by a low-
dimensional matrix (Ak) given by:

A ≈ Ak = UkSkV
T
k =

k∑
e=1

uesev
T
e , (3)

where ue and ve are, respectively, the column vector of
U and the row vector of V both related to the eth singular
value in the decreasing order and k is the index of the highest
relevant singular value.

The data approximation depends on how many singular
values are used [14]. In this case, the k number of singular
values is also the rank of the matrix Ak. The technique
allows information extraction with less data. It is possible
to compress/decompress data within a non-exponential ex-
ecution time, and it make viable complex analysis across
large amount of data [14]. A data set represented by a
smaller number of singular values than the full size original
data set has a tendency to group together certain data items
that would not be grouped if the original data set is used
[13]. This could explain why clusters derived from SVD
can expose non-trivial relationships among the original data
set items [15].

There are different methods to determine the rank k of
Ak. One of them is by the scree test [16].

A new entity represented by a column vector q, which
is equivalent to ones of the original matrix A, may be
compared with the entities represented in A in the smaller-
dimensional space by a simple and low computing cost
method. First, obtain the equivalent vector qk in the reduced
space vector. This can be made, as proposed by Lars Eldén
[11], by computing:

qk = qTUk. (4)

Then apply some similarity metric (e.g., cosine measure
or Euclidean distance) to compare qk with the row vectors
of VkSk. Thus, it is not necessary to compute the SVD
factorization every time that a new target is introduced. It
is only necessary to recompute the SVD factorization with
the new query vector if it can not be represented by a
combination of the vectors of the base. Otherwise, the new
vector qk may be incorporated to the matrix Vk.

B. Similarity measures
To assess the similarity between two entities, it can be

used some similarity measure and evaluate its significance.
There are different measures which may be tested, as the
Euclidean distance; the cosine similarity; etc. In this paper,
entities were represented in the low-dimensional space pro-
duced by SVD factorization and, after that, it was applied a
cosine-based similarity measure, which is calculated as:

sim(ci, cj) = cos(αij) =
cic
′
j√

cic′i

√
cjc′j

, (5)

where:
- ci corresponds to the i-th row in VkSk and;
- c′i is the transpose of the vector row ci.

II. MATERIAL AND METHODS

A matrix with 1906 binary vectors was constructed, which
represent protein drug targets retrieved from public databases
(TTD [4], DrugBank [5] and KEGG-Drug [17]). Each pro-
tein representing vector is a set of 2700 binary descriptors.
Each of these descriptors represent an InterPro annotation. It
was used InterPro annotations of the following types: Family
(F), Domain (D), Region (R), Active Site (A) and Binding
Site (B). On considering every site-related annotation it was
observed if the signature has occurred or not on a region
of the sequence for which exists some annotation of F, D
or G type. 365 of the 1906 targets were extracted randomly
for training and validating purpose and the remaining 1541
were used to generate a representative vector space using
SVD.

SVD factorization was applied to A and k = 320
factors were selected by scree test to determine the low-
rank approximation Ak (Fig. 1).

The factorization provided a reduced dimensionality space
in which relationships among the drug targets could be
established. The similarity between any pair of drug targets
was calculated as the cosine of the angle between the
respective target representing vectors on the reduced space.
Thus, the similarity measure of a pair of targets is equivalent
to the dot product between the respective rows of the matrix
VkSk given by the (3).

The similarity relationships were analyzed by using clus-
tering techniques implemented in the software named Multi-
Experiment Viewer (MeV) [18], a freely available software
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Figure 1. Singular values of A (as obtained by SVD factorization). The
first 320 singular values (and respective orthogonal vectors) were selected
by the scree test.

application that provides an extensive library of algorithms
and visualization tools for integrative data analysis from a
user-friendly interface.

III. RESULTS

A similarity matrix was constructed from the values of
the cosines computed as described on the previous section
and used this matrix as input into the software named MeV.
Then, it was applied the hierarchical clustering algorithm
(HCL) implemented in MeV and it produced a heatmap with
the targets semantically reordered (Fig. 2, 3, 5 and 6). Fig. 2
shows the heatmap for the whole ensemble. Fig. 3 shows in
detail the region at the heatmap related to nuclear receptors
(NR). The similarity measure was found to be efficient in
discriminating the NR members in a second level grouping
Peroxisome; Retinoid and Vitamin D receptors.

The Euclidean distance was also evaluated and let us
to conclude that, referring to our application and data set,
Euclidean distance and cosine angle measure provide similar
clustering results (Fig. 4).

Similarly to the case of nuclear receptors, Fig. 5 shows
a cluster (drug targets with NAD-P binding domain) larger
than the NR cluster and with deeper hierarchy level. Fig. 6
illustrates the efficiency of the method to discover relation-
ships hardly recognized by simple sequence similarity search
– it shows an interesting relationship between Fibronectin
type-III like folding and Immunoglobulin like folding – two
domains that have low-similar sequence but high-similar
structure and that co-occur in some protein-folding pathways
[19].

The results were compared with the ones produced by
sequence similarity (with BLASTALL) [20]. For the whole

Figure 2. Heatmap with all 1541 drug targets reordered semantically by
the hierarchical clustering algorithm. It was easy to identify various clusters
as the GPCRs (the greatest group) and other cases showed in detail in other
figures.

Figure 3. Zoom view of the region (of Fig. 2) related to hormone nuclear
receptors. It is evident the in-depth consistency according to their additional
annotations.
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Figure 4. Zoom view of the region related to hormone nuclear receptors
from the heatmap obtained from Euclidean distance. The clustering results
provided by Euclidean distance for small samples were very similar to the
ones provided by cosine measure.

data set, the BLAST bitscore did not provide good discrim-
ination, but for a small sample the clustering results were
very similar when using the SVD-based similarity score and
the sequence similarity based score. It was performed two
different clustering methods in this case: HCL and cluster
affinity searching technique (CAST), both implemented in
MeV. Fig. 7 illustrates the clustering results using semantic
similarity and sequence alignment for 42 selected targets.
Five non-unitary groups could be easily identified. One
GPCR (PE2R3 HUMAN), left as orphan by the two cluster-
ing methods across the sequence similarity matrix. The same
target was correctly grouped (in the context of biological
annotations) with other GPCR by both, HCL and CAST,
across the semantic-based similarity matrix.

To find potential “druggable” candidates, it was projected
other proteins into the reduced space. As an example of in-
teresting finding, the case of Kynurenine 3-monooxygenase
(KMO) can be cited (Table I). The value of the distance-
like coefficient is significantly low only for two known drug
targets: ERG1 and SOX. ERG1 shares annotation with both
KMO and SOX, but there are not shared annotation between
SOX and KMO. So, the space transformation indicates a
non prima facie relationship between KMO and SOX. That
“secondary” relationship is not retrieved from the original
data set or from the transformed space when it is added many
factorized terms. The higher the number of terms of the
factorization, the smaller the retrieval capability to discover
hidden relationships (with many terms it is only possible to
compute the coefficient for pairs whose members share some
annotation, the remaining becomes equivalent to infinite).
The kynurenine pathway is the main pathway for tryptophan
metabolism and have been considered a pathway with a lot
of potential sites for drug discovery in neuroscience [21].

Figure 5. Zoom view of another region of the Fig. 2 related to drug targets
with NAD-P binding domain. Again, it is evident the in-depth consistency
– here, on a larger cluster than the one with nuclear receptors and showing
deeper hierarchy level.

Particularly, KMO (a member of the kynurenine pathway)
has the gene located in the chromosome region associated
with schizophrenia [22]. On the other hand, it is known that
glycine binds to SOX and it is used as an alternative therapy
of schizophrenia [23], [24].

IV. CONCLUSION AND FUTURE WORK

A semantic-based measure across the InterPro annotations
of protein drug targets was developed. It was shown that
this measure may be used for similar targets searching.
Nowadays, public resources provide target similarity search-
ing using a local BLAST algorithm. Our method has a
fixed computational time consumption independently of the
sequence size. New targets may be compared against the
current set representing it by their biological annotations,
projecting it on the Uk space and, then, computing the cosine
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Figure 6. Zoom view of the region of the Fig. 2 showing targets with
Fibronectin type III-like fold domain and/or Immunoglobulin-like fold
domain. The correlation among these targets are shown as estimated [19].

Table I
RANKED LISTS FOR KMO HUMAN OF SIMILAR TARGETS

rank k = 320 k = 800 original
target score target score target score

1 ERG1 0.0009 ERG1 0.0445 ERG1 0.2374
2 SOX 0.0022 - ∞ - ∞
3 CBPE 0.4656 - ∞ - ∞
4 SO1B1 0.5135 - ∞ - ∞
5 P85A 0.5512 - ∞ - ∞
6 DCK 0.5550 - ∞ - ∞

Each ranked list is given by the distance-like score computed from the
k-dimensional space or from the original vector space (before apply SVD).
The value considered infinite is 0.6931.

among the produced column vector with each row vectors
of VkSk. The biological annotations of the new targets may
be determined by InterProScan [25] over their sequence
or may be inferred by the research by other experimental
observations. Thus, it was shown that the effort exerted
on annotation can be explored to order data semantically.
The measure is consistent and complementary to BLAST-
based sequence alignment approach allowing identification
of similar and co-existent fold domains even for low-similar
sequences. So, the measure can be potentially effective to
discover hidden relationships that are hardly recognized by
simple sequence similarity search. Furthermore, the method-
ology can be expanded to incorporate different kinds of
descriptors (e.g., MeSH terms) to discover more specific
drug target relationships.

Figure 7. Clusters resulted by both HCL and CAST methods for a
small sample with 42 targets. The algorithms were performed across the
similarity matrices obtained from the semantic-based similarity measure
and the BLAST bitscore based similarity. Clusters in grey denote some
discrepancy between the two methods.

We are going to expand our work on:

• Optimizing the applied algorithm and parameters (clus-
tering algorithm, rank determination, etc.);

• Ensemble correlations and other cross-correlation anal-
ysis;

• Predicting new potential drug target candidates and new
possible therapy applications;

• Applying the method for non-human targets;
• Incorporating other types of annotations to the descrip-

tors set (e.g., MeSH, OMIM, and UMLS);
• Comparing the performance of the method with ap-

proaches using other types of decomposition: PCA and
NMF.
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