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Abstract—The distance, or path length, between two nodes
in a phylogenetic tree (rooted or unrooted) is defined as the
length of the unique undirected path connecting these nodes.
In this paper we study the distribution of the distances between
pairs of leaves in fully resolved phylogenetic trees with a
fixed number of leaves. More precisely, we prove both in
the unrooted and the rooted cases that, when the trees are
equiprobably chosen, this distribution approximates a gamma
distribution.
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I. INTRODUCTION

Over the last years there has been an increasing interest in
the study of the statistical behaviour of topological features
in phylogenetic trees under different evolution models [2],
[3], [9], [10]. The motivations for such studies are the
assessment of the validity of an evolutionary model for a
given set of phylogenetic trees, and the objective evaluation
of how atypical a given phylogenetic tree is.

One feature whose behaviour has been studied is the
topological distance, or path length, between pairs of leaves.
Steel and Penny [11] computed the mean value and the
variance of this distance d between two leaves in a fully
resolved unrooted phylogenetic tree with n leaves. The
statistical analysis of this random variable was continued
in [6], where Steel and Penny’s results were generalized to
rooted phylogenetic trees, and in [7], [8], where the median
and the mode of d were computed, both in the rooted and
the unrooted cases. Let us mention that the study of the
distance between pairs of leaves has a further motivation, as
it may be used in the study of the statistical properties of
the nodal distance between phylogenetic trees, an interesting
and mostly open problem in phylogenetics [6], [11].

In this paper, instead of focusing on the exact computation
of the statistical measures for d, we focus on its distribu-
tion, and we prove that, in the fully resolved case, it is
approximately a gamma distribution, in the sense that the
mean quadratic error between the distribution of d and a
gamma distribution of the same mean and mode has limit 0
as n→ ∞.

The rest of this paper is organized as follows. In Section
II, we prove our main result for unrooted fully resolved
trees. Then, in Section III we briefly describe how this result

translates to the rooted case, and in Section IV we report
on some experimental results showing the fast convergence
between d and the corresponding gamma distribution. The
paper ends with a Conclusions section.

II. THE UNROOTED CASE

Throughout this paper, by a phylogenetic tree on a set S
we mean a fully resolved (that is, with all its internal nodes
of degree 3) unrooted tree with its leaves bijectively labelled
in the set S. Although in practice S may be any set of taxa,
to fix ideas we shall always take S = {1, . . . ,n}, where n is
the number of tree leaves. For simplicity, we shall always
identify a leaf of a phylogenetic tree with its label.

Let T u
n be the set of (isomorphism classes of) phyloge-

netic trees with n leaves. It is well known [4] that |T u
1 | =

|T u
2 | = 1 and |T u

n | = (2n− 5)!! = (2n− 5)(2n− 7) · · ·3 · 1,
for every n > 3.

Let k, l ∈ S = {1, . . . ,n} be any two different labels of
trees in T u

n . The distance, or path length, du
T (k, l) between

the leaves k and l in a phylogenetic tree T ∈T u
n is the length

of the unique path between them. Let’s consider the random
variable

du
kl = distance between k and l in one tree in T u

n .

The possible values of du
kl are Ωu = {1,2, . . . ,n−1}.

Our goal is to approximate the distribution of the vari-
able du

kl on T u
n when the tree and their leaves are chosen

equiprobably. In this case, du
kl = du

12, and thus we can reduce
our problem to study the distribution of the variable du

n :=
du

12.
For every i ∈Ωu, let

cu
i,n =

|{T ∈T u
n | du

T (1,2) = i}|
(2n−5)!!

denote the fraction of trees in T u
n where the leaves 1

and 2 are at distance i. The sequence (cu
i,n)i=1,...,n−1 is the

distribution of the variable du
n . From [11, p. 140] and [8],

we have the following result.
Lemma 1: (a) cu

n−1 =
(n−2)!
(2n−5)!! and, for every i= 1, . . . ,n−

2,

cu
i,n =

(i−1)(2n− i−4)!
(2(n− i−1))!! · (2n−5)!!

.
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(b) The mean of du
n is

µn =
n−1

∑
i=2

icu
i,n =

2n−2(n−2)!
(2n−5)!!

(c) The mode of du
n is

mn =

⌈
1+
√

8n−15
2

⌉
.

Let γ(k,θ) denote a gamma distribution with parameters k
(shape) and θ (scale), and let fγ(k,θ) be its density function.
Recall that the mean of γ(k,θ) is k ·θ and its mode is (k−
1) · θ . Our goal in this section is to prove the following
result:

Theorem 1: Consider the gamma distribution γ(kn,θn),
with parameters kn and θn given by

kn ·θn = µn, (kn−1) ·θn = mn,

where

kn =
2n−2 · (n−2)!

2n−2 · (n−2)!− (2n−5)!!d(
√

8n−15+1)/2e
,

θn =
2n−2(n−2)!
(2n−5)!!

−
⌈

1+
√

8n−15
2

⌉
.

In other words, γ(kn,θn) is the gamma distribution with the
same mean and mode as du

n on T u
n . Let MQEu

n be the mean
quadratic error between the random variable du

n and this
gamma distribution:

MQEu
n =

1
n−1

n−1

∑
i=1

(cu
i,n− fγ(kn,θn)(i))

2.

Then, lim
n→∞

MQEu
n = 0.

Proof: Let gn(x) be the following function:

gn(x) =
(x−1) ·2x−1 ·Γ(2n− x−3) ·Γ(n−1)

Γ(n− x) ·Γ(2n−3)
.

This function satisfies that gn(i)= cu
i,n for every i= 1, . . . ,n−

1, and therefore it can be seen as the extension to R+ of the
discrete distribution of du

n .
The sequence (gn(i))n=1,...,n−1 reaches its maximum at mn

of du
n . We want to approximate gn(mn). To do that, we shall

use the following expansion of the logarithm of the Gamma
function:

lnΓ(x)≈ ln(2π)

2
+

(
x− 1

2

)
ln
(

x− 1
2

)
−
(

x− 1
2

)
, (1)

for large values of x. Using this expansion and using that

mn =
√

2n+
1
2
+O((1/n)1/2),

the expansion of the value of lngn(mn) =

lngn

(√
2n+ 1

2 +O
(( 1

n

)1/2
))

is

lngn(mn) =
1
2

(
−1+ ln

(
1
2n

))
+O

((
1
n

)1/2
)
.

So, we can approximate gn(mn) by

gn(mn) =
e−1/2
√

2n
+O(1/n).

Next, we study the value of fγ(kn,θn)(mn).
Lemma 2: The expansions of the parameters µn, kn and

θn are the following:

µn =
√

π
√

n+O(1/n),

kn =

√
π

√
π−
√

2
+O(1/n),

θn = (
√

π−
√

2)
√

n− 1
2
+O(1/n).

Proof: The parameter θn can be written as:

θn =
1
4

(
2n(n−2)!
(2n−5)!!

−2
(√

8n−15+1
))

.

If we expand the previous expression, we obtain:

θn =
1
4

(
22n−2((n−2)!)2

(2n−4)!
−4
√

2n−2
)
+O

(
1√
n

)
.

Using that (n−2)! = Γ(n−1) and the expansion (1), we
have:

θn =
1
4

(
4
√

π
√

neO( 1
n )−4

√
2n−2

)
+O

(
1√
n

)
,

=
√

πn−
√

2n− 1
2
+O

(
1√
n

)
,

=
(√

π−
√

2
)√

n− 1
2
+O

(
1√
n

)
.

Thus, the expression for the parameter θn is obtained.
Next, we will proceed similarly with the parameter µn.

This parameter can be written as:

µn =
2n−2(n−2)!
(2n−5)!!

=
22n−4(n−2)!2

(2n−4)!
.

For the second time, using that (n− 2)! = Γ(n− 1) and
the expansion (1), we have:

µn =
√

π
√

n+O
(

1
n

)
.

Finally, using that kn = µn
θn

and the previous expansions
for the parameters µn and θn, we can obtain:

kn =

√
π
√

n+O
( 1

n

)(√
π−
√

2
)√

n− 1
2 +O

(
1√
n

) =

√
π +O

(
1

n
√

n

)
√

π−
√

2+O
( 1

n

) ,
=

√
π

√
π−
√

2
+O

(
1
n

)
,

as we claimed.
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Using these expansions, we obtain the following expres-

sion for the value of fγ(kn,θn)(mn) =
mkn−1

n ·e−
mn
θn

Γ(kn)·θ kn
n

:

fγ(kn,θn)(mn) =
α

β (n)
,

where:

α = 2(1/2)·(
√

π/(
√

π−
√

2)−1),

β (n) = e
√

2/(
√

π−
√

2) ·Γ
(√

π/(
√

π−
√

2)
)

·(
√

π−
√

2)
√

π/(
√

π−
√

2) ·n−1/2 +O
(

1
n

)
.

We conclude that:

(gn(mn)+ fγ(kn,θn)(mn))
2 =

C
n
+O

(
1

n
√

n

)
,

where the constant C could be found using the expansions
of gn(mn) and fγ(kn,θn)(mn).

Finally, an upper bound for the mean quadratic error
MQEu

n is found:

MQEu
n =

1
n−1

n−1

∑
i=1

(cu
i,n− fγ(kn,θn)(i))

2

6
n

n−1
· ((gn(mn)+ fγ(kn,θn)(mn))

2

=
C

n−1
+O

(
1

n
√

n

)
,

and the right hand side term in this inequality tends to zero
as n goes to infinity, as we claimed. This finishes the proof
of Theorem 1.

III. THE ROOTED CASE

By a rooted phylogenetic tree on S we mean a fully
resolved (which in this case means with all its internal
nodes of out-degree 2) rooted tree with its leaves bijectively
labelled in the set S. As in the previous section, for simplicity
we consider only the sets of labels Sn = {1, . . . ,n}, with
n the number of leaves of the tree. Let T r

n be the set of
(isomorphism classes of) rooted phylogenetic trees on Sn. It
is well known [4, Ch. 3] that |T r

n |= |T u
n+1| for every n > 1.

Let k, l ∈ Sn be any two different labels and let T ∈ T r
n .

The distance, or path length, dr
T (k, l) between the leaves

k and l in T is the length of the unique undirected path
between them. We consider now the random variable

dr
kl = distance between k and l in one tree in T r

n ,

which takes values in Ωr = {2,3, . . . ,n}. Arguing as in Sec-
tion II, when the trees and the leaves are chosen equiprob-
ably, we are reduced to study the variable dr

n := dr
12.

For every i ∈Ωr, let

cr
i,n = |{T ∈T r

n | dr
T (1,2) = i}| .

The sequence (cr
i,n)i=2,...,n is the distribution of the variable

dr
n.

We have the following result connecting cr
i,· with cu

i,·. For
the sake of completeness, we sketch a direct proof, although
it could be deduced from the explicit computations provided
in [6], [11].

Lemma 3: cr
i,n = cu

i,n+1, for every n > 2 and i = 2, . . . ,n,
Proof: Consider the usual bijection Φ : T r

n → T u
n+1 that

sends a rooted tree T ∈T r
n to the unrooted tree Φ(T )∈T u

n+1
obtained by adding a new leaf labeled n+1 and a new edge
connecting the root of T with this leaf (cf. [4, Ch. 3]). Then,
dr

T (1,2) = du
Φ(T )(1,2), and therefore Φ induces a bijection

{T ∈T r
n | dr

T (1,2) = i}→ {T ∈T u
n+1 | du

T (1,2) = i}.

This lemma allows one to translate Theorem 1 into the
rooted case as follows:

Theorem 2: Let γ(kn+1,θn+1) be the gamma distribution
with parameters kn+1 and θn+1 given by

kn =
2n−2 · (n−2)!

2n−2 · (n−2)!− (2n−5)!!d(
√

8n−15+1)/2e
,

θn =
2n−2(n−2)!
(2n−5)!!

−
⌈

1+
√

8n−15
2

⌉
.

Let MQEr
n be the mean quadratic error between the random

variable dr
n and this gamma distribution:

MQEr
n =

1
n−1

n−1

∑
i=1

(cu
i,n− fγ(kn+1,θn+1)(i))

2.

Then, lim
n→∞

MQEr
n = 0.

IV. EXPERIMENTAL RESULTS

Figure 1 shows the data plot of (cu
i,n)i=1,...,n−1 and the

gamma density function with parameters k =
√

π√
π−
√

2
and

θn = (
√

π−
√

2)
√

n as functions of i, for n = 5000 leaves.
The figure confirms that the distribution of du

n approximates
well this gamma density function.

Figure 2 shows the data plot of minus the logarithm of the
mean quadratic error function (− ln(MQEn)) as a function
of the number n of leaves. The curve hints at the existence
of parameters α and β such that − ln(MQEn)≈ α +β ln(n),
that is, MQEn ≈ e−α ·n−β . If we adjust the values of the α

and β using the least squares method, we obtain α ≈ 4.659
and β ≈ 1.44. This confirms the theoretical result in Section
II.

V. CONCLUSION

In this paper, we have proven that the distribution of the
distance between a fixed pair of leaves in an equiprobably,
randomly chosen, fully resolved phylogenetic tree with n
leaves approximates a gamma distribution as n goes to ∞.
This result holds in the rooted and the unrooted case.

Our result is purely numerical, and it remains to be seen
whether there is some deep meaning in the relationship
between the distribution of the distances in phylogenetic
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Figure 1. Data plot of (cu
i,n)i=1,...,n−1 and the corresponding gamma density

function for n = 5000 leaves. The higher curve corresponds to the gamma
density function, the lower one to du

n .
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Figure 2. Data plot of − ln(MQEn) as a function of the number n of leaves.

trees and a gamma distribution. Another unanswered ques-
tion is whether the distances between pairs of leaves in the
phylogenetic trees contained in some phylogenetic database,
see TreeBASE ([1]) or PhylomeDB ([5]) are well approx-
imated by using a gamma distribution. A negative answer
would give information on the random model for real-life
phylogenetic trees. We are working currently in this topic.
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(Málaga, Spain, october 2010).

[9] N. Rosenberg, The mean and variance of the numbers of r-
pronged nodes and r-caterpillars in Yule-generated genealog-
ical trees. Annals of Combinatorics 10 (2006), pp. 129-146.

[10] M. Steel and A. Mooers, The expected length of pendant and
interior edges of a Yule tree. Applied Mathematics Letters 23
(2010), pp. 1315-1319

[11] M.A. Steel and D. Penny, Distributions of tree comparison
metrics—some new results. Systematic Biology 41 (1993),
pp. 126-141

103

BIOTECHNO 2011 :  The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-137-3

http://www.treebase.org/
http://www.treebase.org/
http://phylomedb.org/

	Introduction
	The unrooted case
	The rooted case
	Experimental results
	Conclusion
	References

