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Abstract—It is unknown which computational method the scene. Even though we only show results for visual stimdi, t
brain uses to perceive a visual scene. Given current advance method is quite general and may be used to process arbitrary
ments, it is now possible to model perceptual processes oféh gignais. It could also be used to process haptic or auditory

brain using spiking neural network models. We have developg . . .
a computational model for robust figure/ground separation.The information. Our model assumes that cells performing dedla

model is based on a laterally connected sheet of spiking newms. function_are cqnnected through gap junctions while no e_kiter
The sheet of neurons receives its visual input from a virtual connection exists between cells tuned to process different
retina. It is assumed to be located inside V1 or a higher visua kinds of information. Since a gap-junction can be modeled as
area. The neurons are assumed to be laterally connected to 4 yagistive connection, the entire set of interconnectedanes

their nearest neighbors through gap-junctions. These latal f isti id. Thi isti id th
connections allow the neurons to exchange information and orm a resistive gria. IS resistive grid causes the nesiron

therefore allow for robust figure/ground separation. Even hough t0 laterally exchange part of their activation level witharigy

we only show results for visual signals, the method is quiteemeral neurons provided that the connected gap junction is in an ope
and may be used in various areas of the brain. A result of state. The resistive grid is also used to temporally andaifyat
the lateral coupling is that the neurons synchronize their fiing average the incoming spikes. This enables the network ® tun

behavior resulting in the so called gamma-synchrony whichs . . . .
also a result of our computational model. their behavior and to perform robust figure/ground sepamati

Index Terms—visual perception; spiking neurons; lateral- The temporally and spatially averaged signal is used as an

coupling; gap-junctions; gamma-oscillations adjustive signal for the neuron. Depending on this signal,
the gap junctions open or close. When the temporal average
l. INTRODUCTION of the neuron’s dendritic input is above the spatial average

In computational neuroscience, one tries to understand hofvthe neuron’s dendritic input, then the gap junction opens
the brain actually processes information at the neuralllevd’s connection. If the temporal average is below the spatia
The goal is to seek an algorithmic description. Once th@serage, then the gap junction closes. Once, the gap junctio
description is obtained it may be used to simulate the sametween two neurons is open, then these two neurons exchange
behavior in another medium, i.e. on a computer. We are splart of their activation, thereby synchronizing their fiyin
a long way from being able to fully understand how humalsehavior. Eventually, other nearby neurons will also ofteirt
visual processing works. However, we have been able to shgap junctions, thereby forming an extended zone of laterall
how the brain can process visual information using a sheetafnnected neurons with synchronized firing behavior. All of
spiking neurons. Our sheet of neurons is laterally conidetcte the neurons whose receptive field shows part of the figure will
neighboring neurons. The connections (assumed to be dudire in synchrony. Neurons for which the figure is outside the
gap junctions) allow the neurons to exchange data with theaceptive field will fire out of sync and at a much lower rate.
neighbors and therefore tune their firing behavior suchttieat
relevant neurons collectively respond to a certain stiswulu
Our contribution is to extend the spiking neuron model to Sensory perception, motor control and learning are due to
include lateral connections. We provide a complete algorit  the neural processing which occurs inside the brain. Thia bra
description of our theoretical model which can be used fdself is usually modeled as a set of spiking neurons [2]. In
comparison with real data or for predictions. We show hothis standard model, each neuron independently integtia¢es
the sheet of neurons automatically adapts its behavior $o a®lectrical inputs which it receives from other neurons.sThi
robustly extract a figure from ground. happens until the activation of the neuron rises above aioert

In our simulations, we model a single sheet of neurons. Thevel or threshold. Once this happens, the neuron is saideto fi
input to this sheet of neurons is assumed to come from a Virtdde neuron then sends an electrical impulse or signal along
retina, i.e. from neural cells responding to visual stimulthe axon. This signal may then be integrated by other neurons
Hence, the sheet of neurons perceives and represents & vialch eventually will also fire.

II. SPIKING NEURAL NETWORKS
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It is standard practice to only model the spiking behavic
of neurons as this is thought to be the most relevant asp
of neural information processing. It is assumed that the@ent
function of the neuron can be replicated by only modeling th
spiking behavior of the neuron. Low level interactions besw [Ny theshoiing
neurons, i.e. at the level of neuro transmitters and ion ichkzn ) G ¥ QL f& ,Lf’/’)
are thought not to be relevant to replicate neural procgssir T = e
Hence, these aspects are usually omitted in computatiol ¥/
modeling. By abstracting and given powerful computation:
resources, it is possible to even model thalamocorticaéays
[1].

In the standard so called integrate and fire model, ea
neuron is viewed as a functional unit. The neuron integrthtes
input received through the dendrites. Once a given threskol
reached, then the neuron is said to fire. The inpUt ofa neBrorﬂg. 1. Artificial neuron. Each neuron is laterally connélcta gap junctions
due to electrical signals received via axons from other@sir to several other neurons (only 4 gap junctions are shown).

Whenever a neuron fires, then a voltage spike is sent along

its axon. This electrical signal is received by other nearon

through their dendrites (and also via their cell bodieschEasends a spike along its axon, i.e. it fires. In contrast to the
neuron integrates its input over time resulting in a builddp integrate and fire model, our neuron includes lateral connec
the activation potential. If the activation potential of @lds tions which as assumed to be due to gap junctions between
high enough, then the neuron will again send a spike down ftgurons. Only neurons which perform a similar function are
axon. This signal will be integrated by other neurons and tiasumed to be laterally connected. During developmeetait
process continues. connections may just occur completely at random. In the

Let V; be the activation potential of neuranof a larger course of time, some neighboring neurons will fire togethyer b
network. The change of the activation potentigl can be chance. This may lead to gap junctions between these neurons
modeled by the following equation (modified from [3]): The laterally connected neurons will form a sub-network. A
gap junction can be modeled as a resistive connection batwee
neurons [4], [5]. Hence, the connected neurons form a nesist
grid. Since the gap-junctions are always there, the gagtipm
connections form an unconditional resistive grid. Thisstbse
Here, C is the capacitance of the neuron. The facipris grid is used to adaptively tune the neuron to a given stimulus
the leakage conductance. This factor will determine thedpe A gap junction may be in one of two states. It can be open
with which the cell will eventually reach the resting poiaht or closed. The state that is chosen is voltage dependent. A
E; if no input is received. A tonic current can be modeledoltage dependent conductance of gap junctions was alsb use
through the termlinic. An input current to neurori from by Traub et al. [6]. In our model, a channel is opened for each
an external source can be provided through the térniet open gap junction allowing the connected set of neurons to
K be the input received from neurgn Each input will be exchange part of their activation. This leakage currenseau
weighted with factorss;; describing the connection strengththe conditionally connected neurons to synchronize thefi
between neurons and j. The connection strengths can béehavior. In computational modeling, an open gap junction
tuned through neural learning. The input of a neuron is the modeled as a resistor. The synchronization of laterally
weighted sum over all its inputs received from other neuronsonnected neurons occurs in the same way that chaotic or non-

In this standard neural model, an important ingredient ji;ear electrical circuits synchronize their behaviortiéy are
missing. Lateral connections between neurons are not@onsesistively connected, i.e. a signal is exchanged betwieen t
ered. We find such lateral connections between neurons totle circuits [7]-[9].
highly useful for signal processing. The lateral conne®io The input spikes passing next to each gap-junction are
allow the neurons to exchange data with their immediatemporally integrated and, through the resistive grido als
neighbors and thereby to collectively tune the response tasgatially averaged. The spatially averaged input resaltani
given stimulus. adjustive signal for the neuron. Gap junctions open andeclos
depending on this signal. In our model, we call this signal th
sync-threshold. Gap junctions open if the temporal avecdge

Our model neuron extends the standard model by algoneuron’s input is above the spatial average. Otherwise, th
including lateral connections between neurons. Similah& gap junctions close.
standard model, the neuron temporally integrates the iim@pm  An illustration of our neuron including lateral connectida
spikes. This leads to a rise of the activation voltage until shown in Figure 1. The lateral connections are shown extrud-
particular threshold is reached. Once this happens, theoneuing from the body of the neuron in order to make clear that this
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Ill. L ATERAL CONNECTIONS
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is a connection to other neurons on the same level. In realifwz; + x,, hy; + y,-) wherew is the width of the retina and
the gap-junctions are located on the dendrites which anershoh is the height of the retina an@:,, y,) is a random offset
on the left part of Figure 1 leading up to the neuron body. Theelected from-1,0, 1.
neuron receives its input through the dendrites. This ingput Our sheet of neurons could theoretically be located inside
temporally integrated as is illustrated by the center bbelled V1, however, it is more likely to be located in some higher
“ [ dt". The same input is also temporally integrated (althougtisual area. It could be used wherever a signal has to be sepa-
with a different factor) and also spatially averaged at egaght  rated from ground. Below, we will show how the network can
junction as illustrated by the boxed @t and “[ da”. Figure be used to separate a lighter signal from a darker background
1 shows 8 dendritic connections but only 4 gap-junctions ifhe same network, however, can also be used to separate
order not to overload the figure. In an actual neuron, theore complicated signals which depend on motion or texture.
connections are not necessarily uniformly distributed.dach Neurons processing these features would be located in V3 or
gap-junction, two connections are shown. One dark conmrectiV5 or inside higher areas [11], [12].
and one light connection. The lighter connection illugsahe =~ The human visual system uses two different types of recep-
resistive grid that is formed because the gap-junctiont&xistors: rods and cones. The cones are used for color visioeeThr
The darker connection illustrates the conditional corinact different cones can be distinguished. Their peak response
between neighboring neurons as the gap junctions openlies either in the red, green or blue parts of the spectrum
close (sphere on the dark lateral connection). If the tealpof13]. The retinal receptors measure the light falling onto
average of the incoming signal is clearly above the spatidle retina. The information is then passed on to the lateral
average, then the gap junctions open. If the temporal ageragniculate nucleus and finally reaches V1. By the time, the
is below the spatial average, then the gap junctions closgsual information has reached the visual cortex, it hasmbee
The dendritic input to the neuron is integrated by the secotrdnsformed from a red-green-blue coordinate system to a
box labeled ‘f dz”. Note that this input passes through theotated coordinate system. This rotation is caused by color
first box labeled  dz” which is the integration due to the opponent and double-opponent cells. The axes of the rotated
unconditional resistive grid. If the gap junction is opemaytp coordinate system are: bright-dark, red-green and yellow-
of the activation will be exchanged between the connectbtle [14]. For our experiments, we will be using only the
neurons. The current will flow from the neuron having a highdaright-dark channel (also called lightness). We procega da
activation to the neuron having a lower activation. Thissesmu which is stored as computer images. The transformation from
the connected neurons to synchronize their firing behalfior.red, green, and blue non-linear pixel intensitig®, G, B)
the activation of the neuron rises above a threshold (ibtstl is given by L = 0.299R + 0.587G + 0.114B [15]. Each
by the “Threshold”-box), then the neuron will fire. In thissea neuroni of our sheet receives lightneds from 3 different
an electrical impulse is sent along the axon. This is ilatstl  positions of the virtual retina. The mapping from neurons to
by the box with the spike. their input is defined as described above. Thus, we have for
A connected network of such neurons is able to extraitte outputo; of the retinal neuron: o, = L(x},y;) with
an arbitrary signal which is above the average. The sarq€,vy.) = (wz; + z,, hy; + yr).
function could also be achieved with multiple interconeect Each neuron is fully described by the following state
neurons. It could be that the above behavior illustratethiwit variables:a; activation, ¢; fire-threshold,o; output voltage,
a single neuron is actually spread over multiple neuroridéns a;, temporal average of incoming spikes,spatial average of
a cortical column. See Mountcastle [10] for a review ofemporal average. The variablg is actually associated with
columnar organization of the neocortex. every gap-junction. However, we have used one variable per
neuron to speed up the simulation. The algorithm which is run
by each neuronis shown in Figure 2. Due to the leakage fac-
In order to evaluate our model, we first start off usingprs, the state variables can be initialized with randomesit
virtual stimuli. A sheet of 1000 laterally connected neworthe start of the algorithm. For our experiments, we have used
is simulated. This sheet of neurons processes input fronthee following parametersy, = 0.9995 decay of activation
virtual retina. The 1000 neurons are randomly placed inaidegotential, o, = 0.5 decay of output voltagey; = 0.001
100x 100 2 area. It would suffice to model a two-dimensionalemporal averaging factor of gap-junctien, = 0.0001 spatial
sheet of neurons. However, we have used a three-dimensianedraging factor of gap-junction input,= 0.0001 leakage to
sheet in order to include the fact that actual neurons amdjacent neurons upon firing, = 0.0005 reduction of fire-
not perfectly positioned inside a two-dimensional planet Lthreshold,w = 1.999 factor for over-relaxationAt, = 10
(xs,9:, z;) be the position of the-th neuron inside the three-refractory period of neurony;; = 1 weight between neurons
dimensional area. Each neuron is laterally connected to itandj. We have used only positive unit weights because the
6 nearest neighbors the sheet. Input to neurds provided input image is directly processed by the neural sheet. In the
by a virtual retina. The receptive field of neurdis mapped brain, the weights can be found using neural learning, e.g.,
topographically from its position inside the sheet to théned Hebbian learning [16]. Of couse, it is also possible to idelu
neurons. Let;, y;, andz; be the normalized coordinates withnegative weights. Negative weights would represent induiii
range [0, 1], then neuroni receives its input from position signals. The type of weights that have to be used, are of eours

IV. ROBUSTFIGURE/GROUND SEPARATION
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(01) O;
(02) a; = (1 — aa)as /1 decay of activation
03) a;=a;+ aq Ej ws;o0; /I integrate input

(1 — ao)oi /I decay of output input image sheet of neurons histogram

| 0.03 sync-threshold
£ 0025
5
g
g oo
0015
g o001
£ o005
0

(04) @i = (1—au)ai +au ), wijo; Il temporal average CY
(05) a" = a; /Il save previous result
(06) a' = ﬁ ZJ.GN a; I/ compute spatial average o 02 04 o0 o8 1

lightness

(07) a; = (1 — as)a’ + asa; /l add temp. average

(08) a; = (1 —w)a" + wa; /I use over-relaxation

(09) if (a; > as;) open gap junctions

(10) elseclose gap junctions (b)
(11) if Neuroni fired within At, return

(12) N = {j|Neuronj is laterally connected to

(13) neuron; via open gap junctior}

(14) o = a;; n =1/ initialize spatial averaging

(15) for all j € N do: if Neuronj did not fire within A¢,

(16) {d =d+aj;n=n+1}

(17)  a; = o’ /n Il spatial averaging completed ©
(18) /I distribute sp. avg to neighboring neurons

(19) for all j € N do: if Neuronj did not fire within A¢,

(20) {aj=ai;}

(21) ¢; = max[0,1 — - Ns] // comp. fire-threshold

(22) if (a; > t;) {// does the neuron fire?
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(23) a; = 0 // reset activation @ oo
(24) 0; =1 —¢|N| /l output rises to 1 oo
(25) for all j € N do: a; = a; + ¢ // distribute leakage 0008
(26) } ®c 0z o4 06 08 1

lightness

Fig. 2. Algorithm of neuror
Fig. 3. Experimental results for different noisy input ineag(zero mean,
standard deviation 0.05). The relationship between backgt lightness
L, and figure lightness is (a) Ly/L¢=0.1/0.3 (b) Ly/L;=0.3/0.5 (c)
Ly /L=0.5/0.7 (d)L,/L=0.7/0.9
dependent on the problem that has to be solved. For our tas'k/, ! ILs

unit weights suffice. The parametdi, denotes the number of

neurons in the sub-network. longer in its refractory period (11). Lines (12-20) distrib

In the fO"OWing, we will refer to the line numbers of FigUFEpart of the activation across open gap junctions_ The acti-
2 in order to explain what the neuron does. First, the outpytion flows from the neuron having a higher activation to
voltage (01) as well as the activation (02) decays. Eachameumeighboring neurons having a lower activation. This causes
integrates the input (03). The gap junctions are controlle@ijacent neurons with open gap-junctions to synchronigie th
depending on whether the temporal average of the inputfisng behavior. The fire-threshold is set depending on the
above the spatial average (09-10). The temporal averageof §jze of the connected sub-network (21). If the connected sub
input is computed in (04). The spatial average of the tempofgetwork is large, then the threshold is lowered, whereaseif t
average is computed using over-relaxation in (05-08). Thignnected sub-network is small, then the threshold is highe
spatial average is basically an adaptive threshold whickval This causes neurons belonging to a larger object to fire with
for adaptive figure/ground separation. a higher frequency. Once the neuron fires (22-26), most of

Note that in an earlier model [17], we have used thgae activation is sent along the axon. However, part of the
firing signal of the neuron as a feedback signal to contrattivation is also distributed to neighboring neurons.
all of the gap-junctions at the same time. It is probably more A single neuron could also perform a bright/dark classi-
accurate, that each gap-junction is controlled indepethderfication with a proper choice of parameters. However, such
by the temporal average of the signal passing through theneuron will not be adaptive to the image content. Figure
dendrite where the gap-junction is located. Thus, accgrthn 3 shows the results for different input images with static
our theory, each gap-junction opens or closed independembise. The input received by the retinal neurons is shown
of the other gap-junctions depending on the signal thatgsassn the left hand side. The sheet of neurons is shown in the
through its dendrite. The algorithm that we use for ouniddle. Each neuron is marked by a dot. Open gap junctions
simulation, nevertheless takes the signal running thralighf between neurons are drawn with colored lines. The right
the dendrites as a single input and controls all gap-junstionand side shows the distribution of the lightness of the inpu
of a neuron at the same time. This allows for faster simutatigmage. In Figure 3(a) both background and the foreground
of the entire sheet of neurons. square (figure) are quite dark. Subsequently, in cases, (b-d)

Condition (09) ensures that the brightest stimulus is eihe lightness is increased. We can see that for input im3gge (a
tracted. Parts of the image with high lightness corresponda lightness of 0.3 is classified as figure because the badkdrou
the figure whereas other parts with low lightness correspohds a lower lightness, e.g., 0.1. However, for case (d), a
to the background. Processing continues if the neuron is lightness of as high as 0.7 is classified as background becaus
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Fig. 4. (a) input stimulus (b) behavior of six different nens (marked).
Neurons 1-3 are located on the figure and show synchronong fiehavior
whereas neurons 4-6 are located on the background and firef eync.

Fig. 6. (a-c) Moving stimulus. (d-f) A connected sub-netwdracks the
ST T TTTTT] figure.

Cpasiuyy
vl 7 ';fs'»\,jﬁ:‘g'

% 2‘%@% '%g \%{%‘é W ST T T T : . .
O N S neural oscillators [21] and segmented static input. Quées

al. [22] have developed a visual selection mechanism and
s [T show how their integrate and fire network responds to differe

+ T static images. Their model includes short range excitatory
(b) connections and long-range inhibitory connections. Eckho
et al. [23] simulated results from the visual cortex of thé ca

Eig' 5. (a) input stimulus (b) behavior of six different nens (marked). They simulated two one-dimensional layers of neurons and
erens noae o o e ehpoun: g agne " used & moving SEmulus as iNput. I Contrast t our mode; the

have used long range feeding connections connecting nguron

of the same layer. Our computational model is quite simple,

the figure has a higher lightness of 0.9. Thus, we see that ¢t it shows how synchronized zones of activity can arise and
network is able to adapt to the image content and extract tf®ve around in the brain. These zones of activity are assumed
correct figure. It is also robust in that it is able to cope witkP correlate with conscious perception and control.
noisy input stimuli. Our model of laterally connected neurons show a syn-
By using other types of input with appropriate weights ighronous firing behavior of neurons responding to the main
(03) and (04), arbitrary stimuli can be extracted. For insta stimulus (figure) whereas the remaining neurons fire out of
one could envisage a sheet of neurons processing input fré¥ic. Indeed, the electroencephalogram (EEG) shows the syn
V4 (color) or V5 (motion). Such a sheet could be tuned tehronized firing behavior of neurons inside the frequenaeydba
extract a moving color stimulus. from 40 to 80Hz [24], [25] This is called gamma synchrony
Figure 4 shows that the neurons that have their recepti?EG. A review on how gamma synchrony correlates with
field on the figure fire in synchrony while other neurons fireerception and motor control is given by Singer [26]. The
out of sync. Figure 4(a) shows the neural sheet overlaid §amma synchrony is due to inter-dendritic gap junctiong,[27
the input image. The output of six different neurons is showg8]. Hameroff [29] has put forward the “conscious pilot”
in Figure 4(b). Figure 5 shows what happens for a stimulus Bfodel. According to this model, gap junctions open and
larger size. In this case, the neurons increase their figibgy r close, thereby creating synchronized zones of activityeseh
This effect is due to the adaptive threshold that is computé@nes move through the brain and convert non-conscious
in Figure 2(21). Higher visual areas can discern objects épgnition, i.e. cognition on auto-pilot, to conscious citign.
different sizes based on their firing rate. A review of several different theories of conciousness \&qgi
Figure 6 shows how the network behaves for real inpgy Kouider [30]. Several theories of consciousness assume
images moving across the virtual retina. As the object ¢-entrant, i.e. recurrent, processing of informatiog, ,ethe
figure moves across the retina, different neurons are aetivare-entrant dynamic core hypothesis by Tononi and Edelman
in the course of time. Neurons of a connected sub-netwddd]. or the local recurrence theory by Lamme [32]. Crick
synchronize their firing rates. Different objects will hav@nd Koch [33] have noted that humans appear not to be
different firing rates. This allows for visual servoing tedjues aware of processing which occurs inside V1. Thus, conscious
[18], [19] which can be used by higher visual areas to tradocessing probably starts somewhere above V1. According

35 JLETRON Wi &
3 "(yb%/y@ BI5, o8
é:“\%“ﬁé%’i}b é@'
g 3

@ ©® © 0

an object. to Zeki [34], multiple consciousnesses are distributecsr
different processing sites giving rise to microconsci@ssn
V. DISCUSSION ANDBASIS OF OURMODEL Attributes such as color, form and motion are bound which

The sheet of neurons segments the scene into figure dhen gives rise to macroconsciousness. And finally, theee is
ground. Related work for scene segmentation includes thkbal form of conciousness or unified consciousness which
work of Zhao and Breve [20]. They have used Wilson-Cowanvolves linguistic and communication skills. Our model is
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based on recurrent information processing. Hence, it i | [8]
with theories of Tononi and Edelman as well as the theor
of Lamme. In Zeki's terms, our model would be a case oil
microconsciousness.

Synchronized firing can be achieved through either loc&f!
or global connections. Our model only uses local connestio[h]
between neurons. No global connections are required. Never
theless, global connections could be used to pass infasmati12l
on to higher areas or to provide feedback to lower areas. Wan
[35] as well as Konig and Schillen [36] have used global
connections to establish synchronous firing. They use loHAd!
range excitatory delay connections to achieve desynctmeni[15]
tion across different regions. Terman and Wang [37] use a
global inhibitor to achieve desynchronization. In our mipdel1¢l

. . . . 17]
neurons responding to the same object will synchronize thél
firing behavior because they are laterally connected throug
gap-junctions. Two neurons, each responding to a diﬁerﬁ%
object will not be synchronized because of the depende cd
of the firing threshold on the size of the connected zone of
neurons. (19]

VI. CONCLUSION [20]

The standard integrate and fire model does not take latel?al
connections between neurons into account. The lateral con-
nections are assumed to occur through gap junctions whigh
behave like resistors. A gap junction may be either in an
open state or in a closed state. The gap-junctions form t‘fﬁ%]
resistive networks. An unconditional network and a coodiil
network. The unconditional network is used by our model
to tune the network to the correct input level. It computes%“]
spatial average of the temporally smoothed input. Thisiapat
average is used to set the sync-threshold by comparing it(26]
the temporal average of the overall input to the neuron. If
the overall input is above the spatial average, then the gap
junctions open. This causes the neuron to synchronizeiitg fir [26]
behavior such that neurons which have their receptive ﬁefgj?]
above the stimulus fire in synchrony. We have shown that
our model allows for robust figure/ground separation both on
artificial stimuli as well as with real stimuli. [
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