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Abstract—The nematode Caenorhabditis elegans is an im-
portant model organism for many areas of biological research
including genetics, development, and neurobiology. A common
technique used in studying the locomotion of the worm is to
take video of the worm in motion and analyze it to extract
relevant data. A number of different software solutions exist to
analyze these videos, yet there is no technique to determine the
accuracy of the statistics being produced. We have developed
a method to quantify the accuracy of a given analysis pipeline
by using video of a biologically accurate simulation. Using this
process we develop a metric to quantify the accuracy of a
given pipeline, and we demonstrate this metric by comparing
different implementations of a popular pipeline.
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I. INTRODUCTION

The nematode Caenorhabditis elegans is an important
model organism for many areas of biological research in-
cluding genetics, development, and neurobiology. Extensive
research has been performed on video analysis and feature
extraction on microscopic video of C. elegans locomotion. A
number of different software solutions exist to analyze these
videos, yet there is no method to determine the accuracy of
the statistics being produced.

In this work, a method is developed to validate the accu-
racy of video analysis pipeline through use of an accurate
simulated model of the worm. The ALIVE simulator is a
simulation that produces a biologically accurate 3D model
of the worm [6]. By using video from this simulator coupled
with the data containing the exact underlying position and
shape of the worm, we are able to correlate the raw video
data with the actual values that describe the worm. We can
then take this video and feed it into a given video analysis
pipeline and compare its results to the actual values.

To test our method, we took a popular analysis pipeline
and varied the thinning algorithm it uses to create skeletons.
Then we validated each of these pipelines on three variations
of worm movements all produced in the ALIVE simulator.
We derived an accepted result for segment angle and seg-
ment angle velocities for the video clips, and compared that
to the result measured from the pipelines. This exposed a few
flaws in the accepted pipelines and allowed us to empirically
measure the fitness of an analysis pipeline.
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II. BACKGROUND
A. Imaging

A common form of worm analysis involves tracking a
single worm at a higher magnification over time to an-
alyze its motion and behavior. One use for this research
is in identifying different strains of worm based on their
motion patterns over time. Since a complete neurological
mapping of the worm exists, studying different mutants
of the worm allows for a further understanding of the
working of nervous systems. Many mutants cause disruption
in the typical sinusoidal motion in C. elegans. These range
from obvious changes in locomotion that can be spotted
through a microscope, to very subtle changes that show
themselves through a thorough statistical analysis of the
worm’s motion [9].

Tracking a single worm is also useful for researchers who
are trying to abstract information about a worm’s motion
in order to artificially reproduce realistic locomotion in a
simulator. For systems such as [8], [1], [5], a neurological
representation of the locomotion functions of the worm is
reproduced that must be verified against the locomotion of
a worm in vitro. This requires an accurate and thorough set
of statistics on worm motion to verify the images against.

Our system focuses on single worm tracking at a rel-
atively high magnification and feature extraction about its
forward locomotion. Imaging of C. elegans for this purpose
is typically performed by a pipeline” of effects through
which a video is processed to produce a “skeleton” of the
worm. Data analysis is performed on this skeleton and the
prominent features are extracted. A current pipeline, utilized
in [4], performs the skeletonization operation by thinning
the binarized image of the worm, then discretizing the
skeleton into the desired number of points. This skeleton is
usually stored in an intermediate data file to be processed for
a number of statistics such as amplitude, velocity, segment
angle, and segment velocity. These are the four statistics we
will compute and compare in this paper. This pipeline will
be discussed in detail in Section III.

B. Simulators

Due to the relative simplicity of C. elegans and the ready
availability of a complete neural mapping, frequent attempts
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have been made to develop simulations of the organism. A
number of different approaches have been taken in simulat-
ing the motion of the worm. Neibur and Erdos produced a
simulation in part to show that the muscle activations that
cause movement could be reproduced assuming the worm
has stretch receptors that allow for the propagation of move-
ment down the worm [7]. Bryden [1] and Karbowski [5]
developed simulators that make biologically accurate neural
networks and apply them to their simulators to reproduce
the range of motion for the organism. These simulations
represent the body as a set of uniformly distributed points in
two-dimensional space. This prevents them from replicating
the proper weight distribution, and more importantly, the
non-uniform placement of the muscles that are used to
generate locomotive force in the actual worm. They also
fail to directly simulate the environment, but instead apply
constant frictional forces at these discrete points along the
body.

To remedy this, the ALIVE simulator was developed.
This simulator uses a biologically accurate three dimensional
model of the worm and implements physically accurate
interactions of the worm with its environment. The simulator
produces photo-realistic images of the worm moving (for the
context of image analysis). The simulator will be discussed
in more detail in Section III-B.

III. MATERIALS
A. C. elegans Video Toolkit

Currently, various software solutions exist to analyze and
extract features from videos of the worm C. elegans. How-
ever, these software packages have not been widely accepted
by the community because they are implemented with a
single process for converting video into data, documented
poorly, tend to be slow, and implemented using MATLAB’s
outdated, undocumented image processing algorithms.

By developing a standard and easy to use interface for
creating and sharing worm analysis pipelines, we hope
to foster a convenient and open comparison of existing
pipelines. Also, a video analysis pipeline program has the
potential to allow researchers without experience in pro-
gramming to develop customized analysis pipelines. By
incorporating multiple different algorithms for performing
the same operations, it is easy to compare and contrast the
benefits of competing algorithms for image manipulation.
A pipeline that provides a way to view the processed image
during each effect allows each effect to be more finely tuned,
producing better overall results.

The software we have developed rectifies these defi-
ciencies by providing a versatile toolkit of video analysis
techniques where the end user can customize the analysis
pipeline. Our software, written in Java, not only provides
versions of the image analysis algorithms found in current
software packages, but also provides alternate and improved
techniques to allow the user to mix and match processing
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steps to accommodate their specific needs. Each effect
includes settings and a preview function to allow a researcher
to fine tune each effect to their video or microscope, allowing
for more accurate and specialized results. Since the software
is developed in Java, the program is lightweight and fast,
especially compared to other solutions that use MATLAB
image processing algorithms.

Our extensive toolkit contains common pre-coded effects
used in C. elegans feature extraction, such as bend angles,
segment length, and segment velocities. The visual interface
allows easy connection of effects to create a custom video
pipeline, which can then be saved and shared with other
CVT users to allow a standard for comparing analysis
pipelines. CVT also incorporates modern and legacy image
manipulation algorithms. It takes input from video files and
folders, allowing for real time or batch processing. The
use of color coded "ports” clearly demonstrate the expected
inputs and outputs for an effect, allowing easy creation and
editing of pipelines.

To facilitate the pipeline creation and management pro-
cess, our program provides an intuitive drag and drop
interface that allows a user to select processing algorithms,
set their parameters, and connect them together. Users can
then test and refine their pipeline by viewing the video at
each stage of processing. The output of the process is a
standardized file format that contains the key characteristics
of the worm’s motion in a format that is compatible with
statistical analysis software.

For developer support, we have also incorporated a stan-
dard interface for designing and plugging effects into the
toolkit. This allows any effect to be inserted into a pipeline,
including effects that may output data in a custom format.
This flexibility allows any pipeline and data format to be
supported with minimal Java coding.

B. ALIVE Simulator

Validating a pipeline requires a realistic depiction of the
worm in which we know the underlying values of the worms
position for each frame. To do this, a biologically accurate
model of the worm was required. This was obtained by using
the ALIVE simulator developed at the University of Tulsa.
This powerful simulator was developed as a biologically
accurate simulation of the worm C. elegans. This simulator
produces realistic locomotion of a three dimensional model
of an adult C. elegans.

As discussed earlier, other simulations have done a num-
ber of significant simplifications in order to model the
worm’s motion, including depicting the worm as a uni-
form two-dimensional model. These simplifying assump-
tions limit the ability of these simulations to accurately
depict the non-uniform friction that results from the worm’s
contact with the world around it and subsequently the
complex neural control that is needed to generate the worm’s
characteristic sinusoidal pattern of locomotion.
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Leveraging the tremendous increases in computational
power and advances in numeric methods, the ALIVE simula-
tor rectifies these deficiencies by representing a biologically
accurate 3D model of the body of C. elegans in a virtual en-
vironment that mirrors the physical properties of its natural
world. This simulator, which has been under development
for nearly two years, is built using an open-source 3D
game and physics engine. The model accurately depicts the
physical properties of the real organism including its nonuni-
form weight, size, shape, and musculature. In addition, the
simulator models the interaction between the worm and
its environment to include surface tension, friction, inertia,
and gravity. The simulator faithfully reproduces forward and
reverse locomotion of C. elegans on an agar surface, and the
model is cross validated using video recordings of worms
that were converted to quantitative data by image analysis
software [6].

The worm model itself contains 25 discrete segments
of biologically correct length. This is then powered by a
sine wave propagated down the worm to simulate forward
locomotion. This has been tuned so that the worm moves
in a realistically validated way. The frequency and update
rate can be easily adjusted to create unusual movement
patterns that can make for theoretically realistic movement
variants [6].

To further test the various pipelines, we decided to use
the power of the ALIVE simulator to create three distinct
variants of worm motion to test the versatility of the
pipelines. The first worm variant is the typical forward
locomotion of the C. elegans. The ALIVE simulator by
default creates a worm and moves it in the form of a typical
adult worm. The simulator does this by calculating muscle
activations by propagating a sin wave down the different
segments of the body. This creates a typical movement that
has been cross validated with video of real worms in forward
locomotion. This is the typical configuration of the worm
that is analyzed in most video analysis pipelines, and the
data that is extracted represents such statistics as amplitude,
velocity, bend angles, and bend angle velocities. The second
variant moves with very high bend angles and a low bend
angle velocity. This makes for a very slow moving worm that
appears to make many pirouettes. This covers the pipeline’s
ability to handle very high bend angle situations. The last
variant moves with very low bend angles, but at a very high
speed. This worm quickly moves its segment back and forth
which allows the worm to quickly move across the plate.
This motion is not necessarily represented in the motion
of the real worm, but it does put the worm in low angle
situations that tests the sensitivity of the pipeline.

These three variants demonstrate a range of the worm’s
potential motion and test the sensitivity of the pipeline to
changes in the worm’s style of motion.
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Figure 1. Features of C. elegans locomotion

C. WormAnalyzer

To produce the statistical analysis of the skeleton files, we
used the WormAnalyzer software that was also developed
at The University of Tulsa. This software package takes
in skeleton files and batch processes them to produce the
relevant statistics. The software extracts 49 features from
the worm’s motion, four of which are relevant here: ampli-
tude, velocity, segment angle, and segment angle velocity.
Amplitude is the measure of the maximum amplitude at any
given time. After a file is processed the average amplitude
for the worm over the duration of the file is given. Velocity
measures the worm’s magnitude of velocity (speed) from
one frame to the next by tracking the worm’s centroid. The
average velocity over the file is reported. For the segment
angles, one measurement is produced for each joint in the
worm’s skeleton where two segments meet. This segment
angle is a measurement of a single joint’s angle at each
frame. The average angle over the course of the video is
reported. The segment angle velocity is the rate of change
of segment angle over time. The average angular velocity
over the course of the file is produced. The software outputs
these statistics, which can then be further analyzed using
statistical packages [6].

IV. METHODS

A. Pipeline Creation

The analysis pipeline we constructed is similar to that
described in Geng et. al [4] with some minor differences.
To create the pipeline, we used the CVT software described
in Section III-A. The first element in the pipeline is an input
cell that allows a batch process of videos to be read in and
analyzed. Upon each new video a message is sent to all the
nodes in the pipeline so that they can initialize in whatever
means appropriate. Each frame of the videos are read in
and then passed along to the next pipeline processor until
the output nodes are reached.

First, each frame is converted from color to grayscale
using a simple combination of the 24-bit Red/Green/Blue
values for each pixel. The next processor in the pipeline
performs a binarization of the video using a local threshold-
ing algorithm. This algorithm uses a sliding 3 X 3 window
to determine whether a given pixel represented by a single
grayscale value should be converted to black (foreground)
or white (background).
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Table I
SEGMENT ANGLE ERROR OF DIFFERENT THINNING METHODS

Table II
SEGMENT VELOCITY ERROR OF DIFFERENT THINNING METHODS

OPATA-8 SPTA TPTA OPATA-8 SPTA TPTA
(in degrees) | PEV | MaxErr | PEV | MaxErr | PEV | MaxErr (in degrees) | PEV MaxErr | PEV MaxErr | PEV MaxErr
Default 1.90 | 4.36 207 | 7.44 2.03 | 555 Default 11.28 | 38.76 15.87 | 49.99 13.37 | 46.75
Large Ang 1.87 | 4.62 248 | 9.63 2.14 | 6.40 Large Ang 27.82 | 92.66 32.01 | 109.48 27.92 | 95.00
Small Ang 1.76 | 4.01 1.88 | 6.17 2.07 | 452 Small Ang 7.79 23.57 13.01 | 42.18 10.77 | 33.80

This processor colors the pixel black if the standard
deviation of the intensity of the pixel and its surrounding
pixels is greater than the mean of the entire image, or if the
mean intensity of the pixel and its surrounding pixels was
greater than the background pixel intensity.

Next, we remove small objects from the image using
a region labeling algorithm that indexes each pixel in the
image according to the region to which it belongs. Once
all of the black regions are labeled, we remove all of the
regions except for the largest. This isolates the worm (which
is black) onto a white background. We then used the same
method to fill holes in the worm’s image by inverting the
colors such that only the background region is maintained.

With a binary image of just the background and worm in
hand, we apply a thinning algorithm to reduce the worm’s
image down to a core body that represents the worm’s basic
shape. A number of options are available to thin the worm.
For this paper, we chose to vary the thinning algorithms in
order to determine which is the most accurate to use in a
C. elegans imaging pipeline. This decision allows us to use
our newly developed metrics to track a very small difference
in a pipeline, demonstrating how this validation method
can be used to incrementally choose and validate individual
elements in a pipeline in order to create the most robust and
accurate pipeline possible. Traditional means of choosing a
thinning algorithm might include thinning an image or video
of a worm and then judging by hand how accurate it seems
to be. There are no real metrics to guarantee that this is
actually computing relevant values, so the choice of which
thinning algorithm to use would be made almost arbitrarily.

To demonstrate the power of this metric, we chose
three published thinning algorithms: a single pass thinning
algorithm (SPTA) [12], a triple pass thinning algorithm
(TPTA) [11], and a one-pass parallel asymmetric thinning
algorithm (OPATA-8) [3]. SPTA is a single pass sequential
thinning algorithm that uses both flag map and bitmap
simultaneously to decide if a boundary pixel can be deleted.
TPTA is an older and simpler thinning algorithm that tends
to take longer than SPTA and in theory yield less desirable
results. OPATA-8 is a more complicated thinning algorithm
based on pattern matching each 3x3 set of pixels in the
image to one of 18 pre-established patterns. This is an
expensive operation when it must be done for every pixel
in every frame of a video, but theoretically it produces very
good results.

This shape produced by these thinning algorithms is often
not a single line, but has multiple endpoints. We reduce it
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to a single line by selecting the endpoints that are furthest
from one another and removing all others.

The output node produces a set of text files, which we
refer to as body files. Each body file contains one line
per frame of video with each line giving a timestamp and
the pixel locations of the body of the worm. The number
of pixels (or length of the body) is dependent on the size
of the worm and also exhibits some variability due to the
binarization of the image and subsequent thinning.

Because we wanted to gather statistics based on a non-
uniform segmentation of the worm’s body, it was necessary
to identify the location of the worm’s head. To do this a
simple heuristic was applied to capturing video. We made
sure that the first frame of every video captured featured the
head of the worm to the right of the tail of the worm. This
was possible since rotating and placing the camera in the
simulator is quick and easy. The first frame of each file was
then marked with a head tag on the end that who had the
largest x coordinate. With the head tag in place, subsequent
frames of the video were properly rearranged such that the
end point closest to the last head location was identified as
the head. This turns out to be a very robust and reliable
mechanism if the video being processed was taken at high
enough frame rates.

These head-tagged body files are then post-processed
in batches. The WormAnalyzer software takes a directory
of head-tagged body files and produces skeleton files that
provide a description of the location and position of each
segment of the worm. Like the simulator, the size of these
segments are not uniform, but are based on the muscle
placement as reported in Varshney et al [10].

For convenience, the simulator also creates skeleton files
in the same format as the WormAnalyzer. This allows us
to directly compare the output from both processes using
the same metrics calculated in exactly the same way. The
skeleton files are then processed to extract features of the
worm’s movement using a technique similar to the one
reported in Cronin et al [2]. Currently, this software extracts
49 features from the worm’s motion including the velocity of
the centroid of the worm, the amplitude of the worm’s body,
the average angle at each joint location, and the angular
velocity of each joint (see Figure 1). The software outputs
data files that give these features on a frame by frame basis
and a set of summary statistics that can be further analyzed
using statistical packages.
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Table III
AMPLITUDE AND VELOCITY AVERAGES

Default Large Angle Small Angle
Amp Vel Amp Vel Amp Vel
Sim 168.37 | 204.08 | 180.10 | 40.79 | 62.64 | 374.70
OPATA-8 | 186.39 | 259.30 | 176.11 | 113.02 | 59.98 | 391.56
SPTA 182.34 | 304.71 | 170.10 | 131.56 | 59.03 | 404.95
TPTA 177.73 | 409.15 | 165.13 | 201.29 | 58.21 | 506.10
B. Testing

To test the pipelines, first video was captured for each
of the worm variants. To do this, the simulation was run
numerous times for each variant. The zoom level was held
constant, and the “camera” remained in one place while
the worm performed forward locomotion. Screen capture
software was used to record video of the worm moving.
No video was taken while the camera was repositioning. The
simulator produces a file which details the underlying values
of the worm body in the simulation. Each set of values was
timestamped, and the timestamp was also captured in the
video. The data file from the simulator was then split into
smaller files corresponding with the video clips such that
each video file would have a corresponding data file that
contained a record of the underlying values during that clip.
Over 20,000 frames of worm motion were collected over the
three variants. Three distinct sets of video was produced:
default, large angle, and small angle movement.

Each set of video was batch processed through the CVT
three times. Each time a different thinning algorithm was
used. The pipeline was constructed such that data files were
outputted that contained the thinned skeleton and a times-
tamp for each frame of the video. These files were then fed
into the WormAnalyzer software for statistical analysis. All
pipelines used the same segmentation code to produce the
24 anatomically correct skeleton points and analysis code to
produce the statistics. Statistics were recorded for amplitude,
velocity, segment angles, and segment angle velocities.

Then, the values produced from the simulator were fed
into the WormAnalyzer software to produce the same statis-
tics as those produced from the video analysis. These values
produced from the simulator files were used as the “accepted
value” since the underlying value was known. The results
from the other pipelines are used as the “experimental
value.” Using these values the root mean square (RMS)
error for each pipeline/statistic combination was computed.
This value represents how accurate the pipeline was in
creating accurate skeletons and therefore accurate statistics.
The testing was focused on isolating only the thinning
algorithm every other operation in the pipeline is exactly
identical, including the statistical analysis. This allowed for
the differences in accuracy to be attributed to the accuracy
of the thinning algorithm. This demonstrates how a broad
measure of accuracy of a pipeline can be focused to help
validate each video effect in a pipeline.
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V. RESULTS

Approximately 20,000 frames of video were processed to
produce their relevant statistics. Each statistic was calculated
for each combination of worm variant and thinning algo-
rithm. These statistics were then treated as an experimental
value, and the statistics produced for the corresponding
videos from the simulator were treated as the accepted
value. From this a simple root mean square error term
was created measuring the average error over each segment
of the worm. This error was calculated for all the worm
variant/thinning algorithm pairs. In addition, the maximum
error for a segment was recorded. This metric will be
referred to here as “pipeline error value” or PEV. The PEV
for a given pipeline is a measurement of its accuracy. A
perfect pipeline would produce a PEV of 0 (since it perfectly
matched the underlying data values). Table I and II shows the
PEV values for each pipeline on the various worms used in
the simulation. Figure 2 shows how the pipelines performed
over the three different worm variants.

In addition to this, the amplitude and velocity for the
worm was measured. Each pipeline produced a single am-
plitude and velocity value for a given worm variant. This is
compared against the given value in Table III.

By all metrics, OPATA-8 is the most accurate thinning
algorithm we tested when used on C. elegans. All of our
metrics point towards its accuracy in analyzing various the
movements of all the variants of the worm. Thus, this
indicates that any future pipelines that require a thinning
algorithm should chose OPATA-8 if their main goal is
accuracy of statistics.

In measuring the velocities of the worm as a whole, the
two older thinning algorithms (SPTA and TPTA) performed
very poorly. After examining the data, we found that these
algorithms sometimes greatly alter the length of the worm by
making poor choices in the thinning algorithm. The newer
and more advanced OPATA-8 goes much further in preserv-
ing the length of the worm. Preserving as much of a thinned
object as possible was actually a goal in development of
OPATA-8 [3]. Velocity of the worm is calculated by first
obtaining its centroid, and tracking changes to the centroid
over time. When the length of the worm changes wildly
from frame to frame, the centroid also changes position.
This inaccurate change of position is expressed in the poor
performance of these thinning algorithms when calculating
velocity of the worm.

It should be noted that our metrics do not take into account
the speed of processing of these algorithms. If a pipeline
is developed whose main goal is speed and not accuracy,
one may chose to go with a different algorithm. This metric
still has a place in that it can allow researchers to make an
informed decision about the trade off in accuracy and speed,
as now both are quantifiable results that are easily obtained.
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Figure 2. Results of comparison of segment angles and velocities for three locomotion types.

VI. CONCLUSIONS

We have demonstrated a new technique for analyzing and
quantifying the accuracy of a pipeline, and have shown how
this tool can be used to make a simple decision such as
deciding which thinning algorithm to choose in the imple-
mentation of a pipeline. This is a powerful metric that has
not existed before in the C. elegans community, and should
be used as a tool to measure and compare future pipelines for
accuracy. This can also be used in the tuning of pipelines for
more reliable results in the future. If research is published
with this metric, it would provide further confidence in
the results obtained with a pipeline, and allow for easier
comparison of data across different institutions by having an
independent measurement of the accuracy and confidence in
the data obtained on other locations.

REFERENCES

[1] J. Byden and N. Cohen, “Neural control of caenorhabditis
elegans forward locomotion: the role of sensory feedback,”
Biological Cybernetics, vol. 98, pp. 339-351, 2008.

[2] C. J. Cronin, J. E. Mendel, S. Mukhtar, Y.-M. Kim, R. C.
Stirbl, J. Bruck, and P. W. Sternberg, “An automated system
for measuring parameters of nematode sinusoidal movement,”
BMC Genetics, vol. 6, no. 5, February 2005.

3

—

W. Deng, S. S. Iyengar, and N. E. Brener, “A fast parallel
thinning algorithm for the binary image skeletonization,”
International Journal of High Performance Computing Ap-
plications, vol. 14, no. 1, pp. 65-81, 200.

[4

—

W. Geng, P. Cosman, C. C. Berry, Z. Feng, and W. R. Schafer,
“Automatic tracking, feature extraction and classification of
c. elegans phenotypes,” IEEE Transactions on Biomedical
Engineering, vol. 51, no. 10, pp. 1811-1820, October 2004.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-137-3

[5] J. Karbowski, G. Schindelman, C. Cronin, A. Seah, and
P. Sternberg, “Systems level circuit model of c. elegans un-
dulatory locomotion: mathematical modeling and molecular
genetics,” Journal of Computational Neuroscience, vol. 24,
pp. 253-276, 2008.

[6] R. Mailler, J. Avery, J. Graves, and N. Willy, “A biologically
accurate 3d model of the locomotion of caenorhabditis ele-
gans,” in Proceedings of The First International Conference
on Computational and Systems Biology and Microbiology
(BIOSYSCOM 2010), March 2010.

[7] E. Neibur and P. Erdos, “Theory of the locomotion of ne-
matodes: Dynamics of undulatory progression on a surface,”
Biophysics Journal, vol. 60, pp. 1132—-1146, November 1991.

[8] ——, “Theory of locomotion of nematodes: Control of the
somatic motor neurons by interneurons,” Mathematical Bio-
sciences, vol. 118, no. 1, pp. 51-82, 1993.

[9] G. D. Tsibidis and N. Tavernarakis, “Nemo: a computational
tool for analyzing nematode locomotion,” BMC Neuroscience,
vol. 8, no. 86, 2007.
[10] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and
D. B. Chklovskii, “Structural properties of the caenorhabditis
elegans neuronal network,” 2009. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:0907.2373
[11] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thin-
ning digital patterns,” Communications of the ACM, vol. 27,
no. 3, pp. 236-239, March 1984.
[12] R. Zhou, C. Quek, and G. Ng, “A novel single-pass thin-
ning algorithm and an effective set of performance criteria,”
Pattern Recognition Letters, vol. 16, pp. 1267-1275, 1995.

42



