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Abstract—This study aimed to develop a new informatics 
platform for the discovery, recovery and multi-level analysis of 
the effects of individual genes and multiple gene combinations 
on pathophenotypes of bacteria. Natural language processing 
algorithms were employed to extract gene-disease associations 
from PubMed literature and annotated genomes of bacteria 
with epidemic potential. From these associations gene virulence 
profiles were generated enabling the comparison of gene 
signatures within and across genomes. It allowed the 
identification of virulence genes and construction of their 
association networks as well as the detection of knowledge 
gaps. This proof-of-concept study confirmed the feasibility of 
our original approach for integrating bacterial genome level 
knowledge with published observations from clinical settings. 

Keywords: structural bioinformatics; whole genome analysis; 
text mining; infectious diseases; knowledge discovery 

I.  INTRODUCTION 
The exponential growth in whole genome sequencing has 

created new challenges for data integration and analysis. It 
has crucially increased the rate of discovery of associations 
between genes and diseases [1]. The mapping of 
relationships between genes and disease phenotypes has 
become possible due to synergistic advances in text mining 
and the availability of quality data and indexed text in the 
public domain. For example, online catalogs of human 
genome-wide association studies exceeded 700 publications 
linking genetic variations and diseases. 

Knowledge about the etiology and pathogenesis of 
diseases has increasingly been stored in literature and in 
databases, including sets of fully or partially annotated 
bacterial genomes [2]. Text mining approaches are gaining 
importance in the extraction and collation of data and text 
mining with bioinformatics databases [3-5]. In particular, 
significant progress has been made in building applications 
for the knowledge-based profiling of individual genes [6, 7], 
gene mining and mapping to diseases [8, 9] and mining 
complex features for predicting drug resistance [10]. These 

developments have drawn attention to the problem of 
diminishing returns of existing analytic approaches. The 
challenge of potential non-linearity in the mapping of 
genotypes to phenotypes and our ability to address it has 
been emphasized, with calls for an analytical retooling to 
address the combinatorial nature of gene-disease effects [11]. 
Bioinformatics techniques such as collapsing or binning have 
been borrowed from SNP-based genome-wide studies and 
applied to study human diseases that can be affected by 
multiple genes. However, microbial genome-wide 
association studies have not received due attention so far and 
bioinformatics applications for microbial genome analyses 
remain relatively underdeveloped. 

The infectious disease (ID) domain presents a new 
frontier of high-throughput sequence analysis adding 
another, pathogen-specific, dimension to genome and disease 
association studies. Early findings indicate that disease-
defining properties of pathogens are both multi-factorial and 
combinatorial [12] but further progress has been limited by 
the lack of analytical tools. The integrated microbial genome 
initiatives [13, 14] so far have focused attention on the 
alignment and comparison of genome sequences without 
linking sequencing data to ID attributes or clinical outcomes 
[15]. 

Whole genome sequence analysis has promised to 
improve the accuracy of ID risk assessment and the 
discriminatory power of tracking of outbreaks. Several new 
tools have been proposed to leverage these resources and to 
assist researchers with identification of genomic targets for 
vaccine and drug discovery [16] and the study of pathogen 
evolution [17]. Until recently, each gene or protein was 
studied as a single entity. However, new ‘omics’ 
technologies have allowed the analysis of large numbers of 
genes simultaneously and the generation of complex 
networks [18]. 

The aim of this study was to develop a new informatics 
platform for the discovery, recovery and multi-level analysis 
of the effects of individual genes and multiple gene 
combinations on properties of pathogenic bacteria. 
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II. METHODS 

A. Approach and Definitions 
The assessment of the impact of individual genes was based 
on searches for literature-based associations of genes with ID 
syndromes in order to separate key genes responsible for 
pathogenic phenotype of bacteria (‘drivers’) from non-
pathogenic genes of little consequences to bacterial virulence 
(‘passengers’). The working hypothesis was that virulence 
genes can be identified through the combination of virulence 
profiles, within and across bacterial genomes. Virulence 
profiles were generated from gene-disease associations. 

    The concepts of ‘core’ and ‘dispensable’ (or unique) 
genomes were considered [19]. The core genome consisted 
of the set of common genes conserved across all strains, 
encoding those functions necessary for the basic biology of 
the species. The dispensable genes contribute to the diversity 
within the species, including virulence, transmissibility, 
antibiotic resistance and niche adaptation [19]. Core genes 
were identified and the combined virulence profiles across 
species were compared to the virulence profiles of individual 
species. Core genes were also contrasted against genes that 
are unique to individual microorganisms. 
 

B. Data Sources 
The 2011 MEDLINE/PubMed Baseline Distribution was 
employed as the primary source of literature for generating 
gene virulence profiles. The 2011 baseline comprises 
10,891,200 citations that contain text from article abstracts. 
The citations were loaded into a Postgres Database 
Management System (DBMS) with associated full text 
indexes generated for the title and abstract. The text vectors 
were generated by the DBMS using a template for English 
that is based on the Porter stemming algorithm [20].  
      Fully sequenced genomes available through the National 
Center for Biotechnology Information (NCBI) GenBank 
[21] were employed for gene symbol and gene sequence 
location information for a number of bacterial genomes with 
pathogenic potential representing both Gram positive and 
Gram negative obligatory and opportunistic pathogens with 
the genome size of 3-4Mb and a range of core genome sizes 
(Table 1). 
      A list of syndromes associated with infectious diseases 
(108 items) was constructed as reported previously [22]. 
Names of syndromes included sepsis, pneumonia, 
meningitis, encephalitis, cellulitis, wound infection, and 
urinary tract infection, among others. However, ID 
syndromes uniquely associated with specific pathogens such 
as tuberculosis, malaria, dengue, etc. were excluded from 
the list to minimize the detection of trivial associations.  
 

C. Gene Symbol Classification 
Each PubMed abstract was indexed for mentions of a 
syndrome or species related gene symbol. The SPECIALIST 

lexicon [23] supported the identification of variants in 
nomenclature, spelling, and clinical abbreviations. 

TABLE I.  BACTERIAL GENOMES UTILISED IN THE STUDY 

Bacterial Genome GenBank 
Accession 

Proteins 

Listeria monocytogenes 4b F2365 AE017262 2821 
Mycobacterium tuberculosis H37Rv AL123456 3988 
Neisseria meningitidis 053442 CP000381 2020 
Pseudomonas aeruginosa PA01 CP000744 5566 
Salmonella typhi CT18 AL513382 4391 
Staphylococcus aureus MRSA252 BX571856 2650 
Streptococcus pyogenes MGAS6180 CP000056 1894 

        
The identification of gene symbols was performed using 

a combined search and classification strategy. A gene 
symbol classification model was constructed by acquiring a 
set of 5,003 unique gene symbols for training sourced from 
nine fully sequenced NCBI genomes. Inclusion in the 
training set comprised the following criteria. Gene symbols 
had to contain at least two out of three characters from the 
classes: upper case, lower case, and numeric. Gene symbols 
could not contain underscores or hyphens or were otherwise 
excluded. A full text search was performed for each of the 
symbols in the training set. As the full text search 
configuration collapses case, a further constraint was applied 
to ensure each gene mention in the abstract appeared with 
identical orthography.  

The rule extraction from each symbol’s contextual 
window utilized morphosyntactic and lexical features. The 
features were generated from a set of base templates. Base 
template classes employed to generate features included 
tokens either side of the symbol, tokens from both sides of 
the symbol, a function to determine whether the symbol was 
enclosed in parentheses, and a function to determine whether 
mixed case tokens were present in the context. Tokens used 
in feature generation through templates were lemmatized and 
had their orthographic case folded. 

An entropy maximization approach was employed to 
rank each contextual feature. The measure was calculated by 
determining the number of times each pattern co-occurred 
with gene symbols in relation to the total number of 
occurrences of the contextual pattern in the training corpus. 
The higher the entropy of the feature, the greater its 
contribution to the classification of a symbol. An evaluation 
of the approach is presented in the results section. 
 

D. Representation of Multiple Gene-Disease Associations 
A virulence profile was generated for each gene based on the 
co-occurrence between syndromes and individual pathogen-
specific gene symbols. The latter was defined as a gene 
symbol that co-occurs with a bacterial species name in the 
same document (e.g., Staphylococcus aureus AND dnaA). 
Co-occurrence was calculated using pointwise mutual 
information (PMI) [24]. The PMI formula (1) provides a 
measure of association where p represents probability, and 
both x and y represent terms. 

 PMI (x,y) = log2 ( p(x, y) / (p(x) * p(y)) )           (1) 
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The association measures for pathogen-specific gene 
symbols were employed in the generation of vectors 
intended to express virulence potential of a gene. The 
summation of individual vector components represented a 
gene virulence factor. Each gene’s vector was compared to 
every other vector in the genome, and across genomes, and 
similarities between expression vectors were estimated using 
a Euclidean distance measure [25]. 
 

III. RESULTS 

A. Gene Classification 
Our text mining strategy successfully extracted gene names 
and syndrome entities. For example, it differentiated the 
1,670,132 abstracts that contain the word stem year from the 
three abstracts that contained the gene symbol yeaR. 
      Let us illustrate the performance of our approach using 
the fully sequenced genome for Neisseria meningitidis 
053442 as an example. Specifically, it encodes the gene 
product porA (porin, class I outer membrane protein). A 
PubMed-wide search was initiated for all article titles or 
abstracts that contained the pathogen-specific symbol porA 
in association with any one of the 108 ID-related syndromes. 
The symbol porA was found to occur in 312 distinct articles, 
and the pathogen-specific form appeared in 175 distinct 
articles. A total of 2,079,834 distinct articles were found to 
contain any one or more of the syndrome terms. The terms 
co-occured in a total of 41 documents. Unsurprisingly in this 
case, over half of the associations could be attributed to co-
occurrence with a mention of some form of the syndrome 
meningitis. The PMI association scores between the 
pathogen-specific gene symbol porA and individual ID 
syndromes constituted a virulence profile. 
         The gene classification approach was evaluated using 
an independent test set. The test set was sourced from an 
additional three NCBI genomes. Gene symbols from these 
three genomes that were present in the training set were 
excluded. The test set contained 3,649 gene symbols in total, 
reduced to 1,271 once common genes were excluded. The 
search with exact match criteria produced 4,128 contexts 
from documents that contained a test set gene symbol. The 
approach correctly classified 4,032 of the 4,128 test set 
instances, achieving and overall accuracy of 97.67%. The 
largest source of errors originated from instances where the 
context contained never before seen tokens, a high 
proportion of punctuation characters, or no mixed case 
tokens that are often indicative of gene symbols. For 
example, the gene lys1 that is found exclusively in the test 
set and embedded in the following context was misclassified: 
 

(UGA), lys1-1' (UGA) [PMID: 782552] 
 
The contextual tokenization resulted in the following 4-token 
window either size of the target gene lys1: 
 

| ( | UGA | ) | , | lys1 | -1 | ' | ( | UGA | 
 

A number of suggestions for the remediation of these types 
of errors are presented in the discussion section. 

B. Genome-wide Virulence Profiling 
The first representation generated from the expression 
vectors resulted in a genome-wide virulence factor. Table II 
illustrates overall virulence factors for bacterial genomes that 
have been calculated by summing the PMI ID-association 
scores for each pathogen-specific gene within a genome. 

TABLE II.  TOTAL VIRULENCE FACTOR PER MICROORGANISM 

Bacterial Genome Total No. of 
Genes 

Virulence 
Factor (bits) 

Listeria monocytogenes 4b F2365 756 78.95 
Mycobacterium tuberculosis H37Rv 1672 371.04 
Neisseria meningitidis 053442 869 183.16 
Pseudomonas aeruginosa PA01 1736 810.92 
Salmonella typhi CT18 2558 332.07 
Staphylococcus aureus MRSA252 782 369.39 
Streptococcus pyogenes MGAS6180 776 340.81 

 
Genome-wide virulence profiles for individual genes can 

be presented in a circularized form (Figure 1) to reflect the 
exact position of genes in a genome and identify most 
commonly reported genes of an individual bacteria 
(Neisseria meningitidis in this case) that have been 
associated with clinical presentations or adverse outcomes of 
ID. These profiles were generated by plotting each gene’s 
frequency of co-occurrence with ID-syndromes in the 
literature. 

 

 
Figure 1.  Genome-wide virulence profile for Neisseria meningitidis. 
Individual gene frequency of co-occurence with ID syndromes in the 
literature are plotted according to each gene’s location in the genome. 

1) Potential Knowledge Gap Identification 
Core genes were determined and visualized by plotting the 
virulence profile for each of the genes that were common 
across multiple genomes (Figure 2). Such virulence profiling 
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contrasts core genes that have been associated with 
pathogenicity in one (e.g., leusS, miaA) or several (e.g., 
murE, mutL) bacterial species. 
 

 
Figure 2.  Core Gene Virulence Factor Comparison. A side-by-side 
comaprison of gene virulence factors for a fragment of alphabetically 

sorted genes common across selected genomes. 

       Gene virulence profiles were subsequently employed to 
identify potential gaps in the knowledge regarding a gene’s 
impact on ID outcomes. The process was initiated by 
identifying common genes across all selected genomes. This 
set of genes was then restricted to those that contained at 
least one positive expression value in any genome. Each of 
the residual genes was plotted against its respective total 
(across-genome) virulence profile. For example, a striking 
discrepancy was identified between a high frequency of 
associations of many genes of bacteria with ID syndromes 
and the lack of those in the Staphylococcus aureus genome 
(Figure 3). Specifically, this observation suggested two 
knowledge gaps may exist for our understanding of ftsZ and 
glyA gene functions in the genome of S. aureaus (Figure 3). 
Interestingly, ftsZ gene has been associated with virulence 
properties of other bacteria due to its role in the synthesis of 
the protein tubulin that participates in replication of toxin-
encoding plasmids [26]. Glycinecin gene (GlyA) has been 
also identified as a putative virulence gene in other bacteria 
because of its involvement in the synthesis of bacteriocins 
[27]. 
 

2) Identification of key virulence genes  
The first approach to identifying drivers involved the 
identification of common genes. The simplest determination 
of a driver gene could be defined as a gene that is common 
across genomes and expresses an above-average overall 
virulence factor. This approach implicates the genes dnaK, 
eno, folD, ftsZ, and glyA amongst others as can be seen in 
Figure 3 as their virulence factors fall above the overall 
across-genome average indicated by the horizontal line. 

The next approach to driver gene identification resulted 
in a network-based linkage analysis. The analysis was 
performed to detect combinations of genes that are typically 
associated with syndromes. The visualization of relationships 
between individual genes in Figure 4 shows links that are 

formed between genes within the Listeria monocytogenes 4b 
F2365 genome. Edge weights reflect the strength of 
association between gene virulence profiles. This network 
representation (Figure 4) also highlights indirect 
relationships between some genes (e.g., plcB and prfA 
through actA) and identifies highly connected virulence 
genes of particular relevance for the virulence assessment 
(e.g., actA and prfA). The actA gene, which is involved in the 
synthesis of bacterial protein actine, presents a compelling 
example of a ‘driver’ gene. A literature review, conducted 
following our experiments, confirmed the actA gene of 
Listeria monocytogenes has been a key player in several 
biological mechanisms relevant to virulence, such as in 
escaping from vacuoles, undergoing intracellular growth, 
and spreading to neighboring cells in cell cultures [28]. 

 

 
Figure 3.  Gene Virulence Knowledge Gap Identification. Represents the 

virulence profiles for a fragment of core genes for the species S. aureus 
(vertical bars) in relation to the combined virulence profile across all 

genomes (line plot). The horizontal line represents the average virulence 
score of the combined virulence profiles. 

3) Combinatorial effects of virulence genes  
Similarities between virulence profiles were also compared 
both within and across microbial genomes in order to link 
individual genes with each other when they were found to be 
associated with ID syndromes. Figure 5 illustrates our 
approach to matching virulence profiles of individual genes 
within and between bacterial genomes. It seems to make 
more explicit the potential indirect links between genes of 
different function and origin that could be clustered 
according to their virulence. The links across the top of 
Figure 5 represent within-genome gene virulence similarity 
and the links across the bottom reflect between genomes 
similarity. Common or core genes were color coded in blue 
and genes unique to the genome of S. pyogenes were coded 
in red. Gene names in black represented house-keeping 
genes that could be found in several different bacterial 
species from our dataset.  
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Figure 4.  Gene virulence networks for L. monocytogenes. All pairs of 

gene expression vectors within each genome are compared and connected 
if their virulence profiles are similar. 

4) Relative Impact of Unique Genes 
The relative impact of unique or disposable versus core 
genes significantly differed between bacterial genomes in 
our dataset. This difference could be explained by their 
different propensity for lateral gene transfer. Table III lists 
the virulence factors for genes that are unique to each 
genome when compared against the remainder of genomes 
listed in the table. The table quantifies the aggregated total 
virulence factors for unique versus core genes for each 
species. There are a total of 202 core genes across all 
species. The number of core and unique gene occurrences 
per species are listed separately. 

TABLE III.  COMMON AND UNIQUE GENE VIRULENCE FACTORS PER 
MICROORGANISM 

Genes Virulence 
Factor (bits) Number of Genes Bacterial Genome 
Core Unique Core Unique 

L. monocytogenes 4b F2365 15.97 11.65 210 131 
M. tuberculosis H37Rv 53.86 203.55 217 942 
N. meningitidis 053442 14.81 54.84 205 153 
P. aeruginosa PA01 102.13 367.60 208 719 
S. typhi CT18 19.63 173.03 206 1408 
S. aureus MRSA252 112.31 153.47 208 232 
S. pyogenes MGAS6180 68.82 124.60 210 261 

 

IV. DISCUSSION 
Omics-based medicine demands significant re-tooling for 
continuous re-assessment of evidence for genome-phenome 
associations. The methods presented in this study can 
facilitate identification of combinations of genes within and 
across annotated bacterial genomes, differentiation of key 
virulence genes from genes of limited clinical relevance, 
detection of potential knowledge gaps, and measurement of 
the relative impact of individual genes and gene 
combinations. The methods are based on a set of tools and 
resources that comprise a large text corpus with full text 

search capabilities, a gene symbol classifier, and techniques 
for gene virulence profiling through literature-based 
association mining.  

A key innovation in this work resulted from the 
establishment of literature-based pathogen-specific ID 
association measures spurred by a novel approach to 
increasing the specificity of gene symbol retrieval. For 
example, our text mining strategy differentiated the 171,203 
PubMed mentions of the different forms of the indexed token 
mode from the 14 mentions of the gene symbol modE. 

The transformation of our text mining measures into 
vectors that expressed gene virulence profiles led to a 
number of applications. The virulence profiles were applied 
both genome wide and across genomes. This resulted in the 
ability to identify combinations of genes that share virulence 
profiles. Comparing genome-wide gene profiles with overall 
virulence profiles across genomes also identified potential 
knowledge gaps. The next application identified potentially 
hidden driver genes indirectly linked by other genes that 
expressed similar virulence profiles.  
 

 
Figure 5.  Within and between genome expression profile macthing. Links 
across the top represent genes that have similar expression profiles within 

the genome S. pyogenes. Links across the bottom represent genes with 
similar expression profiles across all genomes.  

The novel approach taken to gene classification, as 
opposed to recognition, greatly improves search specificity. 
A number of further modifications have been discussed 
previously including a corresponding version of the feature 
generation templates that preserve case, and experiments 
with varying context-window sizes.  Other potentially useful 
feature types include unlemmatized tokens, morphological 
analysis to inspect affixes, and semantic type analysis.  

However, some potential limitations of the study have to 
be acknowledged. One of the major limitations to the gene 
classification evaluation and approach in general is the 
absence of negative examples. A possible solution to this 
problem could come in the form of leveraging examples 
from a text genre outside of the biomedical domain. 
Importantly, the aforementioned strategy does not eliminate 
false negatives that are collected by the search for gene 
symbols that are presented using a single orthographic case, 
particularly problematic are those that overlap with common 
English words such as era, lip, map, and trap. In order to 
combat this issue the abstract text for each article found to 
contain a gene symbol mention was tokenized and a four-
token window either side of the symbol was extracted. 
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Training set gene symbols were found to occur in their exact 
form in 102,399 articles. Although not applied to this work 
the exact matching constraint employed to extract context 
could be relaxed to allow variants of gene symbols and 
capture other gene products. A number of adjustments to the 
classification algorithm could be made to redress potential 
limitations. For example, a parallel context could be 
constructed that excludes punctuation characters. Composite 
approaches are conceivable given the relatively high 
incidence of parenthesized gene symbols (11,296 out of 
102,398 training instances). Another parameter that could be 
adjusted in future experiments is the context window size. 
 

V. CONCLUDING REMARKS 
This proof-of-concept study confirmed the feasibility of our 
original approach for integrating bacterial genome level 
knowledge with published observations from clinical 
settings. It opens a new opportunity for real-time assessment 
of virulence of bacterial genomes and for identification of 
high-impact genes and their combinations. Further ‘wet lab’ 
experiments are required to validate the utility of the 
knowledge gap detection function. 

This work has culminated in an online toolset that 
enables researchers to explore, recover, and potentially 
discover new insights into microbiological mechanisms that 
contribute to infection. An online implementation of this 
work can be accessed from http://purl.org/infectious/genome. 
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