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Abstract—The development and use of applications based
on peer-to-peer (P2P) networks have exponentially grown in
the last years. In fact, the traffic volume generated by these
applications supposes almost the 80% of all the network
bandwith nowadays. For this reason, the interest of Internet
Service Providers (ISPs) for classifying this large amount
of traffic has also grown in a considerable manner. In this
context, the present paper describes two detection algorithms
for eDonkey services. The first one is aimed to detect eDonkey
flows. It is based on the hypothesis that clients that begin
connections are in charge of sending the information. The
second algorithm has been developed to detect nodes that
generate eDonkey traffic. It is based on the hypothesis that
the up-rate of these nodes follows a constant pattern along
the time. Both detection algorithms have been proved in three
different groups of network traces. As a result, our detection
hypothesis is checked. Additionally, the experiments carried out
show that the proposed algorithms have a high classification
rate and a low false positive rate.
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I. INTRODUCTION

The development and use of applications based on P2P
networks have exponentially grown in the last years. Nowa-
days, several examples can be found: eMule or uTorrent, as
file sharing applications, Skype, as voice over IP application,
and Spotify, as audio flow sharing.

Traffic generated by P2P applications consumes around
80% of all the network bandwith [1]. This enormous use of
available bandwith requires the allocation of a considerable
amount of resources to guarantee the quality of the provided
services.

The ability of classifying the P2P traffic is a key issue
to ISPs, as they are forced to increase the maintenance
operations due to this excessive growth in the use of P2P
services [2].

Traffic classification methods can be divided in three
approaches: (i) based on port, (ii) based on packet content,
and (iii) based on flow features. Current P2P applications
can receive connections in any port and encrypt the content
of its messages. This feature makes the classifications based
on port and packet content difficult.

The classification methods suggested in this paper are
based on flow features, and are used to detect eDonkey
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traffic, a communication protocol of P2P networks mainly
used in file sharing applications such as eMule or aMule.

Two new detection heuristics are proposed: node detection
based on up-rate, and flow detection based on inversion of
download direction.

Node detection based on up-rate relies on the next two
assumptions: (i) users of eDonkey-based applications limit
the up-rate, and (ii) the up-rate is approximately constant
around this limit established by the user.

The proposed flow detection method assumes that those
nodes with eDonkey traffic that, under certain conditions,
establish a connection will send the majority of the infor-
mation. This behavior is radically opposite to the common
client-server paradigm, in which clients establish connec-
tions and servers send the required information.

The rest of the paper is organized as follow: In Section
II, some relevant papers in the field of traffic classification
are presented, the novelty of the present contribution being
remarked. In Section III, some specially relevant concepts
regarding eDonkey are exposed. The proposed heuristics
to detect nodes and flows in eDonkey-based services are
detailed in Section IV, presenting Section V the experimen-
tal framework considered. In Section VI, the experimental
results obtained are shown and discussed. Finally, in Section
VII, principal conclusions of this work are drawn.

II. RELATED WORK

In the specialized literature, three kinds of classification
methods can be found: (i) based on well-known ports, (ii)
based on packet content, and (iii) based on flow features.
T. Karagiannis et al. [3] assure that classification methods
based on well-known ports are not valid to detect P2P traffic
nowadays. On the other hand, methods based on packet
content imply legal issues related to privacy and thus, their
field of application is enormously reduced.

There exists a huge amount of papers proposing classifi-
cation methods based on flow features analysis. A relevant
example is BLINC [4], a classification tool based on the
assumption that a host can be associated with an application
responsible to generate the majority of its traffic volume. In
the same manner as BLINC, we also propose here a node
classification method.
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Another possibility is to classify only a subgroup of
existing protocols. This is the most common approximation
in the field of P2P classification. An example of this we
present the work of T. Karagiannis et al. [3], this is the first
work that tries to classify encrypted P2P traffic in random
ports without inspecting packet payload. The classification
is based on connection patterns of P2P networks. Our
classification methods also detect P2P encrypted traffic in
random ports.

Xu et al. [5] propose a method to identify P2P traffic
based on the data transfer behavior of P2P applications. The
authors assure that the downloaded data by a node will be
subsequently uploaded to another node in the network. Thus,
flows that download and upload the same data blocks will
be identified as P2P flows. The heuristics proposed in the
present paper are also based on the data transfer behavior of
P2P applications. As we will show in Section IV there exist
several differences with respect to the work of Xu et al.

Finally, there exist some targeted at classifying a single
protocol. As an example, Bonfiglio et al. [6] detect real
time Skype traffic exploiting the randomness introduced at
the bit level by the encryption process to detect Skypes
fingerprint from the packet framing structure. In our case,
the classification also aims at classifying only the eDonkey
protocol.

III. GENERAL CONCEPTS OF THE EDONKEY PROTOCOL

The eDonkey protocol was designed to communicate
nodes belonging to a hybrid P2P network composed by
server and client nodes. Servers are in charge of giving
access to the network and managing the information dis-
tribution in a similar manner to a dictionary, i.e., they store
the correspondence between resources and the nodes sharing
them. On the other hand, clients are the nodes that share
data, and they store the resources of the network.

In the following, a brief description of eDonkey-based
communications, with special interest in the aspects used in
the present paper, is provided. To do this in a structured
manner, we explain the process followed by a client to
download a resource from the network.

A. Client to server connection

The first step to download a resource from the network
is to connect to an eDonkey server. This connection can
be divided in two steps: (i) TCP connection from client to
server, and (ii) server challenge. To carry out this challenge
the server also tries to establish a TCP connection with the
client. This connection allows to discover if the client is able
to receive connections from other clients of the eDonkey
network. If the challenge is passed, the client will receive an
identification called high ID; otherwise, it will receive a low
ID. Thus, a high ID client can directly receive connections
from other clients in the network, while a low ID client can
not.
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Once a client has accessed to an eDonkey server, it can
look for resources by describing them with certain key
words. The requested server will respond with a list of
related resources. Subsequently the client requests one or
several of them to be downloaded, and finally he will receive
a response with a list of clients that share the requested
resource.

B. Client to client connection

It is necessary to carry out client to client connections in
order to download any resource from the network. However,
a client with a low ID can not accept connections. To solve
this, there exists a procedure in the eDonkey protocol called
callback. If a client wants to connect to a low ID node,
it has to send a callback message to the corresponding
eDonkey server. This server will resend, through a previ-
ously established connection, the callback to the low ID
node who will begin a new connection. This mechanism does
not solve the case in which both nodes are low ID because
none of them are able to accept external connections.

C. Downloading of a shared file

Downloading a shared file in eDonkey protocol consist of
two steps: (i) entering the reception queue, and (ii) starting
the download. Firstly, a client A requests a file to a client
B. B answers by sending the position in which this request
is stored in its queue. Secondly, when this request reaches a
position in the queue to be served, B sends a message to A
indicating this new state so that the download process starts.

The most common situation in a download process is that
a request from client A has to wait a considerable time to be
served. Thus, after a fixed time (around 40 seconds in our
experiments) client B closes the connection with client A. B
will establish a new connection when the request from A is
able to be served. As detailed in Section IV, this behavior
will be used in our flow detection method.

IV. DETECTION HEURISTICS

Two detection methods of eDonkey protocol are now
proposed: node detection based on up-rate and flow detection
based on inversion of download direction. These methods
can work together: firstly, a node detection indicates those
nodes that generate eDonkey traffic and, subsequently flow
detection determines specifically eDonkey file sharing flows
of the detected node.

The detection heuristics used in both methods are ex-
plained in the following.

A. eDonkey flows detection

The first heuristic is aimed to detect eDonkey flows based
on the hypothesis that clients that begin connections also
send the majority of the data over that connection. As
explained in Section III, this is the most common situation
in any download process of a shared file in eDonkey.
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Figure 1. Calculation of Kullback-Leibler distance in time.

In client-server applications, servers usually send the
majority of the data after a connection is started by a client.
This behavior is reverse to that of eDonkey protocol, and this
is the reason because we propose to use the next hypothesis
to detect eDonkey flows:

Hypothesis 1. eDonkey flows are those in which clients who
begin the connection send substantially more information
than they receive.

Note that this heuristic is only valid for file sharing flows,
and not in the case of signaling flows. File sharing flows are
specially relevant because they are the principal responsible
of congesting the bandwidth of a network.

The proposed detection method has been developed to
be executed over offline traces. eDonkey flows are those
where the number of bytes sent by clients (who begin the
connection) are greater than the number of bytes received
plus a threshold, T'hresp. This threshold is experimentally
determined by means of a study of the size distributions in
file sharing flows of the eDonkey protocol.

The selection of the threshold to be used in this method is
not critical, as we argue in Section VI, because the difference
between sent and received bytes in file sharing flows is really
noticeable.

B. eDonkey nodes detection

Here we expose a method to detect nodes which are
generators of eDonkey traffic.

The proposed method is based on the assumption that
users of P2P file sharing applications usually limit their up-
rate. This is due to the fact that these applications consume
the majority of the upload bandwidth, and consequently
users that use them without a limitation in the up-rate suffer
a decrease in the quality of their normal Web browsing.

The mentioned constant rate supposes a differentiating
feature allowing the detection of these nodes. In conclusion,
the proposed hypothesis is defined as follow:

Hypothesis 2. Nodes generators of eDonkey traffic are those
whose up-rate is quasi-constant.

To apply the previous hypothesis it is necessary to detect
a quasi-constant level in the up-rate of a node. We take as a
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reference the work of J. Ramirez et al. [7], in which they use
the Kullback-Leibler (KL) divergence to detect voice activity
in audio signals. This detection is aimed to determine the
specific instant at which an evaluated audio signal changes
from only noise to contain human speech, or vice versa.
Authors use KL divergence to detect changes in mean and
variance of audio signals. In our case the KL divergence
is used to detect the absence of significant changes in the
up-rate of a node (quasi-constant up-rate).

The KL divergence can be described as an indicator of
the similarity between two probability distributions. In the
case of two Gaussian distributions p;, and pg is defined as
(taken from [7]):
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where or y o, represent standard deviations of pr y pr,
and pugr y p their means.

The KL divergence is not symmetric, and thus we will use
the KL “distance” pr.p = H(prl||pr) + H(pr|[pr). In the
case of Gaussian distributions it is defined as (taken from

(7D:
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The proposed detection method can be described as
follows (Algorithm 1). Firstly, up-rate values are calculated
every t seconds. A median filter [8] of length IV is applied
to the resulting values. This filter takes a window of length
N and sorts some values extracting the central one.

Secondly, the means and variances of the filter values
are calculated by means of two consecutive windows (vy y
vp) of length N (see Figure 1). The Gaussian distributions
represented by these means and variances should be very
similar if there exists a quasi-constant up-rate. Therefore, the
KL “distance” (Equation (2)) computed from these means
and variances should be minor than Thresgy, to represent
a constant up-rate. If a constant rate is detected, our method
will classify the corresponding node as an eDonkey traffic
generator.

V. EXPERIMENTAL FRAMEWORK DESCRIPTION

Three groups of network traces have been used to carry
out the experimentation related to the proposed methods of
eDonkey traffic detection. In the following, the principal
features of these traces are exposed.

o Controlled environment traces (CE). The traffic gen-
erated by 5 users during 72 hours were collected. In
this period, they used aMule version 2.2.6 and shared
the same 10 files. The eDonkey server to which they
connected was se-Master Server 1. They limited the
up-rate of aMule to 30kB/s. All of them used their PCs
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Algorithm 1 Node detection
1: for node = 0 while node < num_nodes do
2: for i =0 while ¢ < len(up_rate,oq.) do
3: rate_filtpoqe < median_filt(up_ratenoge, N)
4 vy < rate_filtnodeli : i + N]
5: vp < rate_filtpode[i + N +1:i+ 2N + 1]
6: pL.rli] < Equation(2)
7
8
9

if pr r[i] < Thresk AND pp different to 0 then
return eDonkey node

: else
10 return Not eDonkey node
11: end if
12: t<=1+1

13:  end for
14:  node < node + 1
15: end for

and Internet connection without restrictions. Every user
generated around 19,000 connections of the eDonkey
protocol and more than 7,000 of other protocols like
DNS, HTTP, SSH and SMTP.

e HTTP server traces (HS). This collection of traces
represents the traffic generated by an HTTP server from
an European University during 7 days. The server is
Apache version 2.2.0 and receives a mean of 8,971
connections per day.

o University trunk traces (UT). All the traffic of a trunk
from a Middle East University during 48 hours com-
poses these traces. There are around 73,000 IPs, 300
millions of packets transmitted, and the most common
protocols that appear are: Bittorrent, HTTP, DNS, SSL,
and FTP. After the analysis of the entire database by
means of a packet inspector application (OpenDPI
[9]), very few eDonkey packets have been detected.
This is due to the fact that the P2P file sharing appli-
cations used in this Middle East University are based
on Bittorrent protocol instead of on eDonkey.

VI. EXPERIMENTAL RESULTS

The experimentation carried out for both detection meth-
ods is focused on a double aim: (i) To study if the presented
hypotheses are valid through the evaluation of detection and
false negative rates obtained in CE traces, and (ii) to analyze
if these hypotheses present low false positive rates for other
protocols through HS and UT traces.

Following, the obtained results for flow and node detec-
tion methods are analyzed.

A. eDonkey flows detection

First of all, to execute the eDonkey flow detection method
it is necessary to determine the value of threshold the
Thresp, which is the maximum difference allowed between
the number of the sent and received bytes to consider the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

Table I
DETECTION RATE OF FLOW DETECTION METHOD IN UT TRACES.

[ | Detection rate | Detected flows [ Total flows ]

BitTorrent 0.0256 854 33,304
HTTP 0.01691 50,795 3,003,161
FTP 0.01423 35 2,460
SSL 0.01244 2,808 225,685
IRC 0.00213 7 3,281
Oscar 0.00079 2 2,528
DNS 0.00001 8 1,508,413
Mail_POP 0.00000 0 5,208
All 0.01139 54,509 4,784,040

evaluated node as not generator of eDonkey traffic. The
results of a study of the detection and false positive rates
in function of Thresg in the three groups of traces indicate
that there exists a wide range (between 5 and 25kB) to select
this threshold in which the success of the method is very
similar. Specifically, the threshold selected is 10kB.

In the present experiment another assumption has been
applied. An eDonkey node download or upload files from or
to more than one peer simultaneously. Thus, we can suppose
that eDonkey flows coincide temporally with other eDonkey
flows.

CE traces contain 37,089 file sharing flows of eDonkey
protocol. 28,016 of them have been detected, which implies
a detection rate of 77.53%. None of the flows belonging to
other protocols different to eDonkey have been detected (0%
of false positives). Finally, there exists a considerable false
negative rate: 22.47%. This is mainly due to two factors:

1) Low ID in some of the ends. Nodes with low ID can
not accept connections from other peers of eDonkey
network and, for this reason, they always begin the
connections, independently of being server or receiver
of the information. This situation is not valid in the
proposed detection hypothesis.

2) Service without an intermediate close of connection.
A request of a resource could be served without an
intermediate close of the initial connection (explained
in Section III). In this case, the number of bytes
received are greater than the sent.

Therefore, the proposed detection method is able to detect
file sharing flows of eDonkey protocol between high ID
nodes and with an intermediate close of connection (the most
common situation, as we mentioned in Section III).

The results obtained from HS traces show that none of
the 62,798 HTTP flows have been detected as an eDonkey
flow, which represents a 0% of false positive rate.

Flows from UT have been labeled through the execution
of a modification of OpenDP1I, an application that performs
deep packet inspection [9]. We take this labels as ground
truth and compare the results of our detection method with
it obtaining the results shown in Table I.

The principal contribution in false positve rate corre-
sponds to bitTorrent protocol. This protocol is also used in
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Figure 2. Typical up-rate of a monitored node from CE traces.

P2P file sharing applications. However, a principal difference
with eDonkey is that bitTorrent flows are bidirectional, so
both peers send information to the other in the same flow
and it can occur that clients that begin a connection send
more than they receive. In the same manner, FTP flows
were detected because clients frequently send more data than
servers do.

Finally, it is remarkable the false positive rate associated
to the HTTP protocol, because none of the flows in HS
traces were detected while UT traces represent a 1.69%.
After a detailed study we conclude that these false positives
are mainly caused by three factors: (i) high length of
cookie and URL in HTTP GET messages, (ii) very short
server responses, 304 (Not Modified), and (iii) HTTP POST
sending a big amount of data. This is the case of using the
Web 2.0 philosophy, but it has no significant influence in
our detection method nowadays.

B. eDonkey nodes detection

The second detection hypothesis is validated with CE
traces, as we can see in Figure 2, in which the up-rate of
a monitored node is shown. During the 72 hours of traces
there exists a quasi-constant behavior around 30kB/s, the
limit fixed in the experiment.

The up-rate suffers several descents of low duration. These
descents correspond to instants at which the monitored
client stops sending data to a peer in order to begin the
transmission with another one. The churn [10] (independent
arrival and departure by peers) is extremely high in P2P
networks, so the mentioned situation is frequent.

In CE traces, a 38.7% of flows belong to other protocols
different to eDonkey, the most common being DNS, HTTP,
SSH and SMTP. This is represented in Figure 2 as instants at
which the up-rate limit fixed in the experiment is exceeded.
So, these instants are due to additional network activity to
eDonkey traffic.

In Figure 3, the up-rate of a user in CE traces during the
first hour of the capture is shown. The up-rate presents two
well defined sections: near to zero, and around 30kB/s. Dur-
ing the first 30 minutes the up-rate is near to zero because
only a few nodes know the existence of the monitored peer.
After that, we can observe the mentioned constant behavior
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Figure 4. Up-rate of HTTP server (HS trace) during 24 hours.

around 30kB/s. The up-rate filtered is also presented in the
same figure, which allows us to appreciate the suppression
of values that extremely deviate from the expected ones.

Finally, the KL distance is also presented in this figure and
is divided in three parts: two sections near zero, separated
by a clear increase of the KL distance. KL. distances near
zero represent the constant up-rate sections, and a relative
maximum of the KL distance indicates a change in the up-
rate distribution. The second section of the near zero KL
distance will be identified as generated by an eDonkey node
because it presents a constant up-rate different to zero.

Additionally, a study using all the network traces has been
carried out to select a value for the threshold Thresky,
and a length of the window, N, for the median filter and
the KL distance. There exists a wide range of Thresky,
values that present a high detection rate in CE traces and a
low false positive one in UT and HS traces. This range is
[102,10%] and the value for Thresg finally selected was
8,000. On the other hand, the selected value for N was 5
minutes because this is the minimum burst of constant traffic
to be detected as generated by an eDonkey node. Bursts
of traffic from eDonkey nodes with a duration less than 5
minutes are not interesting in this work, because we try to
detect nodes with a substantial consumption of bandwidth
network.

The execution of nodes detection method in CE traces
indicates that these nodes are classified as generators of
eDonkey traffic during a 86.10% of the monitored time. The
rest of the time is mainly constituted of instants at which
clients stop to share with certain client and consequently
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their up-rates will not be constant.

Finally, the up-rate of HTTP server has also been ana-
lyzed. As we see in Figure 4, the up-rate do not present a
constant behavior, so this node was classified as eDonkey
generator only a 1.687% of the total monitored time (168
hours in total).

VII. CONCLUSIONS

In this paper, two methods to detect eDonkey traffic
without inspecting packet payload have been proposed: (i) an
eDonkey flow detection and, (ii) an eDonkey node detection.

The experimental results obtained allow us to conclude
that the proposed detection hypotheses are acceptable in
the case of eDonkey protocol. Moreover, both detection
methods present a high classification rate and a low number
of false positives. Finally, we specify that the eDonkey
flow detection process is valid for file sharing flows from
eDonkey nodes with high ID.

Additionally, in a near future we plan to raise two work
lines:

« To combine the information obtained by both methods
in order to increase the detection rate and to reduce
false positive rate.

o To explore the possibility of detecting other P2P pro-
tocols used in file sharing applications, e.g, Kademlia
or BitTorrent, through the execution of the second
method (eDonkey flow detection). We think that this
method could detect protocols used in P2P file sharing
applications because they saturate the up-rate of users
and that implies the necessity of a limitation.
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