
An Empirical Study of MPI over PC Clusters

 Fazal Noor*, Majed Alhaisoni*, Antonio Liotta+
*Computer Science and Software Engineering Department

University of Hail, Saudi Arabia
+Department of Electrical Engineering and

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

The Netherlands
f.noor@uoh.edu.sa, majed.alhaisoni@gmail.com, a.liotta@tue.nl

Abstract — Message Passing Interface (MPI) is an important
mechanism in P2P. Herein we assess how different types of
MPI collective communication functions perform on a Gigabit
Ethernet Homogeneous Beowulf PC cluster. In this way we
provide an insight on the factors that affect P2P applications
over an enterprise context such as the emerging Cloud-based
services. By contrast to the literature, which includes mostly
theoretical studies, we carry out an empirical study. We show
that the bahaviour of scatter and gather are most
unpredictable in comparison with other collective functions.

Keywords - MPI benchmark, Homogeneous PC Cluster,
Ethernet, Collective Communications, Latency, Bandwidth, All-
to-all, Gather, Scatter, Broadcast.

I. INTRODUCTION

 In recent years Peer-to-Peer (P2P) networks have
become an active area of research [1]-[4]. Traditional
networks use the client/server paradigm where dedicated
servers offer clients services. P2P networks are
characterized by all peers having the capability of both
being a client and a server. P2P networks can support many
applications such as sharing of resources, e.g.
communication services, file sharing, query search,
distributed computing, etc.
 In P2P topology, MPI (Message Passing Interface) is
considered as a common communication protocol for
various P2P systems. Therefore, it is considered as a good
mechanism with its goals are to have high performance,
scalability, and portability. Having low delay with
reasonable throughput is important for computing clusters,
due to a lack of shared memory implies large amounts of
network data transfer. However, portablility is very
important for MPI. The scalability of MPI is mainly due to
MPI being the real standard in distributed computing.
 In this paper, a simulation of P2P is done using MPI
collective communications routines on a PC cluster to
measure and evaluate the performance of P2P system. A

homogeneous PC cluster is defined as one having identical
hardware (including network hardware such as switches)
and operating system on all the machines in the network. It
is considered heterogeneous if PC hardware and/or software
is different from each other in a cluster. One of the reasons
to study homogeneous PC cluster is to gain insight into the
behaviour of collective communication models used as
models usually are made under the assumption of
homogeneity. The objective of this paper is twofold, first to
study how a variety of MPI communication models perform
over PC clusters. Second, we define and measure in
practical settings the execution time of Ethernet networks.
We pinpoint the overheads and how these affect link
efficiency.
 Among all technologies, including Infiniband [5],
Quadrics [6], and Myrinet [7], we have decided to focus on
Ethernet which is readily available for experimentation.
 The paper is organized as follows, in Section II some
related work is presented. In Section III experimental
methods are presented and in Section IV the results are
presented. Section V contains discussion of the results
presented. Finally in Section VI conclusion and future work
is presented.

II. RELATED WORK
 There has been a lot of work on MPI communications
performance of PC cluster. Most of work is performed on a
heterogeneous Beowulf PC clusters. In our work we focus
on studying the performance of MPI collective
communications on homogeneous Beowulf PC cluster
consisting of 20 identical machines. In [9] the authors have
used MPIBench a software for benchmarking the
performance of MPI functions using a highly accurate,
globally synchronized clock. In [10] the authors have
developed a MagPIe library which optimizes MPI’s
collective communication and have used a LogP model for
short messages and LogGP model for long messages (Table
1). In [11] a nice comparison is made among the common

65Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

parallel communicaton models appearing in the vast
literature, such as Hockney, LogP, LogGP, and PlogP. All
these models appearing in the literature make an assumption
of a homogeneous environment and are listed in Table 1
[11].

Table 1: Common Communication Models

Model Time Parameters

Hockney T = l + m/b l : is latency of network
b: is bandwidth

Log P T= o + (k/w -1)*max
(g,o) + L + o

o: overhead time to transmit or
receive
g: gap min time interval
between message
p: number of processors
l: upper bound on latency
k: number of bytes in a
message
w: size of the network package
in bytes

Log GP T= o + (k-1)G + L + o G: gap per byte for long
messages

P Log P

Same as Log P but
with each parameter
being dependent on
message size.

Same as Log P but dependant
on message length m
L: end to end latency

However analytical models can not truly replace actual
performance measurements. In our work we present
empirical results of the MPI collective communication
routines. Such functions provide insight to communicating
on both wireless and wired Peer-to-Peer systems.

III. EXPERIMENTAL METHODS

A. Performance Measurement
 The factors which affect performance are many and may
be listed as:

1. Hardware related: CPU clock speed and number of
CPUs on motherboard, memory, and network
adapters.

2. Network related: Type of hardware, cable, fast-
ethernet, switches, and routers. Protocols used
TCP/IP, UDP/IP and others.

3. Software related: Operating system type, user
buffering, kernel buffering of data, types of MPI
routines used for example collective
communications. MPI eager and rendezvous
protocols, efficiency of algorithms, and polling or
interrupts.

From the above we can define execution time as a function
of both hardware and software. Execution Time will be a
function of topology, number of nodes, message size,
switch, router, network adapter, type of algorithm, link type,
overhead computer and operating systems, physical
medium, MPI related, TCP/IP related, and Ethernet related.
This is indeed a very complex function in which latencies of
both hardware and software have to be considered. Hard

disk, RAM, and cache access times with network interface
card, PCI, and PCI Express transportation times need to be
considered in calculation of execution time. Also the
latencies of network devices should be considered such as
the switches which are in the 2 to 20 µsec range [8]. In
routers the processing delay due to software processes
would be considerably higher. DSL or Cable internet
connections have less than 100 milliseconds (ms) delays but
less than 25 ms are desired. Satellite Internet connections
have an average of 500 ms or higher latency. The peak
theoretical bandwidth of a network connection is fixed by
the technology used but the actual throughput (bandwidth)
varies with time and is affected by high latencies. Excessive
latencies on the network causes bottlenecks that hinder flow
of data therefore decreasing effective bandwidth.
The total time of sending a message from one peer to
another peer computer can be represented in terms of
execution times and communication time as,

 execBcommexecA tttTime ++= , (1)

where exect time can be defined as,

 fCKtexec /⋅= . (2)

where K is instructions per program, C is clock cycles per
instruction and f is CPU frequency. The time involves the
message’s journey from the transmitting computer’s
memory, user space to kernel space to the network interface,
through the physical medium, to the switch, and then to the
receiver computer’s network interface, and up to the
application.
 In Peer-to-Peer applications collective operations are
rampant. Broadcast, scatter, and gather routines are common
and their communication time depends on the size of each
message, number of messages, interconnection structure,
and network contention. The communication time can be
written as

 ctscomm ttmtt +⋅+= . (3)

In the above equation st is the message latency assumed
constant and includes the overhead time at the source and
destination; tt is the transmission time computed as 1/B
where B is link bandwidth given in Q bits/sec; and m
represents message to send. The contention time ct is burst
dependent and usually removed for simplicity. The time
complexity is)(mO for m data items. Usually one sends
messages from one computer to multiple destinations. The
1-to-N fan-out broadcast is when the same message is sent
to N destinations sequentially, then the communication time
is

66Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

)(tscomm tmtNt ⋅+= , (4)
and for the scatter and gather communication models is,

)/(ntmtNt tscomm ⋅+= . (5)
In scatter a unique message is sent from source to every
other destination and in gather a unique message is received
from every other nodes.
 The time complexity is)(NmO for one source
connecting to N destinations. In (5), n is the total number of
nodes and N = n-1. For a tree type structure the time
complexity of 1-to-N fan-out will depend on number of
nodes at each level and the number of levels. The
disadvantage of a binary tree implementation is if one node
fails then all the nodes below it will not receive the
message.
 For an Ethernet LAN network, communication time can
be defined as:

 EpqtEmcomm ttttmtt +++⋅+= (6)

where all terms depend on message size and message time
at Media Access Control (MAC); mt is dependant on
message size and would be same for a homogeneous
network and would be some factor multiplied by message
size, sizem⋅α ; Em represents the number of bits in an

Ethernet packet; qt is the queuing delay; pt is the
propagation delay defined as d/c, where d is the length of
the link and c is speed of light in medium having a value
less than 8103x m/sec (e.g. Copper wire .77c); Et is the
Ethernet interframe gap which is 12 bytes (96 bits).
The traffic intensity can be defined as

 BpmT Ei /)(⋅= (7)

where p is the average packet arrival rate. Therefore iT
approaching close to 0 will indicate small delay;

iT approaching to 1 is an indication of large delay.
 The communication overhead can affect transmission
efficiency. The transmitted Ethernet packet has a payload
which is TCP/IP encapsulated in addition to the application
header. TCP header consists of 20 bytes and the IP header
consists of at least 20 bytes. The transmitted Ethernet frame
has a preamble of 8 bytes and an interframe gap of 12 bytes.
The number of Ethernet packets per second on the link will
be,

EthernetPacketsPerSecond = B / [8 *(FrameSize +
Interframe gap 12 bytes + Preamble 8 bytes)]
 (8)

The Ethernet protocol efficiency is defined as,

 Efficiency = Payload size/ Frame size (9)

and the throughput is

 Throughput = Efficiency x B (10)

Therefore for every Ethernet packet on the link, a 96 bit
interframe gap and 64 bits of preamble would be overhead.
If the link has the capacity of 1 Gbps then for a minimum
Ethernet frame size of 64 bytes transmitted, the link will
consist of 7.62 x 10^8 bits/sec due to Ethernet frame and an
overhead of 2.38 x 10^8 bits/sec due to interframe gap and
preamble combined. For a Gigabit Ethernet the minimum
frame size would be 512 bytes when operating in half-
duplex mode. The Ethernet protocol efficiency is low for
small packets (e.g. 54.76% for 64 bytes) and high (e.g.
97.53% for 1518 bytes) for large packets and hence the
throughput is low for small packets and high for large
packets.
 Latency can have detrimental affects lasting few seconds
or can be persistent depending on source of delays. Both
bandwidth and latency are two main entities to measure
network performance. Since software related latencies are
hard to measure and define, one resorts to empirical
methods as done in the next section.

B. Beowulf PC cluster Specifications
Our testbed consists of a PC cluster including 20 Lenovo

machines with the following specifications: Intel Core™ 2
Duo CPU, E4400 2.00GHz, 1.00 GB of RAM. Network
Card: Broadcom Netlink, Gigabit Ethernet, Driver date
8/28/2006 version 9.81.0.0. The PC are connected to a
Gigabit D-Link Ethernet switch. Each machine has RedHat
Enterprise AS Linux operating system installed, and use
LAM 7.0.6/MPI 2.

C. MPI Benchmarks
The Message Passing Interface (MPI) is a standard

interface that is broadly used with distributed computing
applications [12]-[15]. The following MPI-based
benchmarks are used to test the communication performance
of the nodes:

a) All-to-all: every node sends a message to every
other node.

b) Broadcast: one node sends one message to every
other node.

c) Gather: all nodes send a different message to a
single node.

d) Scatter: a single node sends a different message to
every other node.

e) Point-to-Point: a single message is sent/received
between 2 specific nodes.

The implementation details of the above collective
communications are usually unknown to the programmer.

67Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

The MP1-1 standard specified the “blocking collective
communications” only while the MPI-2 standard defines
“non-blocking” routines which perform better with some
applications. MPI related software performance will depend
on the type of message passing protocols, eager
(asynchronous communication) or rendezvous
(synchronous), type of message buffering (user and system),
sender-receiver synchronization (e.g. polling or interrupt),
and efficiency of the algorithms used to implement the
collective communication routines.
 There are many benchmarking software available on the
internet such as MPIBench or mpptest. However, most
benchmarks available for collective communication basically
use the following procedure to measure the execution time.

1. All processes arrive at Barrier
2. Start time
3. MPI_collective_fn
4. All processes arrive at Barrier
5. End time
6. PTime = End_t ime – Start_time

where MPI_collective_fn is one of the MPI functions all-to-
all, gather, scatter, broadcast, and Point-to-Point.

D. Analysis of Execution Time (PTime)
 In the benchmark procedure above, PTime consists of
time to execute the MPI_collective_fn function and twice
the time of Barrier.
 First, the time spent at the transmitting computer would
involve sending data by the kernel of system to the network
interface card (NIC) and the time NIC takes to pack bytes in
an Ethernet frame to send the frame on the physical wire.
Depending on type of NIC architecture, a typical Ethernet
NIC would have specifications as given in Table 2.

Table 2. Gigabit Ethernet Network Interface Specifications.

Speed Interface Data
Width Clock

Time for 1
byte

transfer
1 Gbps GMII 8 bits 125 MHz 8 ns

10 Gbps XGMII 32 bits 156.25
MHz .8 ns

 To transmit an Ethernet frame the time to transmit from
Medium Access Control (MAC) to Physical (PHY) for a 1
Gbps link would be

 tT = 8 ns * Ethernet_Frame_size (10)

One thing about Gigabit Ethernet is its clock rate at 125
MHz but more data is transmitted per time. The transfer rate
is higher since 125 MHz x 2 bits per signal (i.e. per wire
pair in Cat 5E cable) x 4 signals per time = 1 Gbps.
Therefore, on the motherboard if PCI Express is available
then with a maximum transfer rate of up to 250 MB/s then
full speed of Gigabit Ethernet is achievable.
 Next, the switch receives the Ethernet frame, and
processes the frame with a typical delay of 2 to 20 µsecs [8].

It is then sent out to the destination computer where again
the NIC on receiving computer processes it (PHY taking
anywhere from 200 to 300 nanoseconds depending on
technology) and sends it to the MAC layer, then onto the
TCP/IP layers up to the application. The process of
transmittance, reception, and acknowledgement is repeated
according to TCP/IP, Ethernet framing, and depending upon
the application’s instructions, i.e. MPI collective_fn
function and time of Barrier. The Barrier is used to
explicitly control the flow of execution. There are at least 3
types of Barrier implementations [9], namely,
 a) Counter implementation (linear barrier)

b) Tree implementation
c) Butterfly barrier

The time complexity of barrier with counter implementation
is)(nO . For both the tree and the butterfly implementations
the time complexity is)(log nO , where n is the number of
nodes. From the above, PTime depends on how MPI
collective_fn and Barrier are implemented in LAM
7.0.6/MPI 2, as summarized in Table 3 (for large number of
nodes).

 Table 3. Time Complexity

Linear
Model

PTime
Barrier Implementation

a) Counter b) Tree and c) Butterfly

MPI_alltoall O(nNm) + O(n) O(nNm) + O(log n)

MPI_Bcast O(Nm) + O(n) O(Nm) + O(log n)

MPI_Gather O(Nm) + O(n) O(Nm) + O(log n)

MPI_Scatter O(Nm) + O(n) O(Nm) + O(log n)

IV. RESULTS

The MPI benchmarks are run on a PC cluster by first

fixing the number of nodes in a communication group to 2
and varying the size of messages from x Kbytes to y Mbytes
(n2 where n = 0,1,2,3,4…,). Then the number of nodes in
communication group is iteratively incremented up to 20
nodes.

The figures show Minimum Round Trip (MRT) time
measured in granularity of µsecs for messages of sizes
ranging from 256 KB to 2 MB.

In Figure 1 all-to-all minimum round trip time is plotted
versus number of nodes in a PC cluster. Fig. 1 show MRT is
almost constant (with little variation) for a communication
group consisting of anywhere from 2 to 9 nodes in
comparison with 10 to 20 nodes which shows MRT linearly
increasing.

In Figure 2, broadcast MRT time is plotted versus
number of nodes. From the figure we observe MRT
increases with increase in the number of nodes again with a
steeper slope for large message sizes within each group.
Note, from the figure it shows somewhat a step wise
increment in MRT values.

68Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

In Figures 3 and 4, gather and scatter MRT time is
plotted versus number of nodes, respectively. Both gather
and scatter have a similar shape for MRT. The shape is more
pronounced for large message sizes within each group. For
gather and scatter communications it is seen from the figures
MRT for small number of nodes e.g. 2, 3 and for large
number of nodes, e.g. 16-20 takes on values which are much
larger than the MRT of the number of nodes in between.
MRT takes on a minimum for 8, 9 nodes and slightly higher
for 10 nodes. It is also interesting to note that skewed shape
flattens out as the message size is reduced. The figures of
scatter and gather show unexpected behavior in MRT for
nodes up to 9. The reason for this is presented under the
discussion section.

In Figure 5, Point-to-Point benchmark is plotted with
logarithmic scale for MRT and messages sizes ranging from
4 bytes to 8 Mbytes.

Comparing all-to-all communication with the others it is
seen all-to-all has the highest MRT as expected.

Figure 1. All-to-all benchmark showing MRT for message sizes of 256K

B, 512KB, 1MB, 2MBand for different size of PC cluster.

Figure 2. Broadcast benchmark showing MRT for message sizes of
256KB, 512KB, 1MB and for different size of PC cluster.

Figure 3. Gather benchmark showing MRT for message sizes of 256KB,
512KB, 1MB, 2MB and for different size of PC cluster.

Figure 4. Scatter benchmark showing MRT for message sizes of 256KB,
512KB, 1MB, 2MB and for different size of PC cluster

Figure 5. Point-to point benchmark showing MRT log scale versus
message sizes of 4 bytes to 8 Mbytes.

V. DISCUSSION
 In this section we discuss the results of all-to-all,
broadcast, gather, scatter, and Point-to-Point functions used
in the benchmarks. First note, the message size being
transmitted is fixed in the case of broadcast and Point-to-
Point. In the second case of all-to-all, gather, and scatter, the
message size is divided equally within the communication
group and depends on the number of participating nodes.
Let m denote the message size and n denote the number
of nodes,
 ii nms /= for 20,...,3,2=i (11)

where is is the actual message size being transmitted or
received by each communicating node. Therefore,

20321 ssss >>> L since 1+< ii nn . As the number
of nodes are increased the message size being sent or
received goes down. From (5) one knows that latency
depends on message size (and of course is a function of
time): as the message size 1+is is less than is therefore the

per message latency of is is larger than 1+is . However this
is not always the case as seen in the scatter and gather
routines. When a host application transmits to its
destination, non-blocking sends are posted by MPI,

69Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

reducing latency for certain nodes (e.g. 9 in the scatter
figure) and the TCP protocol is used for reliability. It must
wait for a period of time to receive an acknowledgment. If
the reply does not arrive within the expected period the data
is retransmitted. On Ethernet LAN the wait time is not
more than a few µsecs. Thus, the overhead time has a major
affect on latency.
 A number of factors together are involved in having a
major affect on MRT as shown in the scatter and gather
plots. First, varying the size of the message has affect.
Second, the implementation of LAM-MPI routines are not
known to the programmer, which model is being used
whether linear or tree type. Third, which protocol MPI is
using either eager or rendezvous protocols. The LAM-MPI
constructs the message and sends it through the network to
the destination computer which must accept and act upon
the message contents. LAM-MPI uses either the eager
protocol or the rendezvous protocol depending on message
size. With the eager protocol, as soon as a message is
posted both the envelope and data are sent to the destination.
If on the destination the receive operation is not posted then
buffering has to be done; this buffering involves an
additional data duplication. In the rendezvous protocol,
when a message is posted the envelope is sent to the
destination and buffered. As soon as a receive is posted the
destination sends an acknowledgement to the sender which
then only will be the data send by the sender In this case
buffering of the data is avoided and used for large messages.
 Fourth, TCP/IP protocol is being used by LAM-MPI
protocols on top of TCP/IP protocols which cause higher
latencies in communicating a message from sender to
destination. The actual application bytes packed in an
Ethernet frame are much less due to MPI application,
TCP/IP, and Ethernet headers. In some cases, as depicted in
the figures of scatter and gather, when the message size
decreases among the communication nodes it can happen
that MRT decrease down to a certain value and, as the
message size is further decreased beyond the minimum
MRT point, the MRT will start to increase again. The
explanation of such a behavior is due to the factors
mentioned above (i.e. the implementation of the scatter and
gather algorithms in MPI, eager and rendezvous protocol
switching depending on message size, plus TCP overhead
and the increase of overhead ratio as the Ethernet frame size
decreases).

VI. CONCLUSION AND FUTURE WORK
 In this paper we have studied the performance of MPI
collective communications routines on a gigabit Ethernet
LAN. The experiments were performed to represent a Peer-
to-Peer scenario in which one has different sizes of nodes in
a group and variations in message size. All the benchmark
routines presented closely represent typical communications
of a Peer-to-Peer system i.e. broadcasting, gathering,

scattering, all-to-all, and point-to-point. The results show in
the case of gather and scatter that as the message size is
decreased among the increasing nodes there is no set
predictable pattern MRT takes. We have seen that many
factors affect the performance of collective communications
in a wireline (Ethernet) environment. Our next target is to
extend our study to the area of Peer-to-Peer over wireless
networks.

ACKNOWLEDGMENT
The authors would like to thank CSSE Research Center for
carrying out experiments on the PC cluster. The authors
would also thank the anonymous reviewers for their valuable
and insightful comments.

REFERENCES

[1] S. Lin, A. Pan, R. Guo, and Z. Zhang., “Simulating Large-
Scale Peer-TO-Peer Systems with WiDS Toolkit”, White
Paper, Microsoft, Jan. 2008.

[2] M. Li, W. Lee, and A. Sivasubramaniam, “Efficient Peer-to-
Peer Information Sharing over Mobile Ad Hoc Networks”, In
MobEA, 2004.

[3] X. M. Huang, C.Y. Chang, and M.S. Chen, “PeerCluster: A
Cluster Based Peer-to-Peer Sytem”, IEEE Transactions on
Parallel and Distributed Systems”, vol. 17, No. 10, Oct. 2006,
pp. 1110-1123.

[4] B. Parviz and K. Miremadi, “Building a Peer to Peer Message
Passing Environment by Utilizing Reflection in .NET.”, In
Proceedings of PDPTA'2006. pp.1096~1102.

[5] InfiniBand Trade Organization., http://www.infinibandta.org/
[6] http://en.wikipedia.org/wiki/Quadrics, Sept. 3, 2011.
[7] Myricom Inc., http://www.myri.com, Sept 3, 2011.
[8] CISCO Inc., http://www.cisco.com, Sept 3, 2011.
[9] F. A. Vaughan, D. A. Grove, and P. D. Coddington,

“Communiation Issues for Two Cluster Computers,” ACSC
’03 Proceedings of the 26th Austrailasian computer science
conference, vol 16, 2003.

[10] T. Kielmann and H. E. Bal, “Fast Measurment of LogP
Parameters for Message Passing Platforms”, 4th Workshop on
Runtime Systems for Parallel Programming (RTSPP), pp. 1176-1183,
held in conjunction with IPDPS 2000, Cancun, Mexico, May 1-5,
2000. Lecture Notes in Computer Science, Vol. 1800.

[11] J. P. Grbovic, et al, “Performance Analysis of MPI Collective
Operations”, Journal Cluster Computing, Vol 10, Issue 2,
June 2007, pp. 127-143.

[12] R. Riesen, “Communicaton Patterns”, Parallel and Distributed
Processing Symposium, 25-29 April 2006.

[13] A. Leko, et al, “Practical Experiences with Modern Parallel
Performance Analysis Tools : An Evaluation”, Parallel and
Distributed Processing, IPDPS 2008 IEEE Symposium 14-18
April 2008, Miami, Fl, pp. 1-8.

[14] B. Wilkinson and M. Allen, Parallel Programming
Techniques and Applications Using Networked Workstations
and Parallel Computers, Second Edition, Pearson Prentice
Hall, 2005.

[15] F. Noor and S. Misbahuddin, “Using MPI on PC Cluster to
Compute Eigenvalues of Hermitian Toeplitz Matrices”,
Lecture Notes in Computer Science, 2010, vol 6081, pp 313-
323.

70Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

