
Symmetric Push-Sum Protocol for Decentralised Aggregation

Francesco Blasa, Simone Cafiero, Giancarlo Fortino,
Department of Electronics, Informatics and Systems

University of Calabria, 87036 Rende (CS), Italy
{checco84,simone.cafiero}@gmail.com, g.fortino@unical.it

Giuseppe Di Fatta
School of Systems Engineering, The University of Reading

Whiteknights, Reading, Berkshire, RG6 6AY, UK
G.DiFatta@reading.ac.uk

Abstract—Gossip (or Epidemic) protocols have emerged as
a communication and computation paradigm for large-scale
networked systems. These protocols are based on randomised
communication, which provides probabilistic guarantees on
convergence speed and accuracy. They also provide robust-
ness, scalability, computational and communication efficiency
and high stability under disruption. This work presents a
novel Gossip protocol named Symmetric Push-Sum Protocol
for the computation of global aggregates (e.g., average) in
decentralised and asynchronous systems. The proposed ap-
proach combines the simplicity of the push-based approach
and the efficiency of the push-pull schemes. The push-pull
schemes cannot be directly employed in asynchronous systems
as they require synchronous paired communication operations
to guarantee their accuracy. Although push schemes guarantee
accuracy even with asynchronous communication, they suffer
from a slower and unstable convergence. Symmetric Push-
Sum Protocol does not require synchronous communication
and achieves a convergence speed similar to the push-pull
schemes, while keeping the accuracy stability of the push
scheme. In the experimental analysis, we focus on computing
the global average as an important class of node aggregation
problems. The results have confirmed that the proposed method
inherits the advantages of both other schemes and outper-
forms well-known state of the art protocols for decentralized
Gossip-based aggregation.

Keywords-peer-to-peer computing; distributed aggregation
algorithms; gossip protocols; extreme scale computing.

I. INTRODUCTION

Nowadays, highly distributed systems such as P2P net-
works, large scale sensor networks, grids and ubiquitous
systems, enable a broad range of applications [1]. Central-
ized paradigms are not suitable for distributed large-scale
scenarios as they introduce bottlenecks and failure intoler-
ance. In particular, applications require atop such systems a
protocol layer that can cope well with the highly dynamic
and decentralized nature of these infrastructures. Locality
has been a key element to successfully deploy applications
into large-scale networked systems. However, computing
and spreading global information is still necessary for a
wide range of applications and is a particularly challenging
task when considering dynamic, highly distributed, large and
extreme scale systems.

This work was partly carried out while Francesco Blasa and Simone
Cafiero were at the University of Reading, UK, for a work placement of
the Erasmus Training Programme (June-Sept. 2010).

Aggregation protocols represent a decentralized paradigm
for computing global properties of distributed systems. Sev-
eral distributed aggregation protocols have been proposed in
the last years. They can be divided into two main classes:
Tree-based protocols and Gossip-based protocols.

The former performs a tree-based communication
throughout a tree overlay structure (e.g., [2]–[4]). Tree-based
protocols support a minimum number of communications
but require the construction of a hierarchical communication
structure among nodes and can be affected by the presence
of single points of failure.

The second class includes Gossip (or Epidemic) protocols,
which are a robust and scalable communication paradigm
to disseminate information in a large-scale distributed en-
vironment using randomised communication [5], [6]. Al-
though Epidemic protocols have communication costs usu-
ally greater than tree-based protocols, they are intrinsically
fault tolerant. Gossip-based communication can use push,
pull or push-pull schemes.

P2P applications based on Gossip protocols are emerging
in many fields. In [7], a global load monitoring service
for P2P overlay networks has been proposed. In [8], a
decentralized dynamic load balancing algorithm for a desk-
top Grid environment is presented. The work in [9] intro-
duces an epidemic content search mechanism in unstructured
P2P overlay over intermittently connected mobile ad hoc
networks. The work in [10] studies Gossip-based message
dissemination schemes to be employed for content and
service dissemination or discovery in unstructured P2P and
ad hoc networks. In [11], authors define a protocol to achieve
mutual anonymity in unstructured P2P networks, which
deals with high churn rates by means of an epidemic-style
data dissemination. A number of Gossip-based protocols for
sensor networks have also been proposed (e.g., [12]–[14]).
Gossip protocols have also been adopted to solve the general
data aggregation problem [15]–[17].

In this work, we present a new algorithm for Gossip-based
aggregation named Symmetric Push-Sum Protocol (SPSP).
The proposed algorithm is fully decentralized and suitable
for large scale networks. We evaluate performances of our
algorithm w.r.t. Push-Sum Protocol (PSP) [15] and Push-
Pull Gossip Protocol (PPG) [16], [17]. SPSP preserves the
mass conservation invariant, i.e., at any time the sum of all

27Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

values in the network is constant. This invariant guarantees
the correctness of aggregation algorithms [18]. In particular,
among the various aggregation functions in the experimental
analysis we focus on the average. The simulations have
confirmed the quality and the consistency of the results.
In particular, the results show that the proposed approach
always performs much better than the state of the art
aggregation protocols for large-scale distributed systems.

The rest of this paper is organized as follow. Section
II reviews related work. Section III presents the proposed
aggregation protocol. Section IV presents an experimental
comparative analysis. Finally, Section V provides some
conclusive remarks and future research directions.

II. RELATED WORK

Several Gossip-based aggregation protocols have been
proposed. In [15], a push scheme protocol named
Push-Sum Protocol (PSP) is proposed. It is a simple aggre-
gation protocol for computing several aggregation functions
(e.g., sum, average, count). In PSP, the local scalar value
is represented as a pair (v, w), where v is initialised with
the local value x and the initial weight w depends on the
global aggregate function to be computed as shown in Table
I. The global aggregate value is given by v/w after a fixed
number of communication cycles. At each cycle, each node
halves its local value and weight (v, w) = (v/2, w/2) and
sends the new obtained pair to a randomly selected node
according to a uniform probability density function (pdf).
The global mass is guaranteed to be conserved in case
a reliable communication protocol is used. A number of
messages equal to the number of nodes in the network
is sent in total at each cycle. The diffusion speed is the
minimum number of protocol cycles required to achieve a
good approximation of the true value of the global aggregate
function with high probability:

Prob(ei < ε) ≥ 1− δ, ∀ i = 1, . . . , n, (1)

where n is the network size, ei the approximation error
at node i and ε and δ two arbitrary small positive constants.
The diffusion speed of the PSP has been shown to have a
complexity O(log(n) + log(ε−1) + log(δ−1)) [15].

In [19], authors discuss some issues of PSP when used as
summarisation algorithm. The sum function in [15] requires
a leader election; this represents a non trivial task and could
introduce single points of failure. In [19], the authors pro-
vides a scalable and fault tolerant solution to this problem by
incorporating a leader election mechanism in the aggregation
protocol.

In [16], [17], two similar algorithms are proposed; they
can be both referred to as Push-Pull Gossip protocol (PPG).
PPG uses a push-pull scheme that improves the diffusion
speed w.r.t. PSP. In PPG at each cycle a node i randomly
chooses a node j to perform an averaging operation and to

update their local values xi+xj

2 . In PPG, 2 × n messages
are sent in total at each cycle. In [17], authors focus on
the design of Gossip algorithm by defining a method to
obtain the fastest Gossip algorithm over a given distributed
network. In particular they find out that the averaging time
(which is directly related to diffusion speed) depends on
the eigenvalue of a doubly stochastic matrix characterizing
the algorithm. The fastest Gossip algorithm is obtained by
minimizing the eigenvalues in a distributed fashion.

In [18], authors state that the correctness of such algo-
rithms depends on the mass conservation invariant. They
show that PPG could violate this fundamental invariant if
an atomic violation happens. An atomic violation occurs on
node i when i receives a push while it is waiting for a
pull. Therefore two versions of PPG are proposed: Push-Pull
Back Cancellation and Push-Pull Ordered Wait. The first al-
gorithm adopts a simple message cancellation mechanism to
guarantee atomicity and avoid mass conservation violation.
However, the cancellation method decreases the diffusion
speed. The second approach adopts a buffer for storing push
messages that are received while a push-pull operation is
being executed. This mechanism could introduce a deadlock
across the network. To avoid deadlocks they introduce a total
order among nodes and a constraint in the nodes selection
mechanism, which penalizes selection of some nodes.

In general, the use of synchronous cycles simplifies the
analysis and the implementation of Gossip-based aggrega-
tion protocols. Nevertheless, the protocols can be imple-
mented in completely asynchronous environments. Indepen-
dent local Poisson clocks can be used to generate syn-
chronous cycles in asynchronous distributed environments
(e.g., [20]). A second interesting alternative is the use of an
exact global estimation of the right termination time, similar
to the median-counter algorithm [6] for rumour spreading.

III. SYMMETRIC PSP

We propose a novel Gossip-based aggregation protocol,
the Symmetric Push-Sum Protocol (SPSP), which combines
the simplicity of PSP and the convergence speed of PPG.

We assume that the transport protocol is reliable. This
assumption is not strictly necessary and could be relaxed as
Gossip protocols are intrinsically fault tolerant. However, in
this work the effect of packet loss is not investigated.

SPSP adopts an asynchronous push-pull communication
scheme. Push-pull schemes are expected to converge faster
than push schemes with the same number of exchanged
messages [6].

Let consider a distributed system composed by n peers
P = {P1, . . . , Pn}. Each node i holds a local value vi and
a local weight wi (wi ≥ 0) and needs to compute a global
aggregation function F (v1, w1, . . . , vn, wn). Similarly to
PSP, SPSP can perform several aggregation functions, some
of which are shown in Table I.

28Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Table I
SETTINGS FOR SEVERAL AGGREGATION FUNCTIONS

Function Description

Sum vi = local value
wi = 1 at a single node, 0 at all other nodes

Count vi = 1
wi = 1 at a single node, 0 at all other nodes

Average vi = local value
wi = 1

Weighted vi = local value × local weight
Average wi = local weight

At each node i
Require: v0, w0

The initial local value, v0;
The initial local weight, w0.

Initialisation:
1: (v, w) = (v0, w0)

At each cycle:
2: j ← getNode()
3: v ← v/2, w← w/2
4: send an aggregation message to j, 〈(v, w), true〉

At event: received an aggregation message 〈(v ′, w′), r〉
from j

5: if r is true then
6: v ← v/2, w← w/2
7: send an aggregation message to j, 〈(v, w), false〉
8: end if
9: v ← v + v′, w← v + w′

Figure 1. The pseudocode of the Symmetric Push-Sum Protocol

As shown in Figure 1, at each cycle a node i randomly
selects a communication partner j according to a uniform
pdf. This selection is provided by the service getNode()
(line 2). Then i halves its local value and weight (line 3) and
sends them to j (line 4). At the reception of the message,
the node j will asynchronously perform a symmetric push
operation: it halves its local value and weight and sends
them to node i (lines 6-7). Then, it adds the received value
and weight to its own value and weight (line 9). In case of
atomic violation, a node i receives the symmetric push from
k �= j immediately after its push operation, the symmetric
push mechanism guarantees the mass invariant.

At each random push an asynchronous reply follows as a
symmetric push: at each cycle 2× n messages are sent.

A. Node Cache Protocol

In uniform Gossip protocols the random node selection is
a critical operation. In general, the global network topology
is not known or is not available at each node.

Figure 2 describes the node selection algorithm adopted
in SPSP, i.e. the Node Cache Protocol. The protocol only re-

At each node i
Require: QMAX , Neighbours

The maximum size of local cache, QMAX ;
The initial set of physical neighbours nodes,
Neighbours.

Export: getNode()
Let getNode() return and remove a random node ID
from the local node ID cache Qi

Initialisation:
1: Qi ← Neighbours
2: randomly trim Qi such that |Qi| ≤ QMAX

At each cycle:
3: j ← getNode()
4: send a cache message to j, 〈Qi, true〉

At event: received a cache message 〈Qj , r〉 from j
5: if r is true then
6: send a cache message to j, 〈Qi, false〉
7: end if
8: Qi ← Qi ∪Qj ∪ { j }
9: randomly trim Qi such that |Qi| ≤ QMAX

Figure 2. The pseudocode of the Node Cache Protocol

quires a few assumptions: the network is a connected graph,
each node knows its physical neighbours (Neighbours), a
multi-hop routing protocol is available.

The node selection protocol maintains a local cache Q
of node identifiers (IDs), with |Q| = QMAX . The cache is
initialised with the physical neighbours (lines 1-2). At each
protocol cycle the local cache is sent to a node randomly
chosen from the cache according to a uniform pdf (lines 3-
4). When a remote cache is received, it is merged with the
local one and trimmed to the maximum size by randomly
removing a number of IDs exceeding QMAX (lines 5-9). The
procedure can be considered a practical implementation of
multiple random walks. After a sufficiently large number
of cycles, the entries in the local cache are uniformly
distributed. In regular connected graphs, random walks con-
verge to uniform independent samples of the node set in a
polynomial number of steps. In expander graphs, i.e., sparse
graphs that are very well connected, random walks converge
to the uniform distribution in O(log(n)) [21].

The node cache protocol provides a local service
getNode(), which removes and returns a random node from
the cache.

IV. PERFORMANCE EVALUATION

In this section the proposed SPSP is evaluated and com-
pared with PSP and PPG protocols for the decentralised
approximate computation of a global average. At each cycle
c of the aggregation protocol each node i computes an
estimate m̃ of the global true average m:

29Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

m̃i(c) ≈ m =

∑n
j=1 vj

n
(2)

A. Experimental setting

We implemented the three protocols, SPSP, PSP and PPG,
in an ad hoc simulator based on discrete events [22]. The
simulator has an event scheduler, a set of processes, which
simulate network nodes, a topology manager and events,
which represent operations such as initialisation, messages,
computation, etc. The simulations assume that a reliable
point-to-point communication protocol is available in the
network.

We have tested the distributed algorithms in two different
types of network topologies:

• two Internet-like topologies were generated using
BRITE [23] with a Waxman model to simulate a flat
level Autonomous System with 1000 and 5000 nodes;

• two 2D mesh topologies were also generated with
dimensions, respectively, 40 × 25 (1000 nodes) and
100× 50 (5000 nodes).

The algorithms were evaluated according to the peak
data distribution, where only a node i holds as local value
vi = N , and all others j hold as local value vj = 0. As
shown in Table I to compute the average each node i holds
weight wi = 1. According to this setting, m is equal to 1. We
have tested all the discussed algorithms with two different
peak data distribution randomly generated.

Each one of the tested protocols uses the Node Cache
Protocol reported in Section III-A. In particular, each node
has its own node cache with QMAX equal to 20.

In order to simulate the algorithms and to collect relevant
performance indices, we have adopted an opportune cycle
structure of fixed length where the aggregation is carried out.
The cycle structure guarantees that there is no overlap in the
communication of different cycles and provides a simple
mechanism for varying the atomic violation percentage
(AVP).

Each cycle is composed of four intervals as shown in Fig-
ure 3. The four intervals have a fixed length of, respectively,
d1, d2, d2 and d3:

Figure 3. Cycle structure

• d1 is the length of the interval where nodes start push
operations;

• d2 is the maximum propagation delay between any pair
of nodes in the network;

• d3 is the maximum synchronisation offset between any
pair of nodes in the network.

We assume a uniformly distributed synchronisation offset
for the start of the aggregation process at different nodes.
In all experiments the maximum synchronisation offset (d3)
between any pair of nodes is set to 10 msec. This value
is similar to a clock synchronisation offset, which can be
obtained using e.g., NTP [24] or PariSync [25].

Each node (source) initiates a push operation at a random
instant of the first interval (d1). In particular, d1 is the sim-
ulation parameter through which the AVP can be varied. By
decreasing the value of d1 the AVP increases and vice versa.

After a propagation delay the push message is received
at the destination node, which asynchronously replies with
a symmetric push (pull) message. After the corresponding
propagation delay the reply is received at the source node.
The second and third intervals account for these propagation
delays. Two intervals of length d2 are necessary to guarantee
that a symmetric push operation (push-pull) is completed.
The value of d2 is a property of the network topology.

Finally a padding interval (d3) is required to ensure
that communications of two different cycles do not overlap
because of the synchronisation offset of the nodes.

B. Analysis

The performance of the three methods (SPSP, PSP and
PPG) are compared in terms of accuracy and convergence
speed at different AVP levels. The accuracy is computed in
terms of the mean percentage error of the estimated average
among all nodes, as shown in equation 3.

MPE(c) =
1

n
·

n∑

i=1

∣∣∣
m− m̃i(c)

m

∣∣∣ (3)

The convergence speed is evaluated by means of the
variance of m̃i among all nodes over time, as indicated in
equation 4.

VAR(c) =
1

n− 1
·

n∑

i=1

(m− m̃i(c))
2 (4)

As shown in Figure 4, PPG is sensitive to AVP. PPG
always reaches a non-null error for AV P > 0%. With
a very large d1 interval the smallest AVP level (0.3%) is
obtained. Even in this case PPG does not converge to the true
average (MPE �= 0). PSP preserves the mass conservation
invariant and is guaranteed to converge to the true average.
However it has a slow convergence speed compared to the
other protocols. SPSP is not sensitive to the AVP level and
is guaranteed to converge to the true average. Moreover,
SPSP provides the best accuracy in all simulated scenarios.

30Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

M
P

E

cycles

PPG 90%
PPG 66%
PPG 44%

PPG 0.3%
PSP 90%
PSP 66%
PSP 44%

PSP 0.3%
SPSP 90%
SPSP 66%
SPSP 44%
SPSP 0.3%

Figure 4. MPE varying the AVP w.r.t. 100 different simulations: BRITE and Mesh topologies, 1000 and 5000 nodes, 2 different Peak Data Distribution.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50

av
er

ag
e

cycles

PPG
PSP

SPSP

Figure 5. Average and standard deviation of the estimated aggregate over
the network nodes. BRITE topology with 5000 nodes. AVP equal to 90%.

In Figures 5 and 6, PPG and SPSP have a similar variance
trend, however PPG converges to an incorrect estimate m̃.

V. CONCLUSION

The Symmetric Push-Sum Protocol (SPSP) is a novel
Gossip-based aggregation protocol that is suitable for com-
puting aggregation functions on networks of any scale. The
proposed algorithm is totally decentralized and robust and
preserves the mass conservation invariant. The experimental
analysis has confirmed that the algorithm outperforms the

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 0 10 20 30 40 50 60 70 80 90 100

va
ria

nc
e

cycles

PPG 90%
PPG 0.3%
PSP 90%
PSP 0.3%

SPSP 90%
SPSP 0.3%

Figure 6. Convergence speed (variance). BRITE topology with 5000 nodes.
AVP equal to 0.3% and 90%.

state of the art protocols (i.e., PSP and PPG) for the
average aggregation function. In particular, SPSP does not
violate the mass conservation invariant, similarly to PSP,
and is much faster than PSP. SPSP and PPG have similar
convergence speed; SPSP guarantees a convergence to the
true global aggregate, while PPG does not. Future research
directions will focus on the evaluation of the protocol in
dynamic environments with churn rate and with node and
link failures.

31Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

REFERENCES

[1] F. Cappello, S. Djilali, G. Fedak, T. Hérault, F. Magniette,
V. Néri, and O. Lodygensky, “Computing on large-scale
distributed systems: Xtremweb architecture, programming
models, security, tests and convergence with grid,” Future
Generation Comp. Syst., vol. 21, no. 3, pp. 417–437, 2005.

[2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani,
“Estimating aggregates on a peer-to-peer network,” Stanford
InfoLab, Technical Report 2003-24, April 2003.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
SIGOPS Oper. Syst. Rev., vol. 36, pp. 131–146, December
2002.

[4] M. Dam and R. Stadler, “A generic protocol for network state
aggregation,” in In Proc. Radiovetenskap och Kommunikation
(RVK), 2005, pp. 14–16.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic
algorithms for replicated database maintenance,” in Proc. of
the sixth annual ACM Symposium on Principles of distributed
computing, ser. PODC ’87. ACM, 1987, pp. 1–12.

[6] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking,
“Randomized rumor spreading,” in Proceedings of the 41st
Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 2000, pp. 565–574.

[7] B. Ghit, F. Pop, and V. Cristea, “Epidemic-style global load
monitoring in large-scale overlay networks,” International
Conference on P2P, Parallel, Grid, Cloud, and Internet Com-
puting, pp. 393–398, 2010.

[8] D. H. H. Sheng Di, Cho-Li Wang, “Gossip-based dynamic
load balancing in an autonomous desktop grid,” in Proc.
of the 10th International Conference on High-Performance
Computing in Asia-Pacific Region, 2009, pp. 85–92.

[9] Y. Ma and A. Jamalipour, “An epidemic P2P content search
mechanism for intermittently connected mobile ad hoc net-
works,” in IEEE Global Telecommunications Conference
(GLOBECOM), 2009, pp. 1–6.

[10] S. Tang, E. Jaho, I. Stavrakakis, I. Koukoutsidis, and
P. Van Mieghem, “Modeling gossip-based content dissemi-
nation and search in distributed networking,” Comput. Com-
mun., vol. 34, pp. 765–779, May 2011.

[11] N. Bansod, A. Malgi, B. K. Choi, and J. Mayo, “Muon:
Epidemic based mutual anonymity in unstructured P2P net-
works,” Computer Networks, vol. 52, no. 5, pp. 915–934,
2008.

[12] L. Chitnis, A. Dobra, and S. Ranka, “Aggregation methods
for large-scale sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, pp. 1–36, April 2008.

[13] N. Marechal, J.-M. Gorce, and J. Pierrot, “Joint estimation
and gossip averaging for sensor network applications,” IEEE
Transactions on Automatic Control, vol. 55, no. 5, pp. 1208–
1213, may 2010.

[14] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Pro-
ceedings of the IEEE, vol. 98, no. 11, pp. 1847–1864, nov.
2010.

[15] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based com-
putation of aggregate information,” in Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer
Science, oct. 2003, pp. 482–491.

[16] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Transactions
on Computer Systems, vol. 23, pp. 219–252, August 2005.

[17] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Random-
ized gossip algorithms,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2508–2530, june 2006.

[18] P. Jesus, C. Baquero, and P. Almeida, “Dependability in
aggregation by averaging,” in 1st Symposium on Informatics
(INForum 2009), sept. 2009, pp. 482–491.

[19] W. Terpstra, C. Leng, and A. Buchmann, “Brief announce-
ment: Practical summation via gossip,” in Proceedings of the
sixth annual ACM Symposium on Principles of distributed
computing (PODC). ACM, August 2007, pp. 12–15.

[20] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimiza-
tion algorithms,” IEEE Transactions on Automatic Control,
vol. 31, no. 9, pp. 803–812, sep 1986.

[21] D. Gillman, “A chernoff bound for random walks on expander
graphs,” SIAM Journal on Computing (Society for Industrial
and Applied Mathematics), vol. 27, no. 4, pp. 1203–1220,
1998.

[22] G. Fortino, C. Mastroianni, and W. Russo, “A hierarchical
control protocol for group-oriented playbacks supported by
content distribution networks,” Journal of Network and Com-
puter Applications, vol. 32, no. 1, pp. 135–157, 2009.

[23] A. Medina, I. Matta, and J. Byers, “On the origin of power
laws in Internet topologies,” SIGCOMM Comput. Commun.
Rev., vol. 30, pp. 18–28, April 2000.

[24] D. L. Mills, “On the accuracy and stability of clocks synchro-
nized by the network time protocol in the Internet system,”
ACM Computer Communication Review, vol. 20, pp. 65–75,
1990.

[25] P. Bertasi, M. Bonazza, N. Moretti, and P. E., “PariSync:
Clock Synchronization in P2P Networks,” ISPCS 2009 Inter-
nation IEEE Symposium on Precision Clock Synchronization
for Measurement, Control and Communication, pp. 12–16,
October 2009.

32Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

