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Abstract—Massive Multiuser Virtual Environments
(MMVEs) are rapidly expanding both in the number of users
and complexity of interactions. Their needs of computational
resources offer new challenges for the computer scientists.
In this paper we present an implementation and some early
tests of a Massive Simulation Environments, a particular
MMVE, distributed over a Peer-to-Peer infrastructure. We
provide some analysis of the problems related to the workload
distribution in this environment. Simulation tests show a good
grade of scalability and the communication overhead, due
to the peers interaction, is dominated by the computational
power provided by them.

Keywords-Massive Simulation, Peer–to–Peer, Load Balanc-
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I. INTRODUCTION

The recent growth and popularity of online Massively

Multiuser Virtual Environment (MMVE) have raised a lot of

interests for the development and research of novel platforms

for next-generation MMVEs. Examples of this trend are

World of Warcraft and Second Life which have reached

around 10 million subscribers worldwide and roughly 1
million of active users [1].

The design and management of MMVE, due to their

highly interactive nature, poses many unique challenges

compared to traditional network domains [2]. A single

server, or even a small number of servers, is not able to

handle the load generated by such systems. So, even if

the client/server approach is quite common for small-size

MMVEs, it is mandatory for next-generation MMVEs to

use the computing power of a group of many servers with

dedicated responsibility.

Distributed Virtual Environment (DVE) is an emerging

research field which combines 3D graphics, networking and

behavioral animation with the purpose of simulating realistic

and immersive virtual environments offering a high degree of

interactivity. The distributed nature of these systems widened

the scenarios of use that now ranges from online videogames

to serious games for training including online cooperative

systems for learning and problem solving.

Acknowledging the fact that client/server paradigm does

not fit well the MMVE scenario, one of the main issues that

should be considered designing a DVE system is how to split

the responsibilities between the servers/workers. Several

approaches have been proposed. For instance, every server

can have a different assignment (communication, artificial

intelligence, physics, game state) or, on the other hand, a

single server acts as a factotum server for a portion of the

whole environment (a.k.a. shard). In this case the actors

which belong to different shards cannot interact with each

other (each shard represents a distinct copy of the whole en-

vironment). Another approach to achieve scalability, named

Geographic decomposition, exploits the locality of the en-

vironment, decomposing the map on which the game is

played into different regions, each of which is associated to

a worker. Geographic decomposition suits particularly well

to support a completely distributed MMVE, built on top of

Peer-to-Peer (P2P) infrastructure, where the responsibility of

maintaining the whole environment is shared among all its

users. In this approach the workload balancing is essential

for both the overall performance and scalability. In the

context of DVEs we are particularly interested in Distributed

Massive Simulation Environments (DMSEs), which, for the

same reasons, appear as a suitable problem that can greatly

benefit from the use of a P2P approach.

A. Massive Simulation Environments (MSEs)

The simulation of groups of characters moving in a virtual

world is a topic that has been investigated since the 1980s

with the purpose of simulating a group of entities, dubbed

autonomous actors, whose movements are related to social

interactions among group members.

A classical example of use of this approach is the simu-

lation of a flock of birds in the most natural possible way.

Elements of this simulated flock are usually named boids

(from bird-oid) and got instilled a range of behaviors that

induces some kind of personality. A widespread approach

to this kind of simulations has been introduced in [3]. Every

boid has its own personality (e.g. the trajectory of its flight)

that is the result of a weighted sum of a number of behaviors.

The simulation is performed in successive steps: at each

step, for each boid and for each behavior in the personality,

the system calculates a request to accelerate in a certain

direction in the space, and sums up all of these requests; then

the boid is moved along this result. The behaviors are, in the

most of cases, simply geometric calculations that are carried
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out for each boid considering the k-neighbors it is flying

with: for example the behavior called pursuit just let the

boid to pursuit a moving target (e.g. another boid). Each boid

reacts to its k-neighbors, which constitute its neighborhood.

Given a certain boid out of a flock of n boids, the most

simple way of identifying that boid’s neighborhood is by an

O(n2) proximity screening, and for this reason the efficiency

of the implementation is still to be considered an issue.

B. Designing a P2PMSE

For the purposes of this paper we refer to MSEs as a

family of complex interactive 3D environments whose main

functionalities can be divided in Simulation and Rendering.

We intend to expand the number of simulated actors in a

MSE by distributing the computational load to various PCs

connected to the system. In a proper DMSE both Simulation

and Rendering can be accomplished by a distributed network

of computer. Each of the workers offers computational

power and in exchange yields the right to visualize the

simulation.

Each user connected to the system will have two different

subsystems running on his PC: a simulation engine and a

visualization engine. The simulation engine will take the

responsibility of simulating a small part of the actors in

the system, while the visualization engine will let the user

to choose which part of the map to visualize. The system

architecture is based on a Distributed Hash Table (DHT)

that will let the user to dynamically connect to the system

in a totally distributed manner: once a new peer is available

in the system, it will receive part of the simulation and will

receive the updates from the system.

The visualization engine will let the user to freely place

a camera in the environment and this camera will define

an Area of Interest (AOI). AOI is a fundamental concept,

as even though many actors and events may exist in the

simulated environment, the user, as in the real world, is only

interested by nearby actors or events. AOI thus specifies a

scope for information which the system should provide to

the user. Notice that each subsystem, simulation and visual-

ization, will have its own AOI: the AOI for the simulation,

henceforth neighborhood, is defined by the position of actors

the peer is simulating, the AOI of the visualization is defined

by where the user placed the camera.

C. Our result

We present our experiences with the design and imple-

mentation of a fully distributed Massive Simulation Environ-

ment. We report and analyze several experimental results we

have obtained with our system. Simulation tests show a good

grade of scalability and the communication overhead, due

to the peers interaction, is dominated by the computational

power provided by them.

D. Paper structure

In section II we describe the system architecture and the

details of the implementation, while in section III we report

the tests setting, the test results and some discussion. In

section IV we discuss some possible future works.

II. AN ARCHITECTURE FOR A DMSE

The core of this paper is to describe our experiences in

designing, implementing and assessing performances of a

DMSE built on top of a P2P system. The motivation for such

architecture lays in the usage we envision: users will connect

to such system in order to simulate more and more complex

scenarios, and the system will exploit the computational

power provided by connected computers. This scenario of

use allows the system performances to scale together with

the number of users, while a multi-processor architecture

would bound the scalability to the number of processors that

are readily available. The study has been carried out starting

from our past experiences in designing Massive Battle [4].

Massive Battle is a MSE capable of animating autonomous

actors with the purpose of reconstructing interactive scenes

from a battlefield showing a number of platoons fighting

each others.

A. Background

Peer–to–Peer systems: In peer-to-peer (P2P) network,

computers can communicate and share files as well as other

resources. As opposite to the client-server approach, partici-

pants are at the same level (peers). By means of a client users

can connect to the network; communication among nodes

is done by message exchanges aimed to: announce their

presence in the network, ask for resources, serve resources

requests. After the initial popularity of centralized Napster

and flooding based networks like Gnutella, several research

groups have independently proposed a new generation of

P2P systems which are completely distributed and use a

scalable Distributed Hash Table (DHT) as a substrate. A

DHT is a self–organizing overlay network that allows to

add, delete, and lookup hash table items. Proposed systems

are based on various forms of distributed hash tables, they

include Chord [5] (based on the hypercube), CAN [6] (based

on the torus), P-GRID [7] (based on trees), Pastry [8], or

Tapestry [9]. One of the reasons for the success of the DHT

approach is that DHTs provide a generic primitive that can

benefit a wide range of applications.

Massive Battle: Massive Battle is an example of seri-

ous game system that offers an effective way of simulating

historical battles for the purpose of learning (e.g. providing

new insights for battles to engage students) and to carry out

historical researches (e.g. what-if scenarios). The simulation

of historical battles also imposes some constraints on the

number of agents the system is capable of simulate: as an

example the Waterloo Battle involved ≈ 250000 soldiers,

while Massive Battles, running on an off-the-shelves PC,
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is capable of simulating only ≈ 5000 units, at an inter-

active rate (≈ 25 frames-per-seconds). Massive Battle is

implemented in C++ and is based on Ogre3d, a rendering

engine, for this reason Massive Battle can be considered

a reasonable approximation of a real DVE as a Massive

Multiplayer Online Role-Playing Game (MMORPG).

B. Design Issues

The design of the DMSE has been carried out by ad-

dressing four main issues: world partitioning, world state

propagation, self-synchronization and load balancing [10].

World Partitioning: A scene in Massive Battle is de-

fined by a map, platoons and checkpoints: each platoon pass

through the checkpoints assigned to it. To achieve scalability,

we adopt a Geographic decomposition approach: the whole

environment map is partitioned into regions. Regions are

assigned to peers, by mapping both regions and peers to the

DHT key space: regions as well as peers are associated with

an ID computed by using a consistent hash function [11].

The peer whose ID is the closest to the region ID is dubbed

Region Master and is responsible for that region (cf. Fig. 1).

Each Region Master is responsible for:

• Simulate all actors which belong to the region;

• Deliver the state of the region (that is the state of each

actor which belongs to the region) to the peers whose

AOI overlaps with the region;

• Handle handovers of actors between regions.

The choice of the world partitioning technique is important

for the efficiency of the whole system. Two key factors need

to be considered:

• Static or Dynamic Partitioning;

• The granularity of the world decomposition.

Dynamic partitioning can be used, for instance, in order to

balance the workload across the peers, but on the other hand,

the management of dynamic regions requires a large amount

of communication between peers that consumes bandwidth

and introduces latency [12], [13]. For this reason, in this

work, we opt for a Static Partitioning.

Similarly the granularity of the world decomposition (that

is, the region size and, consequently, the number of regions,

which a given map is partitioned into) determines a trade-

off between load balancing and communication overhead.

The finer is the granularity adopted, the higher is the degree

of parallelism that, ideally, can be reached by the system.

However, due to regions’ interdependency and system syn-

chronizations, fine granularity usually determines a huge

amount of communication. Our system is designed to be

used with different granularity.

World State Propagation: In order to implement a P2P

architecture for MMVEs, a communication infrastructure is

needed to deliver messages to a wide group of users. Be-

ing multicast communication not available on geographical

network, application-layer multicast provides a workaround

[14]. A well-known mechanism used to propagate world

state information is based on the Publish/Subscribe design

pattern: a multicast channel is assigned to each region; users

then simply subscribe to the channels associated with the

regions which overlap with their AOI to receive relevant

message updates. For instance, SimMud [15] uses Scribe

[16], an application-layer multicast built on top of the

DHT Pastry [8]. Scribe is decentralized and highly efficient

because it leverages the existing Pastry overlay.

Self-synchronization: One of the goal of the design is to

implement a self-synchronizing system (the whole simulation

should proceed simultaneously, without the use of a central

coordinator, which might represent a bottleneck). We use a

standard approach to achieve a consistent synchronization of

the distributed simulations. Each simulation is decomposed

in time slots (henceforth steps). Each step is associated with

a fixed state of the simulation. Regions are simulated step by

step. Since the step i of region r is computed by using the

states i− 1 of r’s neighborhood (the regions which confine

with region r), the step i of a region cannot be executed until

the states i−1 of its neighborhood have been computed and

delivered. In other words, each region is synchronized with

its neighborhood before each simulation step. The number

of steps since the beginning of the simulation is used as a

clock so that each event can be associated with a system

timestamp.

Load Balancing: One of the motivations of the P2P

infrastructure described here is to address the needs for more

computing power. In order to better exploit the computing

power provided by the peers of the system, it is necessary

to design the system so that the simulation always evolves

in parallel, avoiding bottlenecks. Since the simulation is

synchronized after each step, the system advances with the

same speed provided by the slower peer in the system. For

this reason it is necessary to design the system in order

to balance the load between the peers. We addressed this

problem by relying on two factors: (i) the node id on a DHT

are distributed uniformly, and this means that each peer in

the system has equal probability of receiving a region (ii) it

is possible to tune the granularity of world decomposition.

This decision allowed us to implement a totally decentralized

system: more effective load balancing techniques would have

required some degree of coordination.

C. System Architecture

Like SimMud [15], we decided to adopt FreePastry, the

open source version of Pastry [8], as the underneath network

infrastructure and we used Scribe [16], the multicast infras-

tructure built on top of Pastry, to disseminate the simulation

state and, at the same time, synchronize the system.

It is worth annotating here how we addressed the prob-

lem of distributing the simulation which is carried out

by Massive Battle. Massive Battle has been designed and
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Figure 1. Geographic decomposition of the environment map over a DHT key space.

implemented as a simulation written in C++ to be executed

on a single PC and this needed to be adapted for the network

infrastructure that was implemented in Java. To address this

problem we used Java Native Interface (JNI) that allowed

us to invoke Java method from C and vice-versa. Once the

technological issues have been worked out, we had to take

a decision on how to distribute the computational load of

the simulation. We just added a World State Propagation

step after the Simulation and Rendering steps: each region

r publishes the updates to all regions that are subscribed

to r and (ii) r waits for the updates from all the regions

r is subscribed to (r’s neighbourhood). The World State

as well as the self-synchronization logic is implemented in

the Java part, while the Simulation methods are invoked

once the buffer contains all the necessary information to

perform a step. The P2P infrastructure is totally agnostic

respect to the payload that is propagated among regions:

upon receiving/transmitting the updates are handled (mar-

shalling/unmarshalling) in the Simulation engine.

III. TESTS

We performed a number of tests of the system in order

to assess both scalability and the resilience of the system to

uneven loads of calculation.

Test setting: Simulations were conducted on a scenario

consisting of 64 regions (a 8 × 8 grid). On each run of

the simulation the distribution of the regions to peers is

decided by assigning randomly DHT identifiers to both

regions and peers. Sixteen platoons of 100 soldiers (overall

1600 actors) were placed on the map. Each platoon follows

a prefixed path which guarantees that all the regions become

non-empty at least once during the simulation. It is worth

noting that both the number of actors to be simulated

and the number of iterations to be performed represent

the workload of a test (i.e., the number of computations

required for performing the whole simulation). Since the

performances of the system are also influenced by some

arbitrary factors (for example, the allocation of ID to peers

and regions can lead to more or less balanced workload),

we executed each test 10 times (we empirically observed

that 10 runs of test are enough to obtain stable results).

For each test we will present the results in terms of both

means and boundaries. All experiments are performed on

16 mid-range PC having similar characteristics: Intel Xeon

dual-core processor running at 2.80 GHz, with 2 GB of

main memory. All the PCs are interconnected with a Gigabit

Ethernet network. For the purposes of the performances

evaluation we decided to not perform any rendering, in this

way all the computational power is devoted to simulation,

communication and to maintain the P2P infrastructure.

Scalability: The rationale behind this test is to evaluate

the performance improvements obtained by increasing the

number of peers. Thus, the question we would like to answer

is: is the communication overhead, due to peers’ interaction,

dominated by the computational power provided by peers?

The interaction between peers is a direct consequence of

the fact that exchanging information between peers (e.g.,

actor positions, events, transitions across regions) is usually

needed. The efficiency of the system is measured by evaluat-

ing the completion time of 500 simulation steps. We ran the

simulation described above with 1, 2, 4, 8, 12 and 16 peers

(each peer is executed on a dedicated PC), in order to depict

the scalability trend of our architecture. Figure 2 depicts

the obtained results: the top chart shows both the mean

(diamonds) and the maximum/minimum values registered

during the tests. The bottom chart depicts a comparison

between the average simulation times against the optimal

linear speedup. The tests show that our schema presents
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Figure 2. Simulation duration: (top) average and boundaries (bottom)
compared with the optimal linear speedup.

almost linear scalability. However, as the number of peers

increases, the gap between the results achieved by our

architecture and the ideal speedup grows. We conjecture

that this trend is due to the fact that in throughout the tests

we used the same granularity of decomposition (64 regions)

while, in order to obtain better performances, the granularity

of the decomposition should be tuned in such a way that the

ratio between the number of regions and the number of peers

is constant.

Time distribution: The second test is focused on how

the whole simulation time is spent by each peer involved in

the computation. In this test the number of peers involved

into the computation is always 16 while the number of

simulation step is 1000. Our purpose is to determine how ef-

fective is the straightforward load balancing strategy adopted

by our architecture and how much unbalanced distributions

may affect the whole completion time. In order to evaluate

the load balancing we compute, for each peer, the total

computation time spent. By extrapolating this time from the

whole simulation time we obtain the idle time (that is, the

time spent for both communication and synchronization).

The results show that the computation time spent by the

peers during the computation is pretty variable. In order to

provide the reader a better perception of the results, we show

the time measures obtained by two simulations which reflect

the best and the worst observed case. In Figure 3 each bar

represents a peer, the dark portion of each bar represents the

computation time.

Even in the best case (cf. Figure 3 (top)) we observe

that more than 70% of the whole computation time is

executed by only 5 peers. The best case simulation took

1198 seconds while the worst case took 3208 seconds; we

also run a test of pure computation on a single PC without

the P2P infrastructure and we measured, under the same

circumstances, a running time of 2820 seconds. We also

observed that the load unbalancing is not only due to an

unbalanced distribution of regions to the peer. Indeed, the

computation time required by each region is different and

varies during the computation.

As said before the idle time comprises: (i) the commu-

nication time, which represents the time needed to deliver

the state of the region after the computation of each step.

This time does not depend on the workload distribution and

is equal for each peer; (ii) synchronization time, that is the

time spent by each peer waiting for slower peers. The latter

time strongly depends on the system load balancing. We

can estimate the communication time by considering the idle

time of the most loaded peer. This peer has synchronization

time close to 0 because it is always the last peer to complete

the simulation step. Let us consider the second bar (from

left) in Figure 3 (down): the communication overhead for

the peer that obtained such performance, and consequently,

for each other peer in the simulation, is only 38 seconds.

As a result we have that the synchronization time represents

a very big portion of the idle time. This consideration

explains why the completion time is strongly influenced by

the workload distribution.

Discussion: The tests show great variance of the system

performances; nonetheless it is possible to see some poten-

tialities of such architecture: in each of the test setting we

had really fast simulation runs, together with slow runs. The

running time is influenced by uneven load distribution and

how to measure such a load can be a serious issue. It appears

that the number of regions per peer is not correlated with the

measured performance (see the first two bars in bottom part

of Figure 3). More sophisticated load balancing techniques

need to take into account the number agents each peer has

to simulate.

IV. CONCLUSION

DMSEs, due to their scalability requirements, appear to be

a natural application for P2P architectures. However DMSEs

are quite different from classical P2P applications which

are mainly devoted on sharing files as well as storages. On

DMSEs the shared resources consist of CPU cycles while

the purpose of the architecture is to maintain a distributed

data storage (that represents the state of the simulated

environment) keeping the latency as small as possible.

We presented an infrastructure that implements a DMSE

and tests to assess the performances of such DMSE. We
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Figure 3. The figures depict how the simulation time is spent by each
peer involved in the computation. The total simulation time is split into:
computation time, time spent by the peer simulating a region of the map;
and idle time (shown shaded) which comprises both the communication
and synchronization time. Two cases are showed which corresponds to:
(bottom) the worst case (maximum unbalancing); (top) best case occurred
during all the tests. It is reported the number of region associated with each
peer.

addressed and solved, in a totally distributed manner, the

four main aspects of such architecture: world partitioning,

world state propagation, synchronization and load balancing.

The tests revealed that the architecture presents a quite

good scalability, the communication overhead due to the

peers interaction is dominated by the computational power

provided by the peers. Unfortunately, such scalability is hard

to achieve because of variability of the load balancing. A rea-

sonable next step is to address the problem of load balancing

by employing more sophisticated techniques, the challenge

is to obtain such balancing in a distributed manner, without

relying on a centralized load balancer. Preliminary results

show that, in the most desirable situation of a balanced

workload, the system obtains significant improvements in

the measured performances.
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