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Abstract—The quality of data is essential when it is used for 

digital twin purposes. Nevertheless, in rural areas with limited 

energy, the periodicity in data forwarding can be challenging. 

This paper assesses an event-triggered algorithm based on the 

variation between the current sensed data and the last sent 

data. Specifically, thresholds are optimised to determine the 

data forwarding for a rainfed agriculture monitoring network. 

The thresholds are optimised using a metric that combines the 

energy efficiency and quality of data in terms of the percentage 

of packets saved and the error between the real value and the 

digital twin value. This has been conducted for soil moisture 

sensors located at different depths and soil temperature 

sensors. Once the thresholds have been optimised, with values 

of 2 ºC for soil temperature and 0.25 % for soil moisture 

sensors, the saved packets are considered. These thresholds are 

applied to other similar nodes located in different areas. The 

results indicate that while the amount of sent packets is 

similar, ranging from 953 to 1269, the errors are highly 

variable. The saved packets represent a saving in packets that 

ranges from 82 to 86 %. This can be explained by the 

differences in temperature and soil moisture changes and 

trends among different sensors located in different places. 

Thus, these results suggest that adaptable tresdhols should be 

provided that automatically adapt to the conditions of the 

monitored site. 

Keywords- Soil moisture; soil temperature; agriculture; 

sensor. 

I.  INTRODUCTION 

In dryland agriculture, where irrigation is impossible, 

management activities rely exclusively on environmental 

monitoring to anticipate crop needs, estimate yields, and 

predict pathogen attacks [1]. However, due to the energy 

limitations inherent to remote sensors—powered by 

batteries or small solar panels—continuous measurements 

and transmissions threaten the autonomy of the network [2]. 

Typical rainfed crops include cereals, such as wheat and 

barley, pulses, olives, and dryland vineyards, whose growth 

and health are highly dependent on variations in humidity 

and temperature. 

Digital twins emerge as a strategic tool by integrating 

sparse field data, weather forecasts, and process models to 

estimate unobserved variables and forecast future states, 

thus compensating for informational gaps [3]. Their 

capabilities are further enhanced with Artificial Intelligence 

(AI) techniques, enabling real-time optimisation of 

parameters, such as irrigation, fertilisation, soil moisture, 

and quality, particularly relevant in water-scarce or 

sustainable agriculture contexts [4]. 

Moreover, different digital twin modelling approaches—

from physical and agent-based to hybrid and spatial 

models—are used to monitor key crop variables, such as 

soil moisture and climatic conditions [5]. Recent projects 

integrate these models with soil sensors, Global Positioning 

System (GPS) data, and predictive algorithms, enabling 

precise recommendations and simulations that optimise 

water and pesticide use [6]. In this regard, recent initiatives 

have expanded applications in Mediterranean dryland 

systems [7], developed frameworks for sustainable water 

management [8], applied hybrid AI–sensor models for 

pathogen prediction in vineyards [9], and implemented 

Geographical Information System (GIS)-based approaches 

to map soil heterogeneity in olive groves [10]. 

Wireless Sensor Networks (WSNs) form the backbone of 

monitoring infrastructures in these scenarios [11]. The 

design of WSNs—considering communication protocols, 

sampling frequency, and power management—is critical to 

balancing data quality and energy consumption. However, 

deploying Digital Twin (DT) in agriculture faces significant 

challenges in data acquisition due to environmental 

heterogeneity (geographic and climatic variability) and high 

sensor installation and data transmission costs, which hinder 

adoption, especially in rural or hard-to-reach areas [12]. 

Furthermore, there are concerns regarding infrastructure 

investment, technical complexity, data privacy, 

environmental impacts (e-waste), and technological access 

disparities in rural zones [13]. 

Event-triggered algorithms are a practical approach to 

saving energy in WSNs. Instead of sampling and 

transmitting data at fixed intervals, sensors activate only 

when significant changes or events occur, reducing 

unnecessary transmissions [14]. These algorithms can adjust 

sampling rates based on battery levels or data importance, 

preserving energy while maintaining meaningful data 

streams [15]. 
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Evaluating the performance of these strategies requires 

metrics that quantify information loss due to skipped 

transmissions [16]. Unlike packet loss metrics, these focus 

on discrepancies between the DT's estimated data and the 

actual environmental state, with standard measures 

including the Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE). 

The aim of this paper is to evaluate the performance of an 

event-triggered algorithm to balance energy consumption 

due to sent packets and errors in information stored in a 

digital twin in the framework of an agriculture project. The 

algorithm will be optimised by adjusting the thresholds used 

to define data forwarding. The algorithms will be applied to 

different nodes which are part of a WSN for a rainfed 

agriculture field. These sensor nodes include soil moisture 

sensors and soil temperature sensors. 

The rest of the paper is structured as follows: Section 2 

summarises the current uses of event-triggered algorithms. 

The proposal and used metrics are fully described in Section 

3. Meanwhile, Section 4 analyses the obtained results. 

Finally, the conclusions are outlined in Section 5. 

II. RELATED WORK 

Several studies have explored event-triggered sampling 

techniques to reduce energy consumption in WSNs for 

agricultural monitoring. Lozoya et al. demonstrated a soil 

moisture monitoring system where sensor nodes transmit 

data only upon detecting significant changes, achieving 

substantial energy savings compared to periodic sampling 

[15]. 

Similarly, Gatschet designed and evaluated a multi-hop 

communication protocol based on event triggers, which 

selectively forwards data only when local environmental 

events occur, enhancing energy efficiency and reducing 

network traffic [17]. Yu et al. investigated event-triggered 

distributed state estimation, where sensors send updates 

only when the estimator error exceeds a threshold, balancing 

estimation accuracy with communication overhead in 

precision agriculture applications [18]. 

Recently, Li et al. developed an event-triggered routing 

protocol (EEWRP) that combines energy-efficient 

forwarding with selective transmission, prolonging network 

lifetime while maintaining data fidelity [19]. 

Furthermore, Wright and Davidson clarify the distinction 

between models and digital twins, highlighting metrics, 

such as MAE and RMSE to assess data fidelity, helping 

evaluate the impact of reduced sensing on digital twin 

accuracy [16]. 

The OpenTelemetry Metrics Data Model provides a 

standardized framework for defining and comparing data 

quality and information loss metrics, facilitating consistent 

evaluations across different deployments [20]. 

Regarding event-triggered algorithms applied to digital 

twins, Viciano-Tudela et al. proposed an algorithm where 

variations in all measured values are compared with the last 

transmitted values to determine whether data should be sent; 

even if only one variable changes, all variables are sent [21]. 

Originally applied to water quality monitoring nodes, this 

work is adapted to soil monitoring nodes, with more stable 

variables and metrics to optimize the transmission 

thresholds. 

The main differences between existing proposals and the 

present work are the use of algorithms for soil data and their 

use for the digital twin. The spatial and temporal 

heterogeneity in soil data strongly differs from other media.  

III. PROPOSAL 

In this section, the description of the proposed algorithm, 
along with the system in which it has been implemented, is 
shown. First of all, the overview of the system is detailed. 
Then, the studied parameters and sensors used for their 
monitoring are described. Finally, the proposed algorithm is 
depicted.  

A. Proposal overview 

In the project AGRICULTURE 6.0 framework, a digital 
twin has been proposed for rainfed crops. This digital twin 
aims to provide a valuable tool for farmers to remotely 
monitor and assess the effects of different actions in their 
production fields. Additionally, the visualisation of this data 
can be highly valuable for multiple actors, having a great 
variety of benefits from collecting valuable scientific data to 
becoming a tool for social education. Thus, it is necessary 
that data from the digital twin clearly identifies and reflects 
the tendency of data in real fields. Nevertheless, the 
restrictions on energy consumption of sensor nodes demand 
the application of even-triggered algorithms to reduce energy 
consumption. The global framework of the project and its 
relation with energy-efficient algorithms can be seen in 
Figure 1.  
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Figure 1.  Framework of the proposal and requirements of event-triggered 

algorithms. 

B. Sensors and monitored parameters 

In rainfed crops, the available water content in the soil 
becomes critical to evaluate the potential yield or the harvest 
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moment. Thus, it is one of the key aspects to be evaluated. 
Nevertheless, soil moisture is variable over time and in 
space, both horizontally and vertically. In the top part of the 
soil, the water moisture changes throughout the day due to 
dew and evapotranspiration. Moreover, changes in soil 
composition and local orography strongly affect soil 
moisture distribution. Therefore, monitoring soil moisture at 
a single point is inadequate when generating a digital twin, 
since it does not reflect the soil moisture variance in the 
field. 

Commercial sensors provided by Plantae have been used 
to collect data presented in this paper. Two types of sensors 
have been used. On the one hand, one sensor can monitor 
soil moisture at 5 and 30 cm depth has been used. On the 
other hand, 6 sensors monitor soil moisture and soil 
temperature. Sensors have been configured to gather and 
forward data every 20 minutes. A total of 7 sensors have 
been deployed in a rainfed field during a growing season. 
The data used in this paper corresponds to 100 days of data, 
from February to May.  

C. Algorithm and metrics 

The algorithm evaluated in this paper has been 
previously described in [19]. It is an event-triggered 
algorithm that compares the current value of sensed variables 
with the last sent value to each digital twin. The gathered 
value must be forwarded when the variation between the data 
stored in the digital twin and new data from reality surpasses 
a given threshold. Even though only one of the monitored 
parameters has surpassed the threshold, all values (soil 
moisture at 5 cm and soil moisture at 30 cm or soil moisture 
at 5 cm and soil temperature at 5 cm) will be sent.  

The novelty in this case is the adjustment of threshold 
values to minimise the energy consumption while keeping an 
adequate representativity of real data in the digital twin. We 
will consider these values for soil moisture at 5 cm, soil 
moisture at 30 cm and soil temperature at 5 cm.  

We will include the number of sent packets, the 
percentage of packets saved, the average relative error, and 
the accumulated error as metrics. The number of sent packets 
is the accumulated packets each sensor sent when the event-
triggered algorithm indicated that a variation occurred and 
data should be sent. The percentage of packets saved is the 
number of sent packets divided by the number of packets 
when no algorithm is used, which is the number of times that 
data are gathered. Average error is the average of the 
differences between the real value and the value of the 
digital. Finally, the accumulated error is the sum of the 
individual errors.  

A combined metric is proposed to assess the best 
configuration and threshold for the algorithm. This metric 
combines the normalised average error of both parameters 
measured by a sensor and the normalised percentage of sent 
packets. The formula can be seen in Eq. (1) 

 

𝑀𝑒𝑡𝑟𝑖𝑐 =  

𝐸1 + 𝐸2 

2
+ 𝑝  

2
 

 

(1) 

where Ê1 and Ê2 are the normalised errors of parameters 1 
and 2, and p̂ is the normalised percentage of sent packets.  

D. Metric value optimisation process 

Different thresholds will be considered for the different 
sensors to assess the best thresholds to optimise the metric. 
Values assumed for the thresholds to calculate metrics are 
given in Table 1. 

TABLE I.  VALUES FOR THE THRESHOLDS TO CALCULATE METRICS  

Table Head Temperature Soil Moisture 

1 5 5 

2 4 2.5 

3 3 1 

4 2 0.75 

5 1 0.5 

6  0.25 

7  0.1 

8  0.01 

 
The maximum admissible threshold for temperature is 

5ºC, while for soil moisture is 5%. Minimum assessed 
thresholds will be given by the resolution of the sensors, 
which are 1 ºC for temperature sensors and 0.01 % for the 
soil moisture sensors. Metrics will be calculated for one node 
with temperature and moisture sensors, and the node with 
both soil moisture sensors. 

IV. RESULTS 

In this section, the obtained results are presented and 
analysed. First of all, the errors obtained and the number of 
packets sent to the sensor nodes used for the metric 
calculation are shown. Then, the results in metrics are 
analysed to determine the optimised values to be used as 
thresholds. Finally, the comparison between real field data 
and other sensors' digital twin is provided.  

A. Trade-off summation of normalised errors and 

percentage of saved packets 

First of all, we present in Figure 2 and Figure 3 the trade-
off between the obtained summation of normalised errors Ê1 
and Ê2 and the percentage of saved packets. These values 
have been calculated for the node with two soil moisture 
sensors, Figure 2, and one node with soil temperature and 
soil moisture sensors, Figure 3.  
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Figure 2.  Comparison between the summation of errors and saved packets 

for a node with two soil moisture.  
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Figure 3.  Comparison between the summation of errors and saved packets 

for a node with soil moisture and temperature sensors.  

Both graphics show similar trends, indicating that the 
lowest errors are achieved with the lowest percentage of 
saved packets. This indicated the need to use the proposed 
metric to assess the best threshold configuration. Meanwhile, 
some differences can be seen. While errors approach 0 in the 
case of the node with soil moisture sensors, the node with 
soil moisture and temperature sensors has higher errors. This 
is caused by the different bit resolution of the temperature 
sensor, which causes greater errors.  

B. Values of the calculated metric 

In this subsection, we analyse the obtained values for the 
metric for both nodes. The optimisation has reached the 
lowest value of the metric. In Figure 4, we display the values 
for the soil moisture sensors. In this graphic, it is possible to 
see the different impacts on the metrics for the thresholds 
used for both soil sensors. We can identify that the impact on 
the metric is different for each sensor. The impact is greater 
for the sensor located at 5 cm, as can be seen if we compare 
the value of the metric of the two pairs of thresholds. For 
example, when treshodls of 5 and 2.5 are used (5 cm sensor 
and 30 cm sensor), the metric value is 0.39, while when the 
treshodls are 2.5 and 5, the metric decreases to 0.34. This 
tendency is also reflected in the lowest values of the 
thresholds. The metric for thresholds 0.01 and 0.1 is 2, and 
for 0.1 and 0.01 is 2.1. These results make sense given the 
greater variability of the sensor located at 5 cm. Thus, this is 
the sensor that requires a greater accuracy in the digital twin 
and thus a lower threshold. Nevertheless, when reaching the 
centre of the distribution of the metric, when thresholds are 
0.75 to 0.25, the tendency is the opposite. The optimised 
thresholds according to the metric are 0.75 and 0.25 for 5 cm 
and 30 cm soil moisture sensors. In this case, the value of the 
metric is 0.053.  

The obtained metric values for the node with soil 
temperature and soil moisture sensors can be seen in Figure 
5. As stated before, the errors are higher in this case, and 
thus, the values of metrics are greater than in the case of the 
node with the two soil moisture sensors. The minimum value 
for the metric is 0.185, which is almost three times the metric 
achieved with the other node. This metric is achieved when 
thresholds are set at 2 for the temperature sensor and 0.25 for 
the soil moisture sensor.  
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node with two soil moisture sensors. 
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C. Application of the optimised threshold for other nodes 

Following, the obtained errors in terms of MAE and 
Mean Relative Error (MRE) for each parameter in the other 
sensors are shown. Concerning the MAE, Figure 6 shows 
that there are high differences in temperature MAE among 
different nodes and apparently low differences in moisture 
MAE.  

Nevertheless, when data is analysed as MRE, see Figure 
7, it is possible to see that these differences are strongly 
intensified. There is one particular sensor for which the 
MREs are lowest. Obtained MRE for the node used to 
optimise the thresholds are 0.52 and 9.8 % for soil moisture 
and soil temperature; for this particular node, the values are 
0.08 and 0.92 %. This might indicate that the location in 
which this sensor is placed has different characteristics. 
Thus, for an efficient use of trehsodols in event-triggered 
algorithms for data management, these should be adjusted 
and adapted to the different situations.  

The number of packets in the nodes used to evaluate the 
performance of the optimised thresholds is 1246, 995, 1269, 
1022, and 953 for nodes 3945, 3944, 3953, 3957, and 3858. 
Suppose a saving in packets from 82 to 86%. Thus, the 
differences in MRE are not caused by differences in the 
number of sent packets.  
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Figure 6.  MAE for temperature and moisture data in other cases when 

optimised thresholds are used. 
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Figure 7.  MRE for temperature and moisture data in other cases when 

optimised thresholds are used. 

D. Comparison of data in the digital twin with real values. 

Finally, the comparison of real data with information 
stored in the digital twin for the nodes 3957 and 3953 is 
presented in Figure 8. Figures 8 a) and 8 b) represent the real 
data for the location of nodes 3957 and 3953, respectively. 
Meanwhile, information of subfigures 8 c) and 8 d) 
represents the data stored in the digital twin for both 
locations (3957 and 3953). It is possible to see that the 
differences between real data and information stored in the 
digital twin are minimal.  

In this case, a potential explanation of the differences 
observed in previous values of MAE and MRE can be 
provided when visualising the data. In location 3957, the 
variation of soil moisture has been minimal compared with 
the location of node 3953. Since the value of soil moisture 
has been more stable, variations are expected to occur 
slowly, and values have become stable over time. This might 
provoke that MAE and MRE for soil moisture have been 
strongly decreased. The trend in temperature is not as visible 
as in the case of soil moisture, but fewer changes occur, 
explaining the lower MRE and MAE in temperature. 
Combined with the highest value of soil moisture, this 
situation is highly compatible with a node located in a region 
at the bottom of a depressed area. In these areas, soil 
moisture tends to accumulate, and surrounding orography 
reduces the variation of temperature, mainly in the winter, by 
protecting the area from the cold winds.  

With this information, it is clearer that the location of the 
node is remarkable and should be considered for the event-
triggered algorithms.  
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Figure 8.  Example of data in the real field and in the digital twin. 
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V. CONCLUSIONS AND FUTURE WORK 

Having high-quality data in digital twins is necessary to 
obtain accurate models and predictions. Nevertheless, the 
quality of data has a direct impact on sensor energy 
consumption. Thus, adequate energy management should be 
conducted by event-triggered algorithms.  

This paper analysed the importance of optimising the 
thresholds used in the event-triggered algorithms and 
provided a metric to balance errors and energy efficiency. In 
addition, our results suggest that establishing a general 
threshold for all the nodes that share the same sensors might 
not be the best solution, and having adaptable thresholds can 
improve the results obtained. 

In future work, we will propose and evaluate different 
methodologies to automatically recalculate these thresholds 
at the edge. Moreover, the integration of this information 
with data received from multi-point cloud and other inputs 
for the digital twin will be assessed.  
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