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Abstract—As the development in the automotive sector is
facing upcoming challenges, the demand for in-vehicle computing
power capacity increases and the need for flexible hardware
and software structures arises, allowing dynamic managament
of resources. In this new scenario, software components are to
be added, removed, updated and migrated between computing
units. To isolate the software components from each other and
allow its orchestration, a container-based virtualization approach
is being tested throughout this research. The analysis focuses on
the question if this virtualization technology could be an option
to ensure an interference-free operation. Four different sample
applications from the automotive environment are tested for their
susceptibility to resource contention. The research on the one
hand shows that CPU and memory used by an application can
be largely isolated with this technology, but on the other hand, it
becomes apparent that support for I/O-heavy usage is currently
not implemented sufficiently for container engines.

Keywords—container-based virtualization; resource manage-
ment; resource isolation; stress testing

I. INTRODUCTION

The automotive sector is facing an upcoming unprecedented
redesign of vehicles. Besides the introduction of new electrical
propulsion systems, the achievement of higher levels of driving
automation and the development of the connected car are
driving the conversion of vehicles into computers on wheels.
Thus, on the one side, the use of deep learning and AI to drive
a vehicle requires a massive computer power combined with
safety redundancy and high availability. On the other side, the
use of a huge quantity of sensors and the interconnectivity
with a variety of IoT-based devices demands new flexible and
dynamic architectures.

The desired flexibility and processing capacity therefore
requires a fundamental revision and redesign of the actual
in-vehicle system architectures. In the research project A3F
(Ausfallsichere Architekturen für Autonome Fahrzeuge – fail-
safe architectures for autonomous driving vehicles), in which
the Regensburg University of Applied Sciences (Ostbayerische
Technische Hochschule Regensburg) takes part, evaluates new
concepts for future vehicle system architectures [1]. The
focus is on well-known distributed computing architectures in
current enterprise IT and data centers that have similar issues
and face similar challenges. Dynamic and flexible application
architectures in this area have been developed decades ago

by means of technologies, such as virtual machines and
containers.

Within the A3F project, new architectures for the in-vehicle
computation system are conceived through the analysis of
multi-node homogeneous computer cluster structures. This
new approach to a flexible and dynamically managed hardware
platform, on which distributed performance-intensive appli-
cations can be executed and orchestrated, employs high per-
formance server nodes and reconfigurable Ethernet switches,
as shown in Figure 1. The generic server nodes execute
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Figure 1. New architecture based on a computer cluster with redundant
network connection, investigated within the project A3F.
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performance-demanding applications and provide for a flexible
and extensible Software architecture. The reconfigurable Eth-
ernet switches are responsible for maintaining and optimizing
the network interconnectivity inside the cluster by rerouting
the connections in real time. Other complementary hardware,
such as real-time control functions, actuators, sensors and
gateways for bus systems, are executed on their own dedicated,
custom-tailored hardware, which are connected to the cluster
and expose their signals via software services. This hardware
architecture, however, falls out of the scope of this paper,
and will thus not be discussed further. Instead, in the present
pages the complementary designed software architecture, its
framework and implementation challenges will be covered.

The rest of the paper is structured as follows: in Section II,
the overall approach to the proposed system architecture
is described and the formulation for its implementation is
provided. The underlying important role of the isolation for
the implementation of such architecture will be conferred in
Section III. Section IV outlines the setup of the conducted
tests, the results of which are depicted and analyzed in Sec-
tion V. Finally, in Section VI, the findings of this investigation
will be discussed.

II. BACKGROUND

In recent decades, the size and complexity of the available
software components in vehicles have been increasing dra-
matically [2]. So far, however, vehicles have been equipped
with software configured in a static manner and dependent on
dedicated hardware. Dependencies between software compo-
nents are configured and validated at design-time. Subsequent
changes, such as software updates or even new software
components have therefore been cumbersome and expensive.
The current, statically developed and configured ECU topol-
ogy does not offer any practicable possibilities for dynamic
changes at runtime.

In the years to come, in order to achieve the upcoming
challenges of the automotive industry the size and complexity
of both existing and new software components will have
to grow exponentially. In addition, the safety in the vehicle
will rely more and more on the efficient and uninterrupted
performance of these components, whose role will be gaining
importance increasingly. Thus, to be able to optimize the
processing capacity available in hardware and to provide
fail-safety features, the software architecture has to be re-
conceptualised.

A. Flexible Software Architecture

Today, many algorithms of modern in-vehicle functions
primarily require high processing speeds, but are not de-
pendent on specific surrounding hardware and can be exe-
cuted on generic processors. Examples of these algorithms
are multimedia applications, algorithms for image processing
and geolocation services or calculations for optimal vehicle
speeds and routes. Furthermore, dedicated hardware such as
sensors and actuators may be exposed by a service-oriented

architecture and are thus available to the software components
on every computing unit.

In addition, today’s users expect software in the vehicle to
be easy to update and upgrade, the same way as in their mobile
devices. A simpler software update capability, as illustrated
in Figure 2, also ensures that vehicle manufacturers will no
longer have to pay costly workshop visits or recalls, and
enables them to integrate security-relevant, error-repairing or
simply function-enhancing software updates with little effort.
In the same way, software update capability would enable the
possibility to have an application market, like those from the
mobile world in which the user could download third party
software, allowing also to import its business models.

To address the new demands, the project A3F approaches
the inclusion of flexibility and dynamism to the automotive
software architecture by the adoption of available technologies
used for distributed computing systems in data centers. On
the one side, container-based virtualization is being tested
to provide an encapsulation of the different software com-
ponents and to introduce an abstraction layer between them
and the hardware. Software components are thereby largely
independent of the hardware used, being executed isolated
inside a minimal virtualized operating system, called container,
which in turn is run on a container engine. On the other
hand, an orchestration tool is employed to provide container
management, automating the deployment process and besides
enabling the implementation of additional features that ensure
fail-safe operation.

Within the research of the project A3F the technologies
Docker [3], for the container-virtualization, and Kubernetes
[4], for the orchestration, are currently being tested. These
have been chosen due to the widespread acceptance in the
IT sector and the vast amount of compatible tools. Since
Kubernetes is based on Docker, the adequacy test of these
technologies have to be firstly and mainly focussed on the
adequacy of Docker to meet the challenges. This work is
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Figure 2. Layered diagram of a flexible software architecture with live
software update capability.
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focused in the analysis of one crucial aspect of the adequacy
of the Docker technology for the automotive field.

B. Formal Description

One of the central aims of the research in the A3F project is
to determine which computing resources have to be taken into
account when orchestrating multiple software components in
a cluster-type architecture. In order to simplify the analysis,
in this study every application is considered to be deployed
once.

Below, a mathematical formulation for this problem (cf. [5])
is provided.

Given:

• A set of applications A:

A := {a0, a1, . . . , aN−1}, |A| = N

• A set of computing nodes B:

B := {b0, b1, . . . , bM−1}, |B| = M

• Each application requires a certain amount of resources:

aCPU
i , aRAM

i , . . . ∀ ai ∈ A, 0 ≤ i ≤ N − 1

• Each computing node has a certain resource capacity:

bCPU
j , bRAM

j , . . . ∀ bj ∈ B, 0 ≤ j ≤M − 1

Find:

• Allocation matrix Mij ∈ [0, 1] in which Mij = 1 if
application ai is allocated to computing node bj .

Constraints:

• The application’s resources allocated on each node may
not exceed the node’s capacity:∑N−1

i=0 (aCPU
i ) ·Mij ≤ bCPU

j , . . . ∀ bj ∈ B

• Each application has to be allocated exactly once on
each nodes:∑M−1

j=0 Mij = 1 ∀ ai ∈ A

This problem is known to be NP-hard [6]. There are
several well-researched sub-optimal solutions, such as bin
packing heuristics [7]. For a list and comparison of some of
the algorithms, the reader is directed to [5]. However, one
issue remains somewhat unanswered throughout the literature,
namely which resource metrics need to be taken into account.

Most of the contributions in the literature dealing with
the problem described above focus on only one type of
resource (such as CPU [8] or memory [7]). In this sense, this
contribution addresses the question of how strongly interfer-
ences between software components with respect to different
resource types affect the runtime of these. And subsequently,
the question will be examined as to how well mechanisms for
performance isolation function.

III. PERFORMANCE ISOLATION

When investigating the effectiveness of performance isola-
tion mechanisms, the first thing to do is to find out which
interferences already can be avoided with today’s technolo-
gies. Therefore, two different available performance isolation
mechanisms for contention of the CPU in container-based
virtualization are analyzed and their impact with regard to five
metrics (CPU, RAM, Cache, I/Os and Network) is measured.
In the following section, first the theoretical background is
explained, what we understand by interference, where it comes
from and why and how to avoid it. Thereafter, the technologies
that will be investigated in this research are presented together
with our expectations and hypotheses for our experiments.

A. Interference

An essential aspect when operating multiple software com-
ponents on shared hardware is to ensure that they are free of
interferences. Interferences could be caused by, for example,
contention among co-located workload for shared physical
resources (such as CPU, network, and cache). It must be
ensured at design-time that each application can access the
required resources with the necessary frequency, with the nec-
essary amount of time in order to guarantee an unobstructed
operation. As for a single application, this might be ensured
by isolating the application as if it were running on dedicated
hardware. This is also known as performance isolation.

Efforts have been made to model and predict this interfer-
ence by various means [7]–[9]. However, these approaches
focus mainly on IT and data centre environments. For exam-
ple, in [7], a distinction is made between “latency-sensitive”
software components and “batch”, whereby the “latency-
sensitive” applications are directly user-facing and therefore
have high QoS requirements, which manifests themselves in
a low latency tolerance. This differentiation is mainly based
on the consideration that there is a trade-off between QoS
requirements and resource efficiency.

This trade-off must of course be assessed differently in
vehicles than in IT due to the much more catastrophic effects
that would result if QoS were not met. Although it is difficult
to quantify these effects in general terms, especially at this
early stage of development, one can qualitatively say that the
effects of non-compliance with QoS are more catastrophic
than in IT. The situation in vehicles is not foreseeable at
this stage. At the same time, our development strategy is to
first design a system that works conceptually. The system can
then be optimized for resource utilization at a later point in
time. These are reasons why this paper follows the approach
that interferences between software components should never
be tolerated. Instead, applications should be isolated in such
a way that interferences cannot occur in the first place. In
this way, latencies of software components can be reliably
predicted.

To meet this goal, the use of a container engine is analyzed
in this project. Container-based virtualization provides an easy
way to limit the resource consumption of an application and
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also meets the requirements of our proposed flexible software
architecture. The interference between applications running
inside such a resource-constrained environment are measured.
For this, we run the applications while the system is put under
stress by overloading certain resources. Resource contention
has to be deliberately brought in to see if the limitation works.
This is done through an application that is referred to here as
a “stressor”.

B. Container-based Isolation

Within the research of the project A3F the platform Docker
is being used for isolation between software components. It
allows different mechanisms for the limitation of the resources
allocated to a container. As for resource isolation, Docker
builds upon two mechanisms: cgroups and namespaces. Both
are native Linux kernel services. Namespaces allows to create
isolated virtualized system resources such as process IDs,
network access, file system, etc. Cgroups provide a mechanism
to limit processed resources. However, since all containers
share the same host OS kernel and rely on functions within
the kernel, the overhead for managing the containers increases
with the number of containers. This affects and degrades
the performance of the containers itself, especially for I/O-
intensive workloads [10]. This problem is not limited to
containers, but affects all general purpose operating systems
[11]. This already highlights one big problem regarding the
consolidation of containers on a computing node.

In addition, as stated in [10], any resources that do not
support concurrent use will cause a major bottleneck in the
host OS kernel, because concurrent access to these resources is
enabled and managed by the mentioned host OS. Consequently
the generation of a very large number of interrupts under such
loads results in the other processes being more frequently
preempted. This activity manifests itself in high CPU load
and many context switches for the host OS in order to
serve interrupts. Input-output (I/O) bound applications have
significantly higher overhead, particularly network-intensive
applications. With such workloads, the resource requirements
of the host OS kernel must also be taken into account [10].

C. Hypotheses

Regarding the above effects, we had the following hypothe-
ses for limitation:

1) The limitation should work well for applications that
aren’t very I/O-intensive and less well for applications
with high I/O-requirements.

2) The limitation should work less well for applications that
use a lot of resources that do not support concurrent
access (I/O, CPU, Network).

In order to render the above mentioned effects quantifiable
and thus to support the hypotheses with real data, a test battery
is performed on real automotive applications. This is described
in the following section.

IV. EXPERIMENTAL SETUP

To evaluate the interference of the test applications, men-
tioned in Section IV-B, their execution time is measured
in different cases with respect to different resource metrics.
The general idea is to measure the execution time of each
application while overloading certain resources with our stres-
sor applications. After the completion of the application’s
operations, the stressor is terminated and the execution time
of the application is noted. Each of the different combinations
between the four test cases and the five stressor configurations
was tested 10 times by each of the four test applications, in
order to obtain sufficient quantitative data.

A. Hardware Setup

For the experimentation and testing, several Intel NUC-Kits
were used as generic server nodes, as well as Marvell Ethernet
switches especially designed for automotive requirements. The
NUCs are often employed as examples of homogeneous,
powerful but generic hardware units. They are equipped with
a recent processor (x86-64, 4 cores, 8 MB L3) and 32 GB
of RAM and are connected to each other via redundant
Ethernet network. As operating system they run a distribution
of GNU/Linux, kernel version 4.15.0. This configuration shall
allow individual applications to be run on any node in the
cluster, independently to a great extent of specific hardware.

B. Application Types

In order to get an overview as close to reality as possible,
four software modules from the open platform Apollo [12]
employed to achieve the autonomous driving were tested:

1) Perception: An image-processing application to identify
road signs.

2) Planning: A GPS application to plan routes.
3) Prediction: An application predicting the trajectory of an

object.
4) Controlling: An algorithm, which takes decisions based

on a combination of the outputs of the above applications.

C. Test cases

The software stacks for the four different test cases are
depicted in Figure 3 and 4. In case 1, as shown in Figure 3(a),
the application is run without any limitations and without the
stressor being executed in parallel. In case 2, the application
is run without limitation, but with the stressor being executed
in parallel. This is shown in Figure 3(b). In cases 3 and 4,
a container virtualization layer is introduced, namely Docker,
providing some means of limitation. The capabilities of limi-
tation of workloads incorporated in the Docker engine at this
time include only the CPU and the memory. However, there
are two different CPU limitation mechanisms that are worth a
distinct consideration. On the one side, one may specify the
CPU quota which a container is allowed to use within one
second. This kind of limitation is used in case 3, which is
depicted in Figure 4(a). On the other side, one may bind a
container to one or more specific CPU core, which is used in
case 4 and shown in Figure 4(b).
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Figure 3. Experimental cases without CPU resource limitations.
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Figure 4. Experimental cases with CPU resource limitations.

D. Stress generation

To evaluate the impact of the CPU containment into other
resources, each test case was examined under five types of
external stress, each one affecting a different resource between
CPU, RAM, Cache, IO and Network. The application used to
generate stress (the stressor) is based on stress-ng [13], with
the exception of the one employed to generate network stress,
which uses iperf [14]. In order to provoke the different stress
environments, the stressor application was configured as it is
shown in Table I.

E. Source Code

The source code for the four test applications can be
found at [12]. The source code for all experiments conducted
throughout this paper can be found at [15].

V. RESULTS

The data collected in the tests is presented using box plots
in Figure 5. The distribution of the measured time values
is colored by each experimental case and classified by each
stressor configuration.

The analysis of the data obtained in each of the case studies
points towards the following statements:

a) Comparing the results obtained from case 1 and 2 it
becomes evident that running with contention among
shared resources has a severe impact on application
performance.

TABLE I. CONFIGURATION OF THE STRESSOR WITH
stress-ng AND iperf

Name Stressor Configuration Description

CPU stress-ng -c 25
25 workers spinning on
sqrt(rand())

RAM
stress-ng
--malloc 8
--malloc-bytes 2G

8 workers exercising
malloc()/
realloc()/free()

Cache stress-ng -C 25
25 workers trashing

CPU Cache

I/O stress-ng -d 8
8 workers spinning on
write()/unlink()

Network
iperf3 -c $IP
-w 510M -n 510M

send 510MB of data
to a remote host ($IP)

b) Contrasting the non-limited cases with case 3 and 4, is
clearly visible how the two analyzed limitation options
offered by the platform Docker have a noticeable impact
on the execution time of the applications (with the
exception of the case 3 for the I/O metrics).

c) For all examined metrics, except for I/O, the CPU limita-
tion is the first and foremost valuable kind of limitation,
as all other metrics depend on the CPU resources.

d) Comparing the results obtained from case 3 and case 4 it
becomes evident that running with CPU quota limitation
can indeed mitigate the performance impact, but neither
completely nor satisfactorily.

e) In contrast, the CPU core limitation (case 4) shows
a better performance, but its execution values are still
widely divergent from those of the single execution (case
1).

With regard to statement c), it is also noteworthy that I/O
stress has hardly any performance impact. At this point there
are two potential causes for the lower impact of the I/O
stressor, which have to be considered.

• The stress generated for the I/O metric was not of the
same range as the one caused by other resources. This
may be due to a certain limitation of the stress-ng tool.

• The execution of the analyzed applications do not have
intensive requirement in the I/O resources.

A preliminary analysis of the different impact into perfor-
mance of the CPU quota limitation when compared to the CPU
core limitation, as mentioned in the statement d), suggest two
potential causes to be considered.

• The logic behind the functionality of the CPU quota
limitation is probably creating in runtime a bottleneck,
when the kernel / Host OS is managing CPU resources
for many concurrent accesses. This confirms what we
described in Section II.

• The weak performance of this CPU limitation option is
caused by a bug in a quota option of the process scheduler
Completely Fair Scheduler (CFS), which is the default
scheduler in the Linux kernel [16]–[18]. This bug appears
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Figure 5. Test results for the Perception Application

to be fixed in more recent versions of the Linux kernel
[19], [20].

These potential causes for the observed behaviour of the
CPU quota limitation are uncorrelated between them, which
means that despite the bug was fixed in recent kernel versions,
the quota limitation could still not match the degree of
isolation offered by the core limitation.

VI. CONCLUSIONS

The introduction of cluster-type architectures in vehicles
demands an appropriate encapsulation of the different software
components, which should abstract these components from the
computing unit in which they are running on. This level of
abstraction will enable flexibility and dynamism to the whole
system, allowing to manage applications at runtime according
to their needs. To provide this level of encapsulation the project
A3F studies the applicability of container-based virtualization,
in particular the use of the technology Docker.

To consider the applicability of this type of virtualization
in the automotive field, its fulfillment of the appropriate
restrictive safety requirements has to be ensured. Safety critical
systems have to be able to run uninterrupted getting access to
all the resources they need.

In order to avoid having to distinguish between critical and
non-critical applications and to have to proceed differently for
each case, it was considered in this work that interferences
between software components should never be tolerated.

As observed in test results, to be able to avoid interference
when using container-based virtualization some sort of limita-
tion of resources must be implemented. The limitation of the
CPU seems to be a good choice, due to the fact that it has
a direct impact on the other metrics. This appears not to be
the case for the I/O resources, although it seems this could
depend on test conditions. Nevertheless, a complete and fully
effective containment of the available resources in the host OS

cannot be provided by the Docker technology, or at least not
by the time of this research.

Among the analyzed options, the usage of the CPU core
limitation appears to be the best option to minimize the inter-
ferences between containers, nearing the execution times to the
values obtained without stress. The CPU quota limitation, on
its behalf, can only slightly reduce the interferences affecting
the application but not even closely to the values obtained
with the CPU core limitation. A first analysis points towards
that this may be due to a bug in the internal scheduler of the
Linux kernel, fixed in more recent versions. Therefore forth-
coming researches in this direction to verify this hypothesis
are suggested.

Although Docker seems not to be currently prepared to
provide interference-free performance isolation, it becomes
evident that the introduction of dynamical and distributed
vehicle architectures requires container-based virtualization
solutions to be implemented. Therefore, it will be necessary
that the automotive industry develops its own container-based
platform in order to ensure the complete isolation between the
different software components, key aspect where the fulfilment
of its particular safety requirements will rely on.
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