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Abstract-This paper presents a framework of tempos and 
rhythms to clarify the relevance between psychological states 
and facial expressions, particularly addressing repetitive 
operations of intentional facial expressions after giving a stress 
stimulus. By acquiring image datasets of facial expressions 
under the states of pleasant–unpleasant stimulus for 20 
subjects, we extracted expressive tempos for respective 
subjects. Consequently, averages of extraction rates show that 
the pleasant state was 81.1%. The unpleasant state was 77.8%. 
Regarding effects of pleasant–unpleasant stimulus on the 
expressive tempos, particularly addressing the variation of the 
number of frames constituting one tempo, the variation in 
unpleasant stimulus became greater than that in the pleasant 
stimulus. The results show that the analysis using expressive 
tempos and rhythms is valid as an indicator for estimating the 
psychological state. 

 
Keywords-Psychological measures, stress; Intentional facial 

expression; Machine learning approaches; Behavior modeling. 

I.  INTRODUCTION 
Humans can feel rhythms from all of their personal 

surroundings that are moving, especially any emitting sound. 
Additionally, they feel rhythms from engaging in daily life, 
such as rhythms related to conversation and rhythms of 
human life [1][2]. Among these, biological rhythms are 
based on personal tempos. In other words, personal tempos 
are individual-specific, not derived from physiological functions. 
It has been reported that personal tempos also vary depending on 
environments and moods [1]. In daily life, for behaviors such 
as walking or talking, personal tempos represent individual-

specific speeds, which are expressed naturally in a free- 
action situation without constraint. For a facial expression as 
a daily life behavior, we infer that individual-specific 
rhythms can exist also. 

To clarify the relevance between psychological states and 
facial expressions, we propose a framework of rhythms and 
tempos that specifically examines actions to repeat 
intentional facial expressions after giving a stress stimulus. 
We define one rhythm as one tempo repeated several times. 
In addition, we regard one tempo as the period during which 
facial expressions transform from a neutral face (i.e., 
expressionless) to the next neutral face through the 
maximum number of facial expressions, in a time-series 
variation of Expression Levels (ELs), i.e., labels quantifying 
exposed levels from the neutral face [3]. We use Hidden 
Markov Models (HMMs) [4] of left-to-right type to extract 
expressive tempos. As a method to classify categories 
extracting the occurrence part of patterns from the time 
series data, HMMs are widely used in fields of signal 
processing and speech recognition. They can extract 
expressive tempos, which represent the occurrence pattern 
of exposed intensities. Stress reactions appear in relation to 
biological phases (e.g., changes in heart rate, changes in 
blood pressure), psychological phases (e.g., depression, 
irritability), and behavioral phases (e.g., increase of drinking 
and smoking, fidgety state) [5]. Here, the facial expression 
is classified as a behavioral phase among the stress reactions. 
For this reason, by analyzing the rhythm and tempos that 
appear after exposure to different stress conditions, we infer 
that the inference of psychological states, such as comfort 
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and discomfort, from the changes of individual-specific 
facial expressions will become possible in the future. 

In this study, as the basis for objectively expressing the 
ambiguity and complexity of facial expressions attributable 
to the psychological stress states of human, we propose a 
framework of exposed rhythms and tempos on intentional 
facial expressions. This study might derive the following 
advantages in applications. One familiar case of those is to 
develop a training tool to create an attractive smile that 
hospitality mind is easily transmitted to the customer. 
Foreseeable future, we could be sure that this study is valid 
as new indices for detecting the distraction state of driver by 
time-series changes of eye-gaze and facial expressions. 

This paper is presented as the following. We review 
related work to clarify the position of this study in Section II. 
In Section III, we define a new framework of exposed 
rhythms and tempos for analyzing relations of psychological 
stress and facial expressions. In Section IV, we describe the 
method to capture facial expression images, preprocessing, 
classification of facial expression patterns with self-
organizing maps, integration of facial expression categories 
with fuzzy adaptive theory, extraction of expressive tempos 
using HMMs. We explain our originally developed facial 
expression datasets including stress measurements in 
Section V. In Section VI, we optimize the number of states 
of HMMs by extracting expressive tempos from facial 
expressions and .analyze the transient stress stimulus of 
pleasant–unpleasant effects on the expressive rhythm of 
facial expressions. Finally, we present conclusions and 
intentions for future work in Section VII. 

II. RELATED WORKS 
Open datasets [6][7][8]of facial expression images are 

released from some universities and research institutes to be 
used generally in many studies for performance 
comparisons of facial expression recognition or automatic 
analysis of facial expressions. These datasets contain a 
sufficient number of subjects as a horizontal dataset. 
However, images are taken only once for each person. As 
one of recent researches using these datasets, there is the 
study by Das and Yamada [9]. They used the Cohn–Kanade 
[6] and the Extended Cohn–Kanade (CK+) datasets [7] to 
obtain emotional mixture or percentage composition of 
emotion data, because cross-sectional datasets are valid 
rather than time-series datasets in evaluating stress. The 
CK+ datasets contain Action Units (AUs) coded facial 
image data with lead emotion label for each peak expression. 
Therefore, they considered the peak and few intermediate 
states of each facial expression taking care that the 
difference in intensities is not large enough to represent 
another emotion altogether. Das and Yamada conducted two 
moderate sized surveys to correlate individual emotions to 
stress and to find relationship between predicted emotional 
mixtures of facial expressions and stress levels [9]. After 
predicting emotional composition, they selected facial 
expression images for two surveys. However, the 

respondents were just only instructed to look at the static 
facial image and label the stress levels from 0 to 9 according 
to each individual perception. Consequently, Das and 
Yamada did not carry out analysis that focused on the 
expressive process of individual-specific facial expressions, 
in spite of lurking clue in there. 

In a study particularly addressing the dynamic aspects of 
facial expressions, Hirayama et al. [10] found the kinetic 
period of face parts. They have proposed an expressive 
notation as a representative format that describes the timing 
structure on facial expressions. They were seeking linear 
systems (i.e., modes) to the bottom-up from feature vector 
sequences. The modes represent various motional states or 
stationary states of face parts. For example, in the case of 
the mouth, there are open, remain open, close, and keeping 
closed as elements of mode sets. The method explained by 
Hirayama et al. tracked feature points, i.e., a total of 58 
points is assessed from the outline of the lower half face 
including each eyebrow, each eye, nose, and lips. Then 
using Active Appearance Models (AAMs) [11] for time-
series facial expressions at the beginning, a feature vector 
sequence was obtained for each part of the face. Then, they 
acquired expressive notation of involuntary and spontaneous 
facial expressions based on providing an automatic phrase 
of the mode from the obtained feature vectors. The 
experimentally obtained results show that by particularly 
addressing timing structures of the two expressive notations 
that were obtained, Hirayama et al. analyzed how two facial 
expressions differ. In the analytical results, a difference was 
found in the timing of movement of the muscles between 
lifting the cheek and moving the mouth for two facial 
expressions. Consequently, for describing the timing 
structure of facial expressions, the time resolution of the 
model and the image sequence are set high using expressive 
notation. However, because the spatial resolution of the 
model representing facial expressions is low, analysis of 
differences of the expressive intensities representing the 
intermediate facial expression have not yielded satisfactory 
results. 

Otsuka et al. [12] proposed a method to extract six 
individual basic expressions described by Ekman et al. [13]. 
Modeling the movement of the facial expressions by HMMs, 
which carry out the state transition corresponding to the 
motion of different facial muscles, i.e., relaxation, 
contraction, stationary, and elongation, Otsuka et al. sought 
to recognize the facial expressions by analyzing the motion 
vectors of their surroundings, noticing that AUs of Facial 
Action Coding System (FACS) are distributed around the 
eyes and mouth. In their method, they first obtained the 
motion vectors around the eyes and mouth using the 
gradient method [14] from the facial expression image 
sequences, e.g., facial expressions of two kinds for 20 
subjects. Next, by performing two-dimensional Fourier 
transform in a matrix component of the image, they 
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acquired a time series of 15-dimensional feature vectors. As 
the input time series of the feature vectors, Otsuka et al. 
extracted individual facial expressions by application of 
HMMs of left-to-right type. In this case, the experimenters 
confirmed the determination of true or false facial 
expressions. In a section of actual facial expressions, they 
treated the corresponding facial expression that had been 
extracted as a correct answer. In contrast, they treated the 
following two cases as incorrect answers: when no facial 
expression was extracted; when different facial expressions 
were extracted at once. An extraction rate of 90% was 
achieved in their experimentally obtained results: 40 facial 
expressions were extracted in the 20 subjects. Then, 36 
facial expressions were accurately extracted in them. 
However, it is not always the precise period because being 
extracted represents the start and end points of facial 
expressions. The correctness checker is treated as a correct 
answer when the corresponding facial expression is 
expressed within the period. 

According to the most recent study of the emotion–
expression relationship based on evidence from laboratory 
experiments [15], high coherence has been found in several 
studies between amusement and smiling; low to moderate 
coherence between other positive emotions and smiling. 
Additionally, insufficient emotion intensity and inhibition of 
facial expressions could not account for the observed 
dissociations between emotion and facial expression. 
Furthermore, as a statistical indice of the coherence between 
emotion and facial expression, R. Reisenzein et al. reported 
that the most informative indice was “the average intra-
individual correlation between emotion and expression”. In 
this study, we actively do challenge to elucidate the 
correlations between the expressive process of individual-
specific facial expressions and psychological states, 
particularly focusing on the correlations between pleasant-
unpleasant stimulus and smiling process of intentional facial 
expressions. 

III. FRAMEWORK OF EXPOSED RHYTHMS AND TEMPOS 

A. Facial Expression Levels 
As an index for quantifying the individual facial 

expression spaces, we proposed the framework of 
expression levels (ELs) [3]. The ELs include both features 
of the pleasure and arousal dimensions based on the 
arrangement of facial expressions on Russell’s circumplex 
model [16]. Specifically, we extract the dynamics of 
topological changes of facial expressions of facial 
components such as the eyes, eyebrows, and mouth. Here, 
topological changes show the structure defining the 
connection form of the elements in the set [2]. The ELs 
obtained in this study are sorted categories according to 
their topological changes in intensity from expressions that 
are regarded as neutral facial expressions. As discussed 

above, the ELs in this study include both features of the 
pleasure and arousal dimensions. In Russell’s circumplex 
model, all emotions are constellated on a two-dimensional 
space: the pleasure dimension of pleasure–displeasure and 
arousal dimension of arousal–sleepiness. In the intentional 
facial expressions covered in this study, directly handling 
the facial expressions for the influence of pleasure 
dimension is difficult. Therefore, as a method of measuring 
transitory stress response, we conduct an evaluation using 
the salivary amylase test. Therefore, as a method of 
measuring transitory stress response, we conduct an 
evaluation using the salivary amylase test through the task 
of watching emotion-evoking videos caused a pleasant-
unpleasant state. Focusing on the values of salivary amylase 
activity between before and after watching videos, we can 
effectively perform stress measurements by the salivary 
amylase test to assess the stress state transiently. 
Consequently, we target the intentional facial expressions 
under stimulating states of pleasant and unpleasant. 

B. Definition of Exposed Rhythms and Tempos 
Blair [17] has reported that, for facial expressions, four 

brain domains are mutually related: (1) parts producing 
feelings (insular cortex and amygdala), (2) parts forming 
facial expressions involuntarily (basal ganglia), (3) parts 
embellishing facial expressions according to the 
surrounding circumstances (prefrontal area), and (4) motor-
related areas actually moving mimic muscles. Yamaguchi 
[18] reported that the brain memorizes experiences in a 
rhythm: according to specific brain waves, nerve cells work 
cooperatively, and experiences are memorized. In 
perceptual recognition, it is explained that nerve cells 
function simultaneously according to the gamma waves, 
which are brain waves having quick rhythms. From the 
results of these studies, we infer that the rhythms of nerve 
cells participate in the expressional process of facial 
expressions. As presented in Figure 1, in cases where facial 
expressions are embellished intentionally or spontaneously, 
time-sequential differences exist based on the route through 

 

 
 

Figure 1. Expression paths based intentional and spontaneous facial 
expressions. 
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which facial expressions are revealed. The basis of our 
hypothesis is as follows. According to specific brain waves 
of four brain area, nerve cells of each brain area are used to 
work cooperatively, in the case of the repetition process of 
facial expressions under a pleasant-unpleasant stimulus 
particularly. Mimic muscles is activated by coordination of 
nerve cells with different speed, a unique expression is 
exposed through the individual path of each facial 
expression. 

In this study, using temporal variation of ELs, we intend 
to visualize rhythms and tempos of facial expressions that 
humans create. We defined one rhythm as a tempo that is 
repeated several times. One tempo indicates the period 
during which facial expressions are transformed from a 
neutral state to the next neutral state. Facial expressions 
exposed intentionally by humans form an individual space 
based on dynamic diversity and static diversity of the human 
face [19]. Facial expression dynamics can be regarded as 
"topological changes in time-sequential facial expression 
patterns that facial muscles create." Static diversity is 
individual diversity that is configured by the facial 
componential position, size, and location, consisting of 
eyes, nose, mouth, and ears. In contrast, dynamic diversity 
represents that human can move facial muscles to express 
internal emotions unconsciously and sequentially or to 
express emotions as a message. After organizing and 
visualizing topological changes of face patterns by ELs, we 
attempt to use the framework of rhythms and tempos with 
expressions to express ambiguities and complexities of 
facial expressions attributable to a psychological state. 

IV. PROPOSED METHOD 
Facial expression processes differ among individuals. 

Therefore, Akamatsu [19] described the adaptive learning 
mechanisms necessary for modification according to 

individual characteristic features of facial expressions. In 
this study, our target is intentional facial expressions. We 
use Self-Organizing Maps (SOMs) [20] to extract 
topological changes of facial expressions and for 
normalization with compression in the direction of the 
temporal axis. After classification by SOMs, facial images 
are integrated using Fuzzy ART [21], which is an adaptive 
learning algorithm with stability and plasticity. In fact, 
SOMs perform unsupervised classification input data into a 
mapping space that is defined preliminarily. In contrast, 
Fuzzy ART performs unsupervised classification at a 
constant granularity that is controlled by the vigilance 
parameter. Therefore, using SOMs and Fuzzy ART, time-
series datasets showing changes over a long term are 
classified with a certain standard. Figure 2 presents an 
overview of the procedures used for our proposed method. 
In the following, we describe extraction of time-sequential 
changes of ELs, and also explain detection of expressive 

 

 
 

Figure 2. Overview of the procedures used for our proposed method. 

 

 
 

Figure 3. Procedure details for acquiring a time-series variation of ELs. 
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tempos by HMMs. 

A. Acquisition of Time-series Variation of ELs 
We set the Region of Interest (ROI) to 90 × 80 pixels, including 

the eyebrows, which all contribute to the impression of a whole 
face as facial feature components. With preprocessing, 
brightness values are normalized for time-series images of 
facial expressions. The influence of brightness values 
attributable to illumination conditions is thereby reduced. 
Moreover, smoothing the histogram is useful to adjust 
contrast and clarify the images. In addition, using the 
orientation selectivity of Gabor Wavelets filtering as a 
feature representation method, the facial parts characterizing 
the dynamics of facial expressions are emphasized, such as 
eyes, eyebrows, mouth, and nose. By down-sampling (i.e., 
10 × 10 pixels) time-series facial expressions converted with 
Gabor Wavelets filtering [22], the effects of a slight 
positional deviation when taking facial images are 
minimized. Then data size compression is conducted. 

Figure 3 presents details of procedures for acquiring a 
time-series variation of ELs. First, we use SOMs to learn the 
time-series images of facial expressions with down-
sampling. The face images that show topological changes of 
facial expressions that are similar are classified into 15 
mapping units of SOMs. Next, similar units (i.e., Euclidean 
distances of the weight vectors are close) among 15 
mapping units of SOMs are integrated into the same 
category by Fuzzy ART. By sorting the facial expression 
categories integrated by Fuzzy ART from neutral facial 
expression to the maximum of facial expression, we obtain 
ELs labeled as expressive intensities of facial expressions 
quantitatively. The sorting procedure of integrated 
categories is based on the two-dimensional correlation 
coefficient of the average image of the facial expression 
images classified into each category. Finally, we conduct 
corresponding ELs with each frame of the facial images to 
produce time-series variations of ELs. 

B. Extraction of Expressive Tempos by HMMs 
As a method of recognizing words by estimating 

phonemes from acoustic signals, HMMs were first used in 
the speech recognition field. Takeda et al. [23] performed an 
automatic accompaniment and score tracking of MIDI 
music using HMMs. Actually, HMMs have been established 
as a technique for extracting an occurrence pattern from 
time-series datasets and classifying it as a category. Datasets 
used for this study are directed to time-series facial images, 
an expressive tempo consists of occurrence pattern of ELs. 
Therefore, we use HMMs to extract expressive tempos. 
HMMs are simple Markov models with multiple nodes, 
defined by transition probabilities between mutual nodes 
and output probabilities of multiple symbols from each node. 
By preparing HMMs to extract a target, each HMM is 
trained in the symbol sequence of each training dataset for 

targets. Training of HMMs is useful to estimate two 
parameters of symbol output probabilities and state 
transition probabilities that generate a high probability of 
training symbol sequence. Additionally, using Baum–Welch 
algorithm [24], training is repeated until the parameters 
converge i.e., the change in the output likelihood is 
sufficiently small. The configuration of HMMs used for this 
study is a type of Left to Right, as shown in Figure 4, we set 
the internal state of nodes to S1, S2, · · ·, Sn from left to right. 
Here, S1 is the initial state of facial expressions (neutral 
facial expression), S2 · · ·Sn-1 are the intermediate states, and 
Sn is designated as the final state (maximum value of ELs). 
To obtain the updated values of state probability of Si (i = 1, 
· · ·, n), we define the probability of following equations. 
State transition probabilities (aij) mean the transition 
probability from state Si to state Sj, only the self-transition 
and transition to the right state in Left to Right HMMs are 
permitted. Therefore, the following constraints are satisfied. 

)(0 ijaij <=  (1) 

)(10 ijaij >=<=<=  (2) 

∑ = 1ija  (3) 

Symbol output probabilities bi (O) denote the probability 
density distribution for outputting a symbol sequence O in 
state Si, we use a discrete distribution of allocating 

 

 
 

Figure 4. Configuration of HMMs used for this study 
         (Type of Left to Right). 

 

 
 

Figure 5. Details of experimental protocols. 
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probabilities to discrete symbols that are commonly used in 
the field of speech recognition. 

V. DATASETS 
In this study, we constructed an original and long-term 

dataset for the specific facial expressions of one subject. 
Figure 5 presents details of experimental protocols. One 
experiment comprises three steps, i.e., step 1 is under a 
normal state, step 2 is in watching pleasant video, and step 3 
is in watching unpleasant video. As shown in Figure 6, we 
gave subjects the task of watching emotion-evoking videos 
caused a pleasant–unpleasant state, and performed stress 
measurements by salivary amylase tests to assess the stress 
state transiently. In addition, the watching time is about 3 
min for each emotion-evoking video, we prepared 
unpleasant videos (i.e., implant surgery and cruel videos) 
and the pleasant videos (i.e., comic videos of three types). 
The subjective assessment of five stages was also conducted 
at watching videos. For all subjects, we fully explained the 
experiment contents in advance based on the research ethics 
policy of our university, and also obtained the consent of 
experiment participants in voluntary writing of subjects. 
Moreover, from all subjects, we received agreement to 
publish face images as part of their experimental 
participation. 

A. Facial Expression Images 
Open datasets of facial expression images are open to the 

public through the internet from universities and research 
institutes. However, the specifications vary among datasets 
because of imaging with various conditions. As static facial 
images, the dataset presented by Ekman and Friesen [13] is 
a popular dataset comprising collected various facial 
expressions used for visual stimulation in psychological 
examinations of facial expression cognition. As dynamic 
facial images, the Cohn–Kanade dataset [6] and Ekman–
Hager dataset [25] are widely used, especially in 
experimental applications. In recent years, the MMI Facial 
Expression Database presented by Pantic et al. [8] and the 
CK+ dataset [7] have become a widely used open dataset 
containing both static and dynamic facial images. These 
datasets contain a sufficient number of subjects as 
horizontal datasets. However, facial images are taken only 
once for each subject. No dataset exists in which the same 
subject has been traced over a long term. Therefore, we 
created original and longitudinal datasets that include 
collections of the specific facial expression of the same 
subject during a long term. 

Six basic facial expressions proposed by Ekman et al. [13] 
are "happiness", "anger", "sadness", "disgust", "fear", and 
"surprise". Among the six basic facial expressions, we 
specifically examined the facial expression of "happiness", 
which is believed to be most likely exposed spontaneously. 

As the target facial expression of "happiness" under 
stimulating states of pleasant and unpleasant, we acquired 
the facial expressions of 20 subjects. As a method of 
stimulation, we pre-selected emotion-evoking videos that 
elicit emotions that are pleasant or unpleasant, with all 
subjects expressing the facial expression of "happiness" 
immediately after watching them. Subjects were 10 men 
(Subject J was 20 years old; Subjects B, G, H, and I were 
21; Subjects A, E, and F were 22; Subjects C and D were 
23) and 10 women (Subjects K, M, O, and P were 20 years 
old; Subjects L, Q, R, S, and T were 21; Subject N was 23), 
all of whom were university students. The imaging period 
was three weeks at one-week intervals for all subjects. The 
imaging environment for facial expressions was an imaging 
space partitioned by a curtain in the corner of the room. We 
took frontal facial images with conditions including the 
head of the subject in each image. In advance, we instructed 
each subject to expose the facial expression without any 
head movement. Consequently, imaging the face region to 
fit within the scope has been possible. However, with 
respect to extremely small changes caused by body motion, 
we used template-matching methods to trace the face region 
by setting the initial template to include facial parts. By 
consideration of the application deployment and ease of 
imaging in future studies, we used commercially available 
USB cameras (QcamOrbit; Logicool Inc. [26]). When 
taking images of each facial expression, the same expression 
was repeated three times based on the neutral facial 
expression during the image-taking time of 20 s. We 
previously instructed all subjects to express an emotion 
three times at their own timing according to a guideline for 
20 s. One dataset consisted of 200 frames with the sampling 
rate of 10 frames per second. 

B. Stress Measurement Method 
Because types of psychological stress are regarded as 

affecting facial expressions, we assessed transient stress and 
chronic stress. Chronic stress is that which humans have on 
a daily basis, whereas transient stress is that caused by a 
temporary stimulus. To assess transient stress stimulus to 
the subjects in this study, we applied the salivary amylase 
test, which is one method of measuring transient stress 
reactions. As a biological reaction, salivary amylase activity 
is detected as a low value if one is in a pleasant state. In 
contrast, the value is high if one is in an unpleasant state. As 
stress reactions when subjected to external transient 
stimulus, Yamaguchi et al. [27] confirmed that salivary 
amylase activity is an effective means of stress evaluation. 
For this study, using the emotion-evoking videos as an 
external transient stimulus, we used the salivary amylase 
test method to measure stress reactions immediately after 
participants watched the videos. 
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VI. EXPERIMENT 
We verified the validity of emotion-evoking videos, 

which give a pleasant–unpleasant stimulus. Next, we 
optimized the number of states of HMMs by extracting 
expressive tempos from facial expressions. Subsequently, 
using the HMMs with an optimized number of states, we 
verified the accuracy of the extracted expressive tempo 
obtained from a time-series change of ELs. Finally, we 
analyzed the transient stress stimulus of pleasant–unpleasant 
effects on the expressive rhythm of facial expressions. 

A. Effectiveness of Pleasant–unpleasant Stimulus 
Using the salivary amylase test, we examined the validity 

of emotion-evoking factor in watching the video used as a 
pleasant–unpleasant stimulus. The following were shown 
for salivary amylase activity. The value of salivary amylase 
activity is reduced if in a pleasant state. In contrast, its value 
is increased if one is in unpleasant circumstances [27]. 
Accordingly, letting Snormal be the value of salivary amylase 
activity at normal state, and letting Sstimu be the value of 
salivary amylase activity after watching the video, then the 
difference of salivary amylase activity between the normal 
state and after watching video (Sdif) is defined by the 
following equation.  

normalstimudif SSS −=  (4) 

0<difS  (i.e., after watching pleasant videos)  

0>difS  (i.e., after watching unpleasant videos)  

 Figure 6 presents results of Sdif obtained for target to the 
20 subjects of A–T. In this case, the perception for the 
pleasant–unpleasant videos differs slightly among subjects, 
so this fact might cause the results of salivary amylase 
activity of C and B differ with previous studies [27]. 
Therefore, we decided to calculate the salivary amylase 
activity only for data for which subjective evaluation of the 
subject is high. The subjective evaluation receives a score of 
1–5, score 1 (i.e., not at all), score 5 (i.e., strong) at 
watching each emotional video. Figure 7 presents results of 

salivary amylase activity in the case of particularly 
addressing only the score of 4 and 5 because we consider 
that the emotional video is effectively working as a 
pleasant–unpleasant stimulus. Based on this result, the 
average of all Sdif indicates -2 [kIU/l] at a pleasant state, 5 
[kIU/l] at an unpleasant state. Therefore, results show that 
the emotion-evoking video functioned as a pleasant–
unpleasant stimulus. 

B. Examination of HMM Parameters 
Otsuka et al. [12] pointed out that the process of facial 

expressions was made up with state transitions such as 
"neutral state" → "expression state" →"neutral state". In 
this case, the operation of facial muscles was to be the acts 
of "relaxation" → "contraction" → "rest" → "extension" → 
"relaxation". In the method explained by Otsuka et al., 
under conditions in which the state of facial muscles and the 
state of HMMs are associated with initial values, they 
modeled the state transitions of facial muscles by setting the 
number of states of HMMs to five [12]. However, by 
varying the initial state transition probability and number of 
states of the HMMs, our experiments were conducted to 
ascertain the optimum value of the highest extraction rate 
shown in equation (5). Therefore, it is possible to obtain 
parameters (i.e., the initial state transition probability and 
number of states of the HMMs) that represent the best 
movement of facial muscles under conditions of transient 
stress stimulus. 

As the accuracy judgment of extraction with HMMs, we 
set as Ground Truth (GT) the average value of the frames 
for which three evaluators judged that the transition state 
had returned to a neutral state by their visual observation of 
the videos showing facial expressions. The extraction rate of 
accuracy judgment is defined by equation (5). 


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,, 321 xxx             
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A           (5) 

                                  
Figure 6. Results of Sdif obtained for target to the 20 subjects of A-T.         Figure 7. Results of Sdif addressed only the score of 4 and 5 with 

subjective evaluations. 
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In that equation, A represents the extraction rate, C 
denotes the number of facial expressions, E represents the 
final frame of the facial expressions extracted with HMMs, 
and R denotes the frame indicating the end of the facial 
expressions obtained as the GT. 

For this study, we performed experiments by obtaining 
the number of states to represent the movement of facial 
muscles optimally in a stress stimulus. In the pleasant–
unpleasant state, we compared the extraction rate by varying 
the transition probability b to the next state, the self-
transition probability a, and a number of states of the 
HMMs. Figure 8 presents the results. In the experimentally 
obtained result, the average extraction rate is the largest 
with setting the number of states to three. The average 
extraction rate is reduced later peaked at the state number of 
3. Furthermore, the average extraction rate becomes a 
maximum under conditions of self-transition probability a 
of 0.70, and state transition probability b of 0.30. Based on 
consideration of the results described above, the parameters 
of the HMMs in this study were determined as follows. The 
number of states is 3, the self-transition probability a is 0.70, 
and the state transition probability b is 0.30. 

C. Extraction Results of Expressive Tempos 

As the extracted results of expressive tempos by 
application of HMMs, Figure 9 depicts the expressive 
tempos of six cases of subjects A, C, J, K, Q, and S. The top 
of each figure shows the time-series change of ELs. The 
bottom of each figure shows the transitional state of HMMs. 
Additionally, we marked the dashed vertical lines as GT. 
The GT indicates the average value of the frames, in which 
three evaluators judged that the facial expression had been 
completed by their visual observation for the original image. 
In consideration of variation among three evaluators, we 

 

       
(a) Subject A, second week, happiness on unpleasant                        (b) Subject C, third week, happiness on unpleasant 

 

              
(c) Subject K, second week, happiness on pleasant                       (d) Subject J, first week, happiness on pleasant 

 

       
(e) Subject Q, first week, happiness on pleasant                        (f) Subject S, first week, happiness on unpleasant 

 
Figure 9. Extracted results of expressive tempos for six subjects. 

 

 

 
Figure 8. Extraction rates by varying a number of states of HMMs. 
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presented a shaded gray pattern as the period of extraction, 
indicating a range of ± 5 frames with respect to each GT 
frame. 

For subjects A, C, K, Q, and S, the extraction rates are 
100% because all frames extracted by HMMs were included 
in the extraction range. In subject J, the extracted frames by 
HMMs are 60, 76, and 88, whereas the frames of GT are 40, 
71, and 98. Therefore, in this example, only the second 
tempo was extracted successfully. Turning to the time-series 
change of ELs in the top of figure, extraction results of 
HMMs do not correspond to the timings of facial 
expressions. A major cause of that lack of correspondence is 
that evaluators have difficulty dividing the periods of facial 
expressions by visual observation because expressive levels 
of facial expressions appearing on the original image are 
small. For this study, we used view-based feature 
representation of facial expression datasets. Given difficulty 
in identifying the periods of facial expressions by human 
visual observation, we believe that automatic extractions of 
expressive tempos generally become difficult. Therefore, 
when acquiring facial expression datasets, we must ensure 
an instruction for each subject to expose the maximum ELs 
possible. 

Subsequently, targeting the facial expression datasets of 
three weeks for subjects A–T (i.e., 20 cases), Figure 10 
presents extraction rates of expressive tempos for each 
subject. Taking the average of the extraction rates in three 
weeks, the pleasant state was 81.1%. The unpleasant state 
was 77.8%. Even including a difficult case of identification 
of the facial expression period by visual inspection, such as 
Figure 10(d), the average extraction rate of 79.5% was 
obtained for all subjects. 

D. Effects of Pleasant–unpleasant State on Expressive 
Rhythms 

For subject G, Figure 11 presents the extraction result of 
expressive tempos and the time-series variation of ELs with 
"happiness" after watching pleasant videos. The three 
extracted tempos are as follows. The first tempo comprises 
60 frames, the second tempo comprises 57, and the third 
tempo comprises 36. As described above, there are 
variations in the three expressive tempos which constitute 
one rhythm. Therefore, by calculating the average and 

standard deviation of number of frames constituting one 
tempo for all subjects A to T, we discuss the relation of 
expressive rhythms with a pleasant–unpleasant state. 

Table I presents the standard deviation of tempos and 
average number of frames constituting one expressive 
tempo for all subjects of three weeks. Considering the 
average frames constituting one tempo in the pleasant–
unpleasant state, the pleasant state is 49.1 [frames], the 
unpleasant state is 49.2 [frames]. Therefore, we conclude 
that the pleasant–unpleasant state does not affect the 
average number of frames that constitute one tempo. In 
contrast, particularly addressing the standard deviation of 
the number of frames constituting one tempo, the pleasant 
state is 8.4 [frames]; the unpleasant state is 6.1 [frames]. 
Comparison of the pleasant state and unpleasant state 
showed variation in the unpleasant state in the frames 
constituting one tempo. As a tendency among all subjects by 
transient stress stimulus watching unpleasant videos, we 
demonstrated quantitatively that fluctuations occurred in 
expressive tempos that were components of the expressive 

 

 
 

Figure 10. Extraction rates of expressive tempos for each subject. 

 

 
Figure 11. Expressive tempos and the time-series variation of the ELs with “happiness” after watching pleasant videos. 

TABLE I.    STANDARD DEVIATION OF TEMPOS AND AVERAGE NUMBER 
OF FRAMES CONSTITUTING ONE TEMPO FOR ALL SUBJECTS 

 Pleasant states Unpleasant states 
Average of frames 49.1  49.2 
Standard  deviation 6.1 8.4 
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rhythm. The results described above reveal one indicator 
estimating the psychological state of humans. We conclude 
that the analysis of expressive tempos and rhythms is valid, 
with emphasis on repeated operations of intentional facial 
expression with "happiness". 

VII. CONCLUSION AND FUTURE WORK 
In this study, using the framework of expressive tempos 

and rhythms in facial expressions, we examined the relation 
between the psychological state (i.e., pleasant or unpleasant) 
and the time-series variation of ELs with exposure of 
intentional facial expressions. Acquiring image datasets of 
facial expressions under the states of pleasant–unpleasant 
stimulus for 20 subjects, we extracted expressive tempos of 
each subject. Consequently, taking the average of the 
extraction rates, the pleasant state was 81.1%, and the 
unpleasant state was 77.8%. By taking the effects of 
pleasant–unpleasant stimulus on the expressive tempos, 
particularly addressing the variation of number of frames 
constituting one tempo, the variation in unpleasant stimulus 
became greater than that in pleasant stimulus. The results 
presented above demonstrate that analysis using expressive 
tempos and rhythms is valid to indicate the psychological 
state. Moreover, by quantifying fluctuations of expressive 
tempos and rhythms, we can ascertain differences of the 
expressive path between intentional and spontaneous facial 
expressions. 
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