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Abstract—For various research and industry purposes, knowledge
of the characteristics of human mobility is required. In this
paper, we will estimate the speed distribution of everyday human
mobility using the unit of 0.01 m/s. From various smart mobile
devices, a huge number of positioning data were collected, from
which human mobile speed values are calculated. In a range of
speed up to 108 Km/hour and 180Km/hour, we fit the speed data
into probability distribution functions in order to establish a base
for human mobility research, to which we believe this paper can
make a significant contribution.
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I. INTRODUCTION

Monitoring human mobility is necessary for various pur-
poses, including mobile computing and transportation engi-
neering. Such work often requires natural science knowledge
to ascertain the probability distributions of molecular mobility,
wind velocity, and so on. The major purpose of this type
of research is to model irregular motions into models with
predictability at a certain level. Using the probability distribu-
tion of human speed, it is possible to predict human velocity,
to detect abnormal motion, or to detect positioning system
errors. If a monitoring system detects abrupt human mobility,
this may imply an emergency or surveillance situation. There
are a great number of methods for detecting abrupt human
mobility. In addition, it is possible for an end-user to carry
a mobile device that can report his or her position by use of
embedded positioning functionalities and positioning systems.
Such devices include dedicated GPS receivers and commercial
smartphones, the latter using various combinations of position-
ing systems [1]. It is also possible to calculate distance between
two points from positioning data, generally using the Haversine
method [2]. From the distance and time, speed values may also
be delivered from two consecutive positioning data.

The speed values impose distance information as well as
the length of time interval between two positions, i.e., they are
normalized values. In order to detect abrupt mobility, the speed
value is key for calculating an abrupt change of position for
a given time interval. However, there is at present inadequate
knowledge of the probability distribution of speeds as related
to everyday human life. Specifically, the question is, how can
we scientifically define abrupt human mobility?

In this paper, we are going to analyze the probability
distribution of speeds and will present several outstanding
well-fits designed for practical use across a reasonable speed
range found in everyday human life. Once we have found this
distribution of speed, which forms the basis of human mobility,

it will also be possible to calculate abrupt human mobility. Our
aim is to provide the well-fit speed distribution of everyday
human life.

In Section II, we will discuss the results of past research
and will indicate the positioning data collection procedure used
herein. Section III will show several important distributions
that result from our fitting. We will conclude this paper in
Section IV.

II. STATISTICAL BACKGROUND

There are about three previous research to be discussed
as prerequisites for this research. The first one is previous
research on the probability distribution for human mobile
speed, the second one is positioning system technologies and
positioning data collection, and the final one is data fitting
between real world data and probability distribution.

A. Previous Research

There is very little research regarding human mobile speed
and human mobile distance. In the very first research, cellular
network-based location system used to collect mobile phone
user’s location data and analyzed mobile distance [3]. Cellular
network-based location system can identify the location of
mobile phone user based on cellular station and consecutive
mobile user location data used to identify distance. It is found
that the probability distribution function of human mobile
distance is truncated power-law distribution. In addition Access
Point (AP) of Wireless LAN (WLAN) can be used to analyze
human mobility [4]. Pre-identified location of AP can be used
and then the MAC address of each device in combination with
the time analyzed to identify the mobile distance of each de-
vice. The result of this research is that human mobile distance
follows log-normal distribution. Another research utilized GPS
data of taxi [5]. This research reveals human mobile speed
follows exponential distribution.

In our previous research [6], we tried to figure out proper
probability distributions of human speeds in various categories.
We tried to calculate the proper probability distributions of
human speeds across various categories. The units of speeds
were 0.1 m/s, 0.5 m/s and 1.0 m/s. However, this is somewhat
inaccurate considering human micro-mobility. Once we have
bigger unit then 1.0 m/s, it is hard to fit for continuous
probability distributions. Unlike previous methodologies, we
now collect more positioning data, using the more precise
unit of 0.01 m/s. Our analysis is also carried out using the
Kolmogorov-Smirnov test [7]. The fit between raw data and
each candidate probability distribution can be found by K-S
test.
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B. Data Collection

Positioning data sets were collected for this research. The
longest collection period was from March 2013 to Feb 2014.
Several individuals carried their mobile devices whilst in a
resting or moving state outside of their own home. The area
of collection was mostly the metropolitan area of Seoul, Korea,
however it included other part of Korea, as well as countries
such as the USA, Canada, France, Italy, the Netherlands,
Austria. A total of 2,218,020 speed values were collected.

The devices used for collection were as follows: iPhone
3Gs, iPhone 4 [8], iPhone4S [9], Galaxy S3 [10], Galaxy
Note2 [11], Garmin Edge 800 [12], Garmin EDGE 810 [13],
Garmin 62s [14]. For dedicated devices, such as Garmin, no
app is requrired; however, apps for collecting positioning data
from smartphones are required. Such smartphones use hybrid
positioning system rather than just GPS in order to figure out
the position of devices. We thus developed positioning data
collecting apps for iPhone and Android phones and some of the
positioning data were also collected using commercial apps.
Using a variety of collection methods was intentional since we
needed to cope with every possible situation of positioning data
collection to guarantee the generality of the data collection.

TABLE I. Number of data in unit of 0.01 m/s.

Speed Region (m/s) Count
Total 2,218,020

0 355,832
0.01 - 50 1,853,045
0.01 - 30 1,836,608
2.78 - 50 860,672
2.78 - 30 844,235

As the actual speed data calculated had 12 digits below the
point, we needed to prune out the data to achieve reasonable
values. We chose units of 0.01 m/s, which correspond to 36
meter/hour. These values are likely to be precise enough for use
as everyday human speed units. One of the clear phenomena
contained in speed values is that the data set will contain a lot
of zero speed values, i.e., the distribution is zero inflated. In
such situations, even though speed value is not zero, but it is
rather less than 0.01 m/s, such value will be treated as zero.
Therefore, we decided to exclude zero values. And considering
that a person can move anytime in a certain distance, for
example 2.77 meter in a second, we also investigated the
distribution so as to excluded speed values less than 2.77 m/s.
In other words, we intentionally exclude speed values less than
2.78 m/s since we are considering only the meaningful mobile
situation. We also needed to decide the upper speed bound.
From various possible upper bounds, we chose the values of
30 m/s and 50 m/s, which correspond to 108 Km/hour and 180
Km/hour, respectively. We considered these values to represent
reasonable limits for speed in everyday human life. We also
conducted distribution fitting for the four categories of speed
data. The frequency of each speed value was calculated and
the Maximum Likelihood Estimation (MLE) [15] was applied
in order to find the parameters of probability distribution, and
then K-S statistics were obtained [7].

Table I is an overall summary of the number of data
classified into four categories.

III. RESULTS

Table II - V present the results of fitting for each of the po-
sitioning data categories. Table II summarizes 20 distinguished
distributions for the speed range of 0.01 m/s to 30 m/s. It
contains the rank of probability distribution by K-S statistic,
the name of the distributions, the K-S statistic values, and the
parameters for the corresponding distributions. For example,
lognormal distribution shows the best fit with statistic 0.03859
for the speed data ranging from 0.01 m/s to 30 m/s. Lognormal
distribution requires three parameters and the parameter values
are listed accordingly. Figure 1 shows the CDF of raw data and
that of Lognormal distribution. Since these 20 distributions
have statistic values lower than 0.1, they are considered a
relatively good fit for practical purposes. The graphs show
similar results and the similarity is proven by their statistic
values.

TABLE II. Parameters for Distributions of Speeds
from 0.01 m/s to 30.00 m/s.

0.01 - 30.00
Rank Distribution Statistic Parameter

1 Lognormal 0.03859 σ = 1.4072, µ = 0.89733, γ = 0
2 Fatigue Life(3P) 0.04272 α = 1.3456, β = 2.8829, γ = -0.18893
3 Lognormal(3P) 0.04303 σ = 1.2761, β = 0.98033, γ = -0.07749
4 Log-Logistic(3P) 0.04461 α = 1.2533, β = 2.5724, γ = 6.7623E-4

5 Phased Bi-Weibull 0.04772 α1 = 1.06, β1 = 3.619, γ1 = 0, α2 =
0.72755, β2 = 4.2933, γ2 = 2.49

6 Frechet(3P) 0.05133 α = 1.1741, β = 2.213, γ = -0.59554

7 Dagum 0.05244 κ = 0.69969, α = 1.441, β = 3.8884, γ
= 0

8 Johnson SB 0.05525 γ = 1.2294, δ = 0.50855, λ = 28.515,
ξ = 0.21335

9 Dagum(4P) 0.05645 κ = 0.63721, α = 1.4529, β = 4.3813,
γ = 0.01

10 Log-Pearson 3 0.05663 α = 11.523, β = -0.41454, γ = 5.6741

11 Pearson 6(4P) 0.06449 α1 = 0.87855, α2 = 3.8949, β = 17.718,
γ = 0.01

12 Burr(4P) 0.06806 κ = 6.9702, α = 0.89148, β = 36.702,
γ = 0.01

13 Gen. Gamma(4P) 0.06837 κ = 0.75574, α = 1.1357, β = 3.8121,
γ = 0.01

14 Gen. Pareto 0.06908 κ = 0.33377, σ = 3.6824, µ = 0.01
15 Pareto 2 0.06970 α = 3.0493, β = 11.325

16 Pearson 6 0.07269 α1 = 0.93678, α2 = 3.6704, β = 15.511,
γ = 0

17 Weibull(3P) 0.07308 α = 0.817585, β = 4.7174, γ = 0.01

18 Burr 0.07552 κ = 13.116, α = 0.86664, β = 87.161,
γ = 0

19 Gamma 0.07870 α = 0.71417, β = 7.4253, γ = 0
20 Weibull 0.07929 α = 0.83261, β = 4.7886, γ = 0

Figure 1. Lognormal Distribution from 0.01 m/s to 30.00 m/s.
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TABLE III. Parameters for Distribution of Speeds
from 0.01 m/s to 50.00 m/s.

0.01 - 50.00
Rank Distribution Statistic Parameter

1 Lognormal 0.03669 σ = 1.4235, µ = 0.92117, γ = 0
2 Log-Logistic(3P) 0.04015 α = 1.2355, β = 2.6226, γ = 0.00216
3 Lognormal(3P) 0.04172 σ = 1.3013, µ = 0.99766, γ = -0.07077
4 Fatigue Life(3P) 0.04462 α = 1.3809, β = 2.9546, γ = -0.18301

5 Phased Bi-Weibull 0.04706 α1 = 1.0588, β1 = 3.6587, γ1 = 0, α2
= 0.74503, β2 = 4.3098, γ2 = 2.48

6 Pearson 6(4P) 0.04929 α1 = 0.93411, α2 = 2.7027, β = 10.366,
γ = 0.01

7 Frechet(3P) 0.05082 α = 1.1418, β = 2.2015, γ = -0.56667

8 Dagum(4P) 0.05108 κ = 0.62862, α = 1.4854, β = 4.3338,
γ = 0.01

9 Dagum 0.05157 κ = 0.72888, α = 1.3983, β = 3.8113,
γ = 0

10 Log-Pearson 3 0.05609 α = 13.024, β = -0.39444, γ = 6.0584

11 Burr(4P) 0.05750 κ = 5.6601, α = 0.8748, β = 29.514, γ
= 0.01

12 Gen. Pareto 0.06641 κ = 0.37942, σ = 3.6578, µ = 0.01
13 Pareto 2 0.06701 α = 2.6758, β = 9.8706

14 Pearson 6 0.06824 α1 = 0.96916, α2 = 2.8621, β = 11.213,
γ = 0

15 Burr 0.07062 κ = 5.3507, α = 0.89947, β = 27.138,
γ = 0

16 Weibull(3P) 0.07084 α = 0.7923, β = 4.8503, γ = 0.01
17 Gamma 0.07284 α = 0.65148, β = 8.5636, γ = 0
18 Weibull 0.07926 α = 0.81451, β = 4.9539, γ = 0

19 Gen. Gamma(4P) 0.08034 κ = 0.89068, α = 0.82445, β = 6.6063,
γ = 0.01

20 Gamma(3P) 0.07084 α = 0.70851, β = 7.8447, γ = 0.01

Figure 2. Log-Logistic(3P) Distribution from 0.01 m/s to 50.00 m/s.

Table III summarizes 20 distinguished distributions for the
speed range of 0.01 m/s to 50 m/s. Again, lognormal shows
the highest rank along with log-logistic(3P) and lognormal (3P)
distribution with even smaller statistic values.

It is clear that these distributions must have different
parameters than in the case for the speed range of 0.01 m/s
to 30 m/s. That is, there are slight shifts in the parameters
of the distributions. However we successfully deduced the
common probability distribution for human mobility speeds.
Figure 2 shows CDF of raw data versus CDF of Log-Logistic
(3P) in the speed range of 0.01 m/s - 50.00 m/s. Phased Bi-
Weibull distribution is composed of two independent Weibull
Distribution over two disjoint domain.

Table IV summarizes 20 distinguished distributions for
the speed range of 2.78m/s to 30m/s. Distributions such as
Kumaraswamy as shown in Figure 3 is the most distinguished
one.

TABLE IV. Parameters for Distributions of Speeds
from 2.78 m/s to 30.00 m/s.

2.78 - 30.00
Rank Distribution Statistic Parameter

1 Kumaraswamy 0.01883 α1 = 0.77339, α2 = 2.0933, a = 2.78,
b = 31.475

2 Gen. Gamma(4P) 0.02436 κ = 2.0551, α = 0.34749, β = 16.827,
γ = 2.78

3 Beta 0.02918 α1 = 0.67033, α2 = 1.8405, a = 2.78,
b = 30.349

4 johnson SB 0.03251 γ = 0.87714, δ = 0.67248, λ = 27.818,
ξ = 2.3027

5 Gamma(3P) 0.03949 α = 0.93084, β = 8.0734, γ = 2.78
6 Weibull(3P) 0.04194 α = 0.99716, β = 7.4181, γ = 2.78

7 Burr(4P) 0.04217 κ = 9.3570E+5, α = 1.0387, β =
4.1967E+6, γ = 2.7778

8 Exponential(2P) 0.04502 λ = 0.13589, γ = 2.78
9 Erlang(3P) 0.04509 m = 1, β = 7.3576, γ = 2.78

10 Pearson 6(4P) 0.05484 α1 = 0.98461, α2 = 403.79, β = 2933.8,
γ = 2.78

11 Fatigue Life 0.05600 α = 0.66622, β = 8.3005, γ = 0
12 Log-Pearson 3 0.05799 α = 918.16, β = 0.02129, γ = -17.436
13 Lognormal 0.05964 σ = 1.3013, µ = 0.99766, γ = -0.07077
14 Gen. Pareto 0.06220 κ = -0.25534, σ = 9.3381, µ = 2.78
15 Lognormal(3P) 0.06696 σ = 0.95749, µ = 1.6937, γ = 2.1059

16 Pearson 6 0.06816 α1 = 43.735, α2 = 2.8405, β = 0.45116,
γ = 0

17 Pearson 5(3P) 0.06930 α = 2.7254, β = 18.727, γ = -0.05896
18 Pearson 5 0.06977 α = 2.6836, β = 18.223, γ = 0
19 Reciprocal 0.06991 a = 2.78, b = 30.0
20 Frechet(3P) 0.07047 α = 2.2951, β = 8.3746, γ = -2.1033

Figure 3. Kumaraswamy Distribution from 2.78 m/s to 30.00 m/s.

Figure 4. Beta Distribution from 2.78 m/s to 50.00 m/s.

Table V summarizes 20 distinguished distributions for the
speed range of 2.78 m/s to 50 m/s. Distributions such as Beta
as shown in Figure 4, Weibull(3P) as shown in Figure 5 and
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TABLE V. Parameters for Distributions of Speeds from 2.78 m/s to 50.00
m/s

2.78 - 50.00
Rank Distribution Statistic Parameter

1 Beta 0.02177 α1 = 0.77961, α2 = 3.9036, a = 2.78,
b = 51.667

2 Weibull(3P) 0.03077 α = 0.96766, β = 7.8915, γ = 2.78

3 Burr(4P) 0.03243 κ = 7.5068E+8, α = 1.0113, β =
4.7291E+9, γ = 2.7796

4 Exponential(2P) 0.03411 λ = 0.12722, γ = 2.78
5 Erlang(3P) 0.03424 m = 1, β = 7.8579, γ = 2.78
6 Gen. Pareto 0.03703 κ = -0.07541, σ = 8.3914, µ = 2.78

7 Gen. Gamma(4P) 0.03925 κ = 0.99856, α = 0.9238, β = 8.4445,
γ = 2.78

8 Pearson 6(4P) 0.04931 α1 = 0.91756, α2 = 20.15, β = 161.89,
γ = 2.78

9 Gamma (3P) 0.05284 α = 0.91908, β = 8.1668, γ = 2.78
10 Log-Pearson 3 0.05538 α = 205.5, β = 0.04676, γ = -7.4669
11 Fatigue Life 0.05690 α = 0.69581, β = 8.5747, γ = 0
12 Lognormal 0.05941 σ = 0.67026, µ = 2.1414, γ = 0
13 Lognormal(3P) 0.06369 σ = 1.0099, µ = 1.6995, γ = 2.2037
14 Log-Logistic(3P) 0.06389 α = 1.4469, β = 5.1199, γ = 2.6294

15 Pearson 6 0.06416 α1 = 86.972, α2 = 2.5986, β = 0.20853,
γ = 0

16 Burr 0.06526 κ = 1.2717, α = 2.2942, β = 9.8812, γ
= 0

17 Pearson 5 0.06531 α = 2.5322, β = 17.465, γ = 0
18 Fatigue Life(3P) 0.06538 α = 1.0624, β = 5.4173, γ = 2.0879
19 Log-Gamma 0.06617 α = 10.207, β = 0.20979
20 Pearson 5(3P) 0.06718 α = 2.4103, β = 15.982, γ = 0.18981

Figure 5. Weibull(3P) Distribution from 2.78 m/s to 50.00 m/s.

Burr(4P) were the best tree distributions in this speed category.

IV. CONCLUSIONS AND FUTURE WORK

In this research, we showed several possible probability
distributions of speed. Here, speed is used to mean the possible
speed found within everyday human life. Using the positioning
data sets, speed values were calculated. These positioning data
sets were collected by the use of mobile positioning devices
such as GPS receivers or smartphones. Volunteers carried such
devices in order to collect positioning data.

It is normal that people stay at a certain place for a while;
thus, our data included many speed values of zero and there
was a zero inflated probability distribution. Using the unit of
0.01 m/s, we divided the range of speeds in four groups. For
each category, we executed the Kolmogorov-Smirnov test to
find an acceptable approximation of probability distribution.
As a result, we provided several well-fit probability distri-
butions for speed. Different from our previous research, we
found better fits through using this more precise unit and
with more data. One of the notable distributions is exponential

distribution, which is ranked 4th in Table V in the speed range
of (7.2 Km/h, 180.0 Km/h). Since it has pretty nice statistic,
the exponential distribution could be used as an alternative for
less strict applications for the devices with lower computational
power than other complicated distributions.

We expect that this basic research will help other re-
searchers develop or assess location based services, mobile
computing, positioning devices, and others. For example, de-
tection of positioning error is a likely use of our findings.
It is well known that positioning data develops errors, which
are in fact mostly due to systematic and environmental er-
rors. More precisely, errors in positioning data in the form
of (latitude, longitude) follow bivariate normal distribution.
Therefore, the speed values derived from positioning data also
show propagated errors. It is very hard for mobile devices to
detect positioning errors and the derived errors since a user
can rarely touch the underlying positioning system or change
the operating environment.

One possible scenario can be described: once we have
a sequence of speed values of 5.1, 5.2, 5.2, 5.3, 11.8 and
5.3 we can easily identity that 11.8 is the abrupt change of
speed value and it may imply an error on the positioning
tuple related to the speed value. In such a case, we need to
develop sophisticated method to determine the abruptness of
speed change and we guess that the method may be based on
a statistical method. The results shown in this paper may thus
be a basis for developing positioning error detection as shown
in [16] where it was assumed that human mobile speed is
up to normal distribution. However, more precise distribution
such as lognormal distribution and beta distribution can be
used as basis of erroneous positioning data detection and
moreover exponential distribution can be used as a real-time
application of this approach since exponential distribution is
simple enough to be used on mobile devices.
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