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Abstract— Geometric alignment of 3D pointclouds, obtained using
a depth sensor such as a time-of-flight camera, is a challenging
task with important applications in robotics and computer vision.
Due to the recent advent of cheap depth sensing devices, many
different 3D registration algorithms have been proposed in
literature, focussing on different domains such as localization
and mapping or image registration. In this survey paper, we
review the state-of-the-art registration algorithms and discuss
their common mathematical foundation. Starting from simple
deterministic methods, such as Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD), more recently
introduced approaches such as Iterative Closest Point (ICP) and
its variants, are analyzed and compared. The main contribution
of this paper therefore consists of an overview of registration
algorithms that are of interest in the field of computer vision and
robotics, for example Simultaneous Localization and Mapping.

Keywords–3D pointcloud; PCL; 3D registration; rigid transfor-
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I. INTRODUCTION

With the advent of inexpensive depth sensing devices,
robotics, computer vision and ambient application technology
research has shifted from 2D imaging and Laser Imaging
Detection And Ranging (LIDAR) scanning towards real-time
reconstruction of the environment based on 3D pointcloud
data. On one hand, there are structured light based sensors such
as the Microsoft Kinect and Asus Xtion sensor which generate
a structured point cloud, sampled on a regular grid, and on the
other hand, there are many time-of-flight based sensors such
as the Softkinetic Depthsense camera yield an unstructured
pointcloud. These pointclouds can either be used directly to
detect and recognize objects in the environment where ambient
technology is been used, or can be integrated over time to
completely reconstruct a 3D map of the camera’s surroundings
[1], [2], [3]. In the latter case however, point clouds obtained
at different time instances need to be aligned, a process which
is often referred to as registration. Registration algorithms are
able to estimate the ego-motion of the robot by calculating the
transformation that optimally maps two pointclouds, each of
which is subject to camera noise.

These registration algorithms can be classified coarsely into
rigid and non-rigid approaches. Rigid approaches assume a
rigid environment such that the transformation can be modeled
using only 6 Degrees Of Freedom (DOF). Non-rigid methods
on the other hand, are able to cope with articulated objects or
soft bodies that change shape over time.

Registration algorithms are used in different fields and
applications, such as 3D object scanning, 3D mapping, 3D
localization and ego-motion estimation, human body detection.
Most of these state-of-the-art applications employ either a

simple Singular Value Decomposition (SVD) [4] or Principal
Component Analysis (PCA) based registration, or use a more
advance iterative scheme based on the Iterative Closest Point
(ICP) algorithm [5]. Recently, many variants on the original
ICP approach have been proposed, the most important of which
are non-linear ICP [6], generalized ICP [7], and non-rigid
ICP [8].

The choice for one of these algorithms generally depends
on several important characteristics such as accuracy, com-
putational complexity, and convergence rate, each of which
depends on the application of interest. Moreover, the char-
acteristics of most registration algorithms heavily depend on
the data used, and thus on the environment itself. To our
knowledge, a general discussion of each of the above methods
is not available in literature. As a result it is difficult to
compare these algorithms objectively. Therefore, in this paper
we discuss the mathematical foundations that are common
to the most widely used 3D registration algorithms, and we
compare their strengths and weaknesses in different situations.

This paper is outlined as follows: Section II briefly dis-
cusses several important application domains of 3D registration
algorithms. In Section III, rigid registration is formulated as
a least square optimization problem; Section IV explains the
most important rigid registrations algorithms which are PCA,
SVD, ICP point-to-point, ICP point-to-surface, ICP non-linear
and Generalized ICP; Finally, Section V provides a discussion
of the different characteristic of each of these methods in a
real world setting; Section VI concludes the paper.

II. APPLICATION DOMAINS

Important application domains of both rigid and non-rigid
registration methodologies are robotics, healthcare, augmented
reality, and more. In these applications the common goal is to
determine the position or pose of an object with respect to a
given viewpoint. Whereas rigid transformations are defined by
6 DOF, non-rigid transformations allow a higher number of
DOF in order to cope with non-linear or partial stretching or
shrinking of the object.

A. Robotics
Since the introduction of inexpensive depth sensors such

as the Microsoft Kinect camera, great progress has been made
in the robotic domain towards Simultaneous Localization And
Mapping (SLAM) [9], [10], [11], [12]. The reconstructed map
is represented by a set of pointclouds which are aligned by
means of registration and can be used for obstacle avoidance,
map exploration, autonomous vehicle control, etc.[3], [13],
[14]. Furthermore, depth information is often combined with a
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traditional RGB camera [2], [15] in order to greatly facilitate
real-world problems such as object detection in cluttered
scenes, object tracking and object recognition [16].

B. Healthcare
Typical applications of non-rigid registration algorithms

can be found in healthcare, where a soft-body model often
needs to be aligned accurately with a set of 3D measurements.
Applications are cancer-tissue detections, hole detection, arte-
fact recognition, etc. [8], [17]. Similarly, non-rigid transfor-
mations are used to obtain a multi-modal representation of a
scene, by combining MRI, CT, and PET volumes into a single
3D model [8].

III. DEFINITIONS

Rigid registration can be approached by defining a cost
function that represents the current matching error. This cost
function is then minimized using common optimization tech-
niques. If the distance between corresponding points in each
3D pointcloud needs to be minimized, this can be simplified
to a linear least-squares minimization problem by representing
each point using homogeneous coordinates.

In this section, we briefly introduce the least-square op-
timization problem and discuss the concept of homogeneous
transformations since these form the basis of 3D registration
algorithms.

A. Least-Square Minimization
A rigid transformation is defined by only 6 DOF, whereas

many noisy observations, i.e., point coordinates, are available.
Therefore, the number of parameters of any cost function for
this problem is much smaller than the number of equations,
resulting in an ill-posed problem which does not have an exact
solution. A well known technique to obtain an acceptable
solution in such case, is to minimize the square of the residual
error. This approach is called least-square optimization and is
often used for fitting and regression problems.

Whereas a linear least-square problem can be solved ana-
lytically, this is often not the case for non-linear least-square
optimization problems. In this case, an iterative approach can
be used by iteratively exploring the search space of all possible
solutions in the direction of the gradient vector of the cost
function. This is illustrated by Figure 1, where the cost function
f(d) of the ICP registration algorithm is minimized iteratively.
The cost function in this case represents the sum of the
squared Euclidean distances between corresponding points of
two pointcloud datasets.
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min f(d)

f(d)

Figure 1. ICP Least square approach.

B. Homogeneous transformations
A homogeneous transformation in three dimensions is

specified by a 4 × 4 affine transformation matrix [18]. This
matrix is used to project each point in Cartesian space with
respect to a specific viewpoint. In the following, let v1 =
(x1, y1, z1, 1)

ᵀ be a point whose base is defined by viewpoint
one and let v2 = (x2, y2, z2, 1)

ᵀ be a point whose base is
defined by viewpoint two. Then it is possible to express v2

relative to the base of viewpoint one as Tv1 = v2, where
T is an affine transformation matrix defined by (1). This is
illustrated more clearly by Figure 2.

T =

r1,1 r1,2 r1,3 t1,4
r2,1 r2,2 r2,3 t2,4
r3,1 r3,2 r3,3 t3,4
a4,1 a4,2 a4,3 a4,4

 (1)

The transformation matrix shown by (1) represents an
affine transformation if a4,1 = a4,2 = a4,3 = 0 and a4,4 6= 0.
Affine transformations are constructed with a 3 × 3 rotation
matrix R and column vector t representing a translation.

x

y

z

T
v1

v2

Figure 2. homogeneous transformation.

IV. REGISTRATION ALGORITHMS

Both rigid and non-rigid registration algorithms can be fur-
ther categorized into pairwise registration algorithms and mul-
tiview registration methods. Pairwise registration algorithms
calculate a rigid transformation between two subsequent point
clouds while the multi-view registration process takes multiple
point clouds into account to correct for the accumulated drift
that is introduced by pairwise registration methods.

In the next sections, we discuss five widely used rigid
registration algorithms. Each of these methods tries to estimate
the optimal rigid transformation that maps a source point cloud
on a target point cloud. Both PCA alignment and singular value
decomposition are pairwise registration methods based on the
covariance matrices and the cross correlation matrix of the
pointclouds, while the ICP algorithm and its variants are based
on iteratively minimizing a cost function that is based on an
estimate of point correspondences between the pointclouds.

A. Principal Component Analysis
PCA is often used in classification and compression tech-

niques to project data on a new orthonormal basis in the
direction of the largest variance [19]. The direction of the
largest variance corresponds to the largest eigenvector of the
covariance matrix of the data, whereas the magnitude of this
variance is defined by the corresponding eigenvalue.
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Therefore, if the covariance matrix of two pointclouds
differs from the identity matrix, a rough registration can be
obtained by simply aligning the eigenvectors of their covari-
ance matrices. This alignment is obtained as follows;

First, the two point clouds are centered such that the origins
of their original bases coincide. Pointcloud centering simply
corresponds to subtracting the centroid coordinates from each
of the point coordinates. The centroid of the pointcloud cor-
responds to the average coordinate and is thus obtained by
dividing the sum of all point-coordinates by the number of
points in the pointcloud.

Since registration based on PCA simply aligns the direc-
tions in which the pointclouds vary the most, the second step
consists of calculating the covariance matrix of each point
cloud. The covariance matrix is an orthogonal 3 × 3 matrix,
the diagonal values of which represent the variances while the
off-diagonal values represent the covariances.

Third, the eigenvectors of both covariance matrices are
calculated. The largest eigenvector is a vector in the direction
of the largest variance of the 3D pointcloud, and therefore
represents the pointcloud’s rotation. In the following, let A be
the covariance matrix, let v be an eigenvector of this matrix,
and let λ be the corresponding eigenvalue. The eigenvalues
decomposition problem is then defined as:

Ax = λx (2)

and further reduces to:

x(A− λI) = 0. (3)

It is clear that (3) only has a non-zero solution if A − λI is
singular, an consequently if its determinant equals zero:

det(A− λI) = 0 (4)

The eigenvalues can simply be obtained by solving (4),
whereas the corresponding eigenvectors are obtained by sub-
stituting the eigenvalues into (2).

Once the eigenvectors are known for each pointcloud, reg-
istration is achieved by aligning these vectors. In the following,
let matrix T y

t represent the transformation that would align the
largest eigenvector of the target pointcloud t with the y-axis.
Let matrix T s

y represent the transformation that would align
the largest eigenvector of the source pointcloud s with the y-
axis. Then the final transformation matrix T s

t that aligns the
source pointcloud with the target pointcloud can be obtained
easily, as illustrated by Figure 3.

s
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Tt
s

X

Y

Figure 3. PCA alignment from source to target.

Finally, the centroid of the target data is added to each of
the transformed coordinates to translate the aligned pointcloud,

such that its center corresponds to the center of the target
pointcloud.

B. Singular Value Decomposition

PCA based registration simply aligns the directions of
the largest variance of each pointcloud and therefore does
not minimize the Euclidean distance between corresponding
points of the datasets. Consequently, this approach is very
sensitive to outliers and only works well if each pointcloud
is approximately normally distributed.

However, if point correspondences between the two point-
clouds are available, a more robust approach would be to
directly minimize the sum of the Euclidean distances between
these points. This corresponds to a linear least-square problem
that can be solved robustly using the SVD method [4].

Based on the point correspondences, the cross correlation
matrix M between the two centered pointclouds can be cal-
culated, after which the eigenvalue decomposition is obtained
as follows:

M = USV ᵀ (5)

The optimal solution to the least-square problem is then
defined by rotation matrix R as:

Rs
t = UV ᵀ (6)

and the translation from target pointcloud to source pointcloud
is defined by:

t = cs −Rs
tct (7)

C. Iterative Closest Point

Whereas the SVD algorithm directly solves the least-square
problem, thereby assuming perfect data, Besl and Mc. Kay
[5] introduced a method that iteratively disregards outliers in
order to improve upon the previous estimate of the rotation
and translation parameters. Their method is called ‘ICP’ and
is illustrated conceptually by Figure 4.

Source

Target

Correspondences SVD Transform

Iteration

Output

Figure 4. ICP overview scheme.

The input of the ICP algorithm consists of a source
pointcloud and a target pointcloud. Point correspondences
between these pointclouds are defined based on a nearest
neighbor approach or a more elaborate scheme using geo-
metrical features or color information. SVD, as explained in
the previous section, is used to obtain an initial estimate of
the affine transformation matrix that aligns both pointclouds.
After registration, this whole process is repeated by removing
outliers and redefining the point correspondences.

Two widely used ICP variants are the ICP point-to-point
and the ICP point-to-surface algorithms. These approaches
only differ in their definition of point correspondences and
are described in more detail in the next sections.
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1) ICP point-to-point: The ICP point-to-point algorithm
was originally described in [1] and simply obtains point
correspondences by searching for the nearest neighbor target
point qi of a point pj in the source pointcloud. The nearest
neighbor matching is defined in terms of the Euclidean distance
metric:

î = argmin
i
‖pi − qj‖2, (8)

where i ∈ [0, 1, ..., N ], and N represents the number of points
in the target pointcloud.

Similar to the SVD approach discussed in section IV-B,
the rotation R and translation t parameters are estimated by
minimizing the squared distance between these corresponding
pairs:

R̂, t̂ = argmin
R,t

N∑
i=1

‖(Rpi + t)− qi‖2 (9)

ICP then iteratively solves (8) and (9) to improve upon
the estimates of the previous iterations. This is illustrated by
Figure 5, where surface s is aligned to surface t using n ICP
iterations.

q2

q1
q3

Iteration 1

Iteration n

p1 p3p2

s

t

t

q2

q1
q3

p1 p3p2

s

Figure 5. ICP alignment based on a point to point approach.

2) ICP point-to-surface: Due to the simplistic definition
of point correspondences, the ICP point-to-point algorithm
proposed by [20] is rather sensitive to outliers. Instead of
directly finding the nearest neighbor to a source point pj in
the target pointcloud, one could take the local neighborhood
of a correspondence candidate qi into account to reduce the
algorithm’s sensitivity to noise.

The ICP point-to-surface algorithm assumes that the point
clouds are locally linear, such that the local neighborhood of
a point is co-planar. This local surface can then be defined
by its normal vector n, which is obtained as the smallest
eigenvector of the covariance matrix of the points that surround
correspondence candidate qi.

Instead of directly minimizing the Euclidean distance be-
tween corresponding points, we can then minimize the scalar
projection of this distance onto the planar surface defined by
the normal vector n:

R̂, t̂ = argmin
R̂,̂t

(
N∑
i=1

‖((Rpi + t)− qi)ni‖

)
(10)

This is illustrated more clearly by Figure 6.
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Figure 6. ICP alignment based on a point to surface approach.

3) ICP non-linear: Both the point-to-point and point-
to-surface ICP approaches defined a differentiable, convex,
squared cost function, resulting in a simple linear least-square
optimization problem, known as a L2-optimization, that can be
solved numerically using SVD. However, L2-optimization is
known to be highly sensitive to outliers because the residuals
are squared. An approach that solves this problem is known
as L1-optimization where the sum of the absolute value of the
residuals is minimized instead of the square. However, the L1
cost function is non-differentiable at the origin which makes
it difficult to obtain the optimal solution.

As a compromise between L1 and L2 optimization, the
so called Huber loss function can be used as shown by (11).
The Huber loss function is quadratic for small values and
thus behaves like an L2 problem in these cases. For large
values however, the loss function becomes linear and therefore
behaves like an L1 cost function. Moreover, the Huber loss
function is smooth and differentiable, allowing traditional nu-
merical optimization methods to be used to efficiently traverse
the search space.

e2(n) =

{
n2/2 if |n| ≤ k
k|n| − n2/2 if |n| > k

(11)

where k is an empirically defined threshold and n is the
distance measure.

The ICP non-linear algorithm uses the Huber loss function
instead of a naive squared loss function to reduce the influence
of outliers:

R̂, t̂ = argmin
R̂,̂t

N∑
i=1

e2(n) (12)

where
n = ‖(Rp− t)− q‖ (13)

To obtain the optimal estimates R̂, t̂ in (12), the Levenberg-
Marquardt algorithm (LMA) [6] is used. The LMA method
is an iterative procedure similar to the well known gradient
descent and Gauss-Newton algorithms, that can quickly find a
local minimum in non-linear functions.

4) Generalized ICP: A major disadvantage of the tradi-
tional point-to-point ICP algorithm, is that it assumes that the
source pointcloud is taken from a known geometric surface in-
stead of being obtained through noisy measurements. However,
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due to discretization errors it is usually impossible to obtain a
perfect point-to-point matching even after full convergence of
the algorithm. The point-to-surface ICP algorithm relaxes this
constraint by allowing point offsets along the surface, in order
to cope with discretization differences. However, this approach
still assumes that the source pointcloud represents a discretized
sample set of a known geometric surface model since offsets
along the surface are only allowed in the target pointcloud.

To solve this, Segal et al.[7] proposed the Generalized
ICP algorithm which performs plane-to-plane matching. They
introduced a probabilistic interpretation of the minimization
process such that structural information from both the source
pointcloud and the target pointcloud can be incorporated easily
in the optimization algorithm. Moreover, they showed that the
traditional point-to-point and point-to-surface ICP algorithms
are merely special cases of the Generalized ICP framework.

Instead of assuming that the source pointcloud is obtained
from a known geometric surface, Segal et al. assume that both
the source pointcloud A = {ai} and the target pointcloud B =
{bi} consist of random samples from an underlying unknown
pointcloud Â = {âi} and B̂ = {b̂i}. For the underlying and
unknown pointclouds Â and B̂, perfect correspondences exist,
whereas this is not the case for the observed pointclouds A
and B, since each point ai and bi is assumed to be sampled
from a normal distribution such that ai ∼ N (âi, C

A
i ) and

bi ∼ N (b̂i, C
B
i ). The covariance matrices CA

i and CB
i are

unknown. If both pointclouds would consist of deterministic
samples from known geometric models, then both covariance
matrices would be zero such that then A = Â and B = B̂.

In the following, let T be the affine transformation matrix
that defines the mapping from Â to B̂ such that b̂i = T âi.
If T would be known, we could apply this transformation to
the observed source pointcloud A, and define the error to be
minimized as dTi = bi − Tai. Because both ai and bi are
assumed to be drawn from independent normal distributions,
dTi which is a linear combination of ai and bi, is also drawn
from a normal distribution:

dTi ∼ N (b̂i − T âi, CB
i + TCA

i T
ᵀ) (14)

= N (0, CB
i + TCA

i T
ᵀ) (15)

The optimal transformation matrix T̂ is then the trans-
formation that minimizes the negative log-likelihood of the
observed errors di:

T̂ = argmin
T

∑
i

log (p(dTi ))

= argmin
T

∑
i

dTi
ᵀ
(CB

i + TCA
i T

ᵀ)−1dTi (16)

Segal et al. showed that both point-to-point and point-to-
plane ICP are specific cases of (16), only differing in their
choice of covariance matrices CA

i and CB
i ; If the source point

cloud is assumed to be obtained from a known geometric
surface, CA

i = 0. Furthermore, if points in the target point
cloud are allowed three degrees of freedom, then CB

i = I . In
this case, (17) reduces to:

T̂ = argmin
T

∑
i

dTi
ᵀ
dTi

= argmin
T

∑
i

‖dTi ‖2, (17)

which indeed is exactly the optimization problem that is solved
by the traditional point-to-point ICP algorithm. Similarly, CA

i
and CB

i can be chosen such that obtaining the maximum
likelihood estimator corresponds to minimizing the point-
to-plane or the plane-to-plane distances between both point
clouds.

V. RESULTS & DISCUSSION

In this section, we illustrate the performance difference
between a naive PCA based approach, a correspondences
based SVD approach, and the ICP point-to-point registration
approach. To allow for a fair comparison, we use the publicly
available dataset proposed by Pomerlau et al. [21].

Figure 7 shows the matching error plotted against the
number of iterations for the ICP point-to-point algorithm (dark-
gray) without pre-alignment, and for the ICP point-to-point
algorithm (light-gray) where the data has been pre-aligned
using the SVD approach. In the latter case, a simple nearest-
neighbor matching was used to define point correspondences,
after which the SVD algorithm was used to solve the least-
squares problem. This result clearly shows the importance of
a rough initial alignment before applying the ICP algorithm.
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Figure 7. Comparison between PCA, SVD and general point to point ICP

Furthermore, figure 7 shows the results of a single SVD
based least-squares iteration, and the results obtained using the
PCA based registration approach. It is clear that the PCA based
approach yields the largest matching error, due to the fact that
it does not incorporate correspondence information, such that
this method is highly sensitive to outliers.

On the other hand, a simple PCA or SVD based approach
is extremely computational efficient, whereas the iterative ICP
scheme is often too computationally expensive for real-time
applications. However, Figure 7 shows that convergence can
be reached quickly if a rough initial alignment is available.

Finally, it is important to note that result of the variants of
ICP such as point-to-plane and plane-to-plane greatly depend
on the input data. If the source pointcloud does not contain
much noise, while the target pointcloud is mostly smooth and
piece-wise planar, the point-to-plane algorithm outperforms
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the traditional point-to-point method. On the other hand if
the geometric structures in the scene are mostly quadratic or
polynomial, the traditional ICP point-to-point algorithm yields
better results. Similarly, if a lot of noise is observed in the
source pointcloud, ICP plane-to-plane outperforms ICP point-
to-plane.

VI. CONCLUSION

In this paper we provided an overview of six state-of-
the-art rigid 3D registration algorithms commonly used in
robotics and computer vision. We discussed the mathematical
foundation that is common to each of these algorithms and
showed that each of them represents different approaches to
solve a common least-square optimization problem.

Furthermore, we used a publicly available dataset to com-
pare the results of these algorithms and concluded that the
results are extremely data dependent such that the choice for
a specific algorithm should mainly depend on the application
and input data.
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