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Abstract—This paper is part of a larger project with as
goal the construction of an autonomous wheelchair. We imple-
mented some existing algorithms and made the first hardware
setup for the project. We found that a lot of optimization is still
necessary, but could indicate in what direction this research
should first be aimed. For our localization approach, using
FastSLAM, landmark data association is key. We use Vector
Field Histograms as obstacle avoidance planning algorithm,
which still has problems with local extrema. With these
problems will be dealt in future research.
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I. INTRODUCTION

Autonomous vehicles have had major breakthroughs in
recent years. This is shown in, among others, the DARPA
Grand Challenge [1], [2], the autonomous vehicle from Stan-
ford University [3], and Google’s self-driving car [4]. There
are a lot of problems involved in building a vehicle that
can fully autonomously drive through an urban environment.
Most crucial in the process are the planning, the control, and
the perception of the vehicle [1]–[4].

This paper is part of a larger project with as goal the
construction of an autonomous wheelchair. The project starts
with a simple electrical wheelchair and attempts to equip
this with various sensors and actuators. These sensors and
actuators are then intelligently managed by a computer
program, such as happens in regular autonomous vehicles.

Other research on autonomous wheelchairs, such as the
ones described by Yanco [5], has been focused on navigat-
ing in small environments, assisted driving, and human-AI
interface. In contrast, this project is focused on opportunistic
outdoor navigation and obstacle avoidance. Concretely this
means the wheelchair will use detailed information about
the environment if it is available, but can also work without
this information. This should not influence anything but
navigation performance.

The goal of this research is to make a first implementation
of the wheelchair, both in hardware and software. This is
done by assembling the hardware and getting it operational
as well as implementing the intelligence framework. The
intelligence framework is a collection of existing algorithms

that are commonly used in autonomous vehicles to perform
the steering, localization, and planning.

In Section II, we describe how we implemented these
existing algorithms. First is the obstacle avoidance in Sec-
tion II-A, using the Vector Field Histogram (VFH) [6].
Second is the localization in Section II-B, using landmarks
extracted from a laser range measurement in the Fast-
SLAM [7] algorithm. The last algorithm, in Section II-C,
is an implementation of A* search [8] to perform planning.
Section III gives the performance of the obstacle avoidance
and localization algorithms. These tests do not represent
the overall performance of the algorithms. The main goal
of the paper was collecting the algorithms and find out
where optimization is needed. In Section IV, we conclude
by describing how the tested algorithms must be extended
or altered to optimize their performance in our application.

II. METHODS

We developed a program that cycles through three mod-
ules: localization, steering, and navigation. The navigation
module performs a routing algorithm and decides which path
to take on a global level. The steering module attempts to
follow parts of the route at a time, dictated by the navigation
module on a local level. In addition, the wheelchair will also
avoid obstacles detected by the laser. The program accom-
plishes moving and avoiding, by sending commands to an
IC that translates the high level commands into amounts
of power to each motor. After the wheelchair performs
the commands by the mobilization module, the localization
module then calculates the location of the wheelchair. The
hardware setup is shown in Figure 1.

A. Obstacle Avoidance

Since wheelchairs are often used in an urban environment,
avoiding obstacles is an important issue. The problem,
however, is complex as obstacles have to be detected and
the distance to the object needs to be calculated. Moreover
the program has to identify whether the wheelchair is on a
collision course. Moving objects further complicate obstacle
avoidance.

How complex the obstacle avoidance algorithm needs
to be depends mostly on the application. For a primitive
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Figure 1. Wheelchair hardware setup

wheelchair, it could be sufficient to come to a full stop when
an obstacle is detected. More sophisticated algorithms can
decide on the position and size of an object, and plan a route
around it (e.g., edge detection methods [9]). The set-back is
that long computation times are necessary. In addition imple-
mentation is often complex. For some algorithms it is even
necessary to stop the wheelchair to calculate the alternate
route, before the wheelchair can resume its activities.

The solution utilized in this paper is the Vector Field
Histogram (VFH) [6], which is an improvement on the
Virtual Force Field (VFF), of the same author [10]. This
method utilizes the concept of imaginary forces that influ-
ence the entity, in our case a wheelchair. This idea was first
introduced by Khatib [11], and it lends itself very well to
an effective way of avoiding obstacles. Any obstacle that is
detected, will emit a force towards the wheelchair that repels
it, the closer the object, and the higher the certainty of their
actually being an object there, the stronger the force. On
the other hand there is a goal, which attracts the wheelchair
towards it’s position. The combination of all these forces
will decide the bearing of the wheelchair.

1) Vector Field Histogram: VFH implements this in
three steps: Creating a belief state in the form of a 2D
cartesian Histogram, a data reduction by transforming the
2D histogram to a 1D polar histogram, and finally using
this data to create a new bearing for the wheelchair.

In the 2D Cartesian Histogram representation, each object
in the world is mapped in a 2D grid. Each cell represents a
part of the space, and holds the probability of there being an
obstacle in that position. Whenever a new sample of sensor
data suggests an obstacle in a certain cell, the probability of
there being an obstacle increases. The wheelchair and the
destination also hold a position in this grid, the 2D Cartesian
histogram is an entire overview of the area of operation.

This grid is also implemented in the VFF algorithm. A
problem with using just the information on this grid to map
to a wheelchair’s bearing lies in the discrete nature of the
grid. When the wheelchair moves to another cell on the
grid, the force vectors will change direction and magnitude
very sudden, causing fluctuations in the steering. Smoothing
is wanted, but also slows down the algorithms reaction to
sudden changes to the world. The solution proposed in the
VFH algorithm is doing a second data reduction to a 1D
Polar histogram, and smoothing this histogram instead. This
will lower the impact of smoothing on the wheelchair’s
reaction to sudden changes, but will solve the fluctuations
in the steering.

The polar histogram contains information on the the
obstacle density in a certain direction (sector). Sectors with
a low object density are called valleys, while sectors with
a high object density are called peaks. This density is
smoothed using a moving average filter, because of the
data reduction this smoothing will have a lot less impact
than doing it on the 2D Cartesian Histogram. Valleys are
directions the wheelchair should consider taking, where as
peaks are directions that are too cluttered with objects.
Consequently it can be said that peaks repel the wheelchair,
and valleys attract it. Which direction will be chosen further
depends on the proximity of valleys to the sector of the
destination. This is illustrated in Figure 2. The dashed fields
in the circle are peaks, and the wheelchair should avoid
moving towards them. The empty fields are valleys, which
are available routes that should be considered. The dot in
the upper right corner is the destination. Which valley is
the most optimal is finally decided by their proximity to
the object. The bearing that differs the least from the direct
path will be best suited. However, to avoid paths that are too
narrow for the wheelchair, the path that is finally chosen will
not be the optimal path, but the optimal path + a constant.
On the figure, the lines towards the wall in front of the
destination would be the optimal path, where the arrows
would be the actual chosen paths.

B. Localization

To calculate the wheelchair’s new position after a move-
ment, a laser rangefinder is used. In an environment of
which no prior knowledge is available to the wheelchair,
this problem is similar to the Simultaneous Localization and
Mapping (SLAM) [12] problem.

A map of the environment is assumed to be available in
our setup. Using this assumption it is possible to perform
SLAM on abstract, natural landmarks that are easily matched
in subsequent observations of the environment. It is harder to
identify these abstract landmarks as parts of the environment
such as wall corners. This is not of concern here, since no
map of the environment must be constructed.

The localization thus happens by finding landmarks in the
environment. These landmarks are stored as their position
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Figure 2. Vector Field Histogram imaginary forces and decisions.

in the environment, calculated from their position relative
to the wheelchair. The movement of the wheelchair is then
applied reversely to the landmarks, simulating wheelchair
movement. When at the new position landmarks are de-
tected, they are matched with the simulated location. These
steps are visible in Figure 3.

A B C

Figure 3. Localization using landmarks. A: Find landmarks, calculate their
position in the environment. B: Simulate movement on landmarks, calculate
position to wheelchair. C: Check found landmarks at new position with
simulated locations of landmarks.

Our wheelchair searches for landmarks in the environment
using a SICK LMS100 [13] laser rangefinder. Figure 4
shows a sample measurement of this device. It has a 18
meter range and operating angle of 270 degrees, scanning
at every half degree [14].

To find distinctive landmarks in the range scan an algo-
rithm based on the curvature scale space is used [15], [16].
The range scan is first parameterized to a curve based on the
path length parameter. This curve is then convoluted with a
Gaussian of varying scales. The convolution with the wider
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Figure 4. Measurement of the LMS100 laser rangefinder. The horizontal
axis depicts the bearing of the measurement, the vertical axis depicts the
range at that angle.

Gaussian is used to identify good landmarks, the convolution
with the smaller Gaussian is used to localize a landmark. The
complete algorithm is described below.

1) Landmark Extraction: The curvature scale space rep-
resentation of the laser range scan is obtained by Equa-
tion (1). For a complete description of how the curvature
κ(s, σ) is derived, see [15].

κ(s, σ) = Ẋ(s, σ)Ÿ (s, σ)− Ẍ(s, σ)Ẏ (s, σ), (1)

where:

Ẋ(s, σ) = x(s)⊗ ġ(s, σ) (2)

Ÿ (s, σ) = y(s)⊗ g̈(s, σ) (3)

Ẍ(s, σ) = x(s)⊗ g̈(s, σ) (4)

Ẏ (s, σ) = y(s)⊗ ġ(s, σ) (5)

g(s, σ) =
1

σ
√
2π
e−s

2/2σ2

(6)

ġ(s, σ) ≡ ∂g(s, σ)

∂s
=

−1
σ3
√
2π
se−s

2/2σ2

(7)

g̈(s, σ) ≡ ∂2g(s, σ)

∂s2
=

1

σ3
√
2π

([ s
σ

]2
− 1

)
e−s

2/2σ2

(8)

The curve x(s), used in (2) and (4), is a parameterization
of the bearing of the range scan, see the dashed curve
in Figure 5. The curve y(s), used in (3) and (5), is a
parameterization of the range of the range scan, see the solid
curve in Figure 5.

The parameterization is done by creating the path length
parameter s. The parameter depends on the distance between
two subsequent data points, normalized from 0 to 1. Two
new curves are constructed depending on this parameter as
such: {(xi, si), (yi, si); i = 0, 1, . . . ,m} with s0 = 0, sm =
1.

These curves are convoluted with derivatives of a Guas-
sian g(s, σ), see Equation (6). The first derivative of this
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Figure 5. Parameterized curves of bearing and range. The left vertical
axis depicts the bearing of the measurement, the right vertical axis depicts
the range of the measurement. The horizontal axis depicts the path length
parameter s.

Gaussian, Equation (7), is needed in (2) and (5). The
first fifty points of this Gaussian are given as the dashed
curve in Figure 6. The second derivative of this Gaussian,
Equation (8), is needed in (4) and (3). The first fifty points
of this Gaussian are given as the solid curve in Figure 6.
Other points of these curves are all negligible close to zero.
Since the Gaussians depend on the path length parameter s,
which ranges from 0 to 1, they only exist over the positive
side of the horizontal axis.

These Gaussians are scaled by varying σ. The scales range
from σ = 5 × 10−4 to σ = 1.05 × 10−2 with a step
width depending on the desired number of scales. Since four
convolutions are needed to calculate the curvature of one
scale, the number of scales is, however heuristically chosen
in our implementation, a non-trivial number to choose.
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Figure 6. Gaussian derivatives with which the parameterized curves are
convoluted. The left vertical axis depicts the first derivative of the Gaussian,
the right vertical axis depicts the second derivative of the Gaussian.

Local extrema at larger scales are used to select landmarks
that are expected to be easily identified again in subsequent
scans. Local extrema at smaller scales are used to localize

these landmarks [17]. Thus, these local extrema at both ends
must be matched to each other. This matching is visible in
Figure 7 as the lines. These lines range from the bottom,
were the wider scales are and landmarks are selected, to the
top where they are localized.

Figure 7. Curvature scale space of laser range scan with 64 scales. At the
top of the figure are the curvatures with smaller scale, at the bottom are
the curvatures with wider scale.

After selection and localization, the landmarks are used
in a SLAM algorithm.

2) FastSLAM: FastSLAM is one modern algorithm to
perform SLAM using landmarks [7], [18]–[20]. A landmark
is in fact a feature of the environment saved as the range
and bearing to that feature. By predicting the location of
the landmarks after movement and matching this to the
actual measurement, it is possible to select a most probable
explanation.

The FastSLAM posterior is defined as follows [7]:

p(st, θ|zt, ut, nt) =

p(st|zt, ut, nt)
N∏
n=1

p(θn|st, zt, ut, nt)
(9)

where:

st complete path of the wheelchair
θ set of all n landmark positions
zt set of all observations
ut set of all controls
nt set of all data associations
N total number of landmarks

The wheelchair path posterior, the first term in (9), is
computed using a particle filter in order to pursue multiple
possible paths and select the most probable. For each particle
a set of N Extended Kalman Filters (EKFs) is maintained to
calculate the landmark position posteriors, the second term
in (9).

The control in our system is expressed as a traveled dis-
tance and turn, thus the motion model incorporates distances
instead of speeds:

s
′

t,x ∼ st−1,x + cos(st−1,θ)N(ut,d, α1ut,d) (10)

s
′

t,y ∼ st−1,y + sin(st−1,θ)N(ut,d, α1ut,d) (11)

s
′

t,θ ∼ st−1,θ +N(ut,θ, α2ut,θ) (12)
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where:

s
′

t predicted current state of the wheelchair
st−1 previous state of the wheelchair
ut,d distance in current control
ut,θ turn in current control

Equations (10) and (11) predict a new location of the
wheelchair after moving a certain distance ut,d. Equa-
tion (12) predicts the new heading of the wheelchair after
turning a certain angle ut,θ. In this model, it is assumed
that the wheelchair first drives the distance and then turns
in place. The variance of the error is captured in the α
parameters.

Landmarks are then incorporated using EKFs. The mea-
surement function g(st, θnt

) is defined as:

g(st, θnt) =

[
r(st, θnt)
φ(st, θnt)

]
=

[ √
(θnt,x − st,x)2 + (θnt,y − st,y)2

tan−1
(
θnt,y−st,y
θnt,x−st,x

)
− st,θ

] (13)

The range r and bearing φ to a landmark θnt
from

wheelchair position st are calculated in (13). More elaborate
discussions of the EKF used in FastSLAM can be found
in [7].

C. Navigation

The idea of the navigation module is to find an optimal
route between this location and a given destination in a
global manner. With this we mean it needs to be able to plan
a general route, but the navigation in itself is not responsible
for avoiding obstacles on the way. It will calculate a set of
ordered waypoints that, when connected, provide the optimal
route with the provided information. These waypoints are
usually connected with a straight line, which doesn’t reflect
reality since there will be obstacles along this route that
need to be avoided. The navigation module does nothing
to avoid these obstacles, it only provides a general bearing,
the steering around obstacles is a responsibility for another
module. The algorithm we choose for routing is A* search
[8].

A* search is a form of breadth-first search which cal-
culates its cost with a heuristic. Rather than only having
the cost of the path so far g, there is also a cost which
is an estimate of how much the cost will increase from
that node towards the destination. This cost is called the
heuristic h. An example of what a heuristic cost could be
is the Euclidean distance from the current position to the
goal position. This way, the algorithm tries to keep the path
cost small, but also takes the distance that has yet to be
traveled into account, and will make the tree search a lot
faster in most cases. The formula for the total cost is then:
cost = g + h. This cost will be used to decide which node
to expand next.

III. RESULTS

In a complete setup, the wheelchair is able to drive around
in a closed environment. The established actuators can make
it turn in place and drive straight ahead. The planning and
localization modules are able to intelligently update new
controls for the wheelchair. Their performance must yet be
optimized.

When turning, the wheelchair will deviate 2.1 % of
the angle given by the steering module. This means that
α2 = 0.021. When driving straight ahead, the wheelchair
will deviate 1 % of the distance commanded by the steering
module. This means that α1 = 0.01. This data is collected
by letting the wheelchair perform a controlled movement
a meaningful number of times. A calibrated accelerometer,
with a maximum error of 3, was used to measure the angles.

Our implementation of the VFH algorithm has only been
tested through simulation, in player-stage. It was tested using
a map of an office environment. The simulated wheelchair
then got objectives from a user it had to attempt to reach.
The implementation avoids objects and tries to find a path
to a certain destination. However, local minima and maxima
can put the wheelchair in a loop, which means that he will
do the same things over and over without realizing that it’s
not getting any closer to it’s goal. The test results showed
that obstacles are avoided. In addition, the destination can
be reached if the following conditions are met: There are no
local minima/maxima close by, the destination is not situated
in a corner, and all objects are stationary. How close to an
object the destination is allowed to be further depends on
how the parameters were chosen. Changing these parameters
will influence performance on other areas, such as avoiding
collisions, so is not always a good idea.

In the localization, data association happens by matching
simulated landmarks to newly discovered landmarks. The
only feature for this matching is location. Due to movement
noise, a simulated landmark and an actual landmark will not
be at exactly the same location. If the simulated and actual
landmark are near to each other, they will be matched. In our
current implementation this matching does not happen often
enough for FastSLAM to decide on a most probable path
followed by the wheelchair. This can be solved by increasing
the maximum distance landmarks will be matched, however,
this could also increase incorrect matching. Another solution
which seems more promising, is to use additional features.
Depending on the features chosen this could greatly improve
our localization.

Extracting landmarks from the laser range scanner has a
time complexity depending on the number of scales used,
O(n) with n the number of scales. On 128 scales the
algorithm takes an average of 14.11 seconds, while on four
scales the algorithm takes only 0.48 seconds on average. The
landmarks differ only 3.49 cm and 2.82 degrees on average.

In subsequent scans, up to 80% of matching landmarks
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are identified, but the localization is prone to errors. Since
no other data association but location is performed, false
new landmarks are usually created and most particles have
the same, unlikely probability.

IV. CONCLUSION

We successfully build an electric wheelchair that is able
to drive in a way a computer program asks it to. A computer
formulates a command and transfers it to an Integrated
Circuit, which translates the command to power on the
motors and emits a PWM signal. This PWM signal is
transferred to the motors through H-bridges.

The computer program is a system that was made by
combining existing algorithms that are are responsible for
the localization, the obstacle avoidance, and the navigation.
These algorithms can successfully plan a route to a known
destination, using the data that the wheelchair’s sensors
detect. This system combined with the working hardware,
is the base for the project to construct an autonomous
wheelchair and is a good first step towards achieving this
goal. However, there is still a lot of optimization needed.

The localization is inaccurate and unstable, we discoverd
that it is impossible to do FastSLAM with only a laser finder
and data association using only location as feature. Since
the wheelchair uses this location for it’s planning and it’s
obstacle avoidance, this needs to be improved upon. We
believe this can be done by extended data association in
the landmark detection. The data association is now only
dependent on the location of the landmark to the vehicle.
Extracting more features from the landmark should improve
the association.

Although obstacle avoidance is working, it’s not colliding
with objects, the wheelchair’s main goal is to get to it’s
destination. However, due to local minima and maxima the
robot sometimes locks in a loop which stops it from getting
any closer to it’s goal. A simple solution can be to also keep
track of the wheelchair’s path, and if an action is repeated
more than once without a better result, then the wheelchair
needs to try something different.

Finally, the hardware is able to receive commands and
do a reasonable attempt to carry them out. Although it is
not necessary that these attempts are very accurate, we need
to have a better insight in the error on them. In addition,
researching this will also give a better insight in how to
increase control accuracy.
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