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Abstract—This paper proposes a method to improve loop 
closure detection performance in Normal Distributions Transform 
(NDT) Graph Simultaneous Localization And Mapping (SLAM) 
using Light Detection And Ranging (LiDAR). Candidates of 
revisit places (loops) are detected from semantic information, such 
as buildings, fences, vegetation, trunks, poles, and traffic signs, 
based on semantic segmentation of LiDAR point cloud data. Loops 
are determined from loop candidates using semantic information-
based point feature histograms in conjunction with conventional 
geometric information-based point feature histograms. Then, 
vehicle poses relative to loops are calculated based on the matching 
of point features and are applied to correct errors accumulated by 
NDT SLAM in the graph optimization framework. The projected-
based semantic segmentation RangeNet++ is used to obtain 
semantic information about the surrounding environment. The 
experimental results obtained using the Semantic KITTI dataset 
demonstrate the performance of the proposed method.  

Keywords—LiDAR SLAM; NDT-Graph SLAM; loop closure 
detection; semantic segmentation. 

I. INTRODUCTION 
Recently, in the fields of Intelligent Transportation Systems 

(ITS) and mobile robotics, many studies on Autonomous 
Driving Systems (AVS) and Advanced Driver Assistant 
Systems (ADAS) have been reported [1][2]. Simultaneous 
Localization And Mapping (SLAM) and object recognition 
using onboard sensors, such as cameras and Light Detection 
And Ranging sensors (LiDARs), are important technologies for 
AVS and ADAS [3][4]. In this study, we focus on LiDAR 
SLAM. 

Scan-matching SLAM using Normal Distributions 
Transform (NDT) and iterative closest point techniques is 
typically used in LiDAR SLAM [5]. However, the scan-
matching SLAM causes accumulation errors as the travel 
distance of the vehicle increases. To reduce accumulation errors, 
Graph SLAM is employed in conjunction with scan-matching 
SLAM. In Graph SLAM, the detection of revisit places (referred 
to as loops) is a crucial issue, and many loop detection methods 
have been proposed [6]. 

A conventional loop detection method is based on geometric 
surface shape features of surrounding objects, such as poles and 
plains [7][8]. Loops are extracted based on the shape of the 
distribution of LiDAR point cloud data for objects, and loops are 
detected by checking the similarity of the surface shape features 
between two places. Another conventional geometric loop 
detection method is based on point features, such as Fast Point 

Feature Histograms (FPFH) [9] and normal-aligned radial 
features [10]. However, geometric surface and point features 
cannot distinguish objects with similar shapes, such as utility 
poles and trees; thus, false loop detection typically occurs.  

In our previous works [11][12], to reduce false and miss 
detections of loops using geometric features, a two-stage loop 
detection method was proposed. First, loop candidates were 
detected based on the surface shape features. Next, loops were 
detected from loop candidates based on point features using 
FPFH and the three-Points Congruent Sets (3PCS) method. 
However, improvements are required to reduce miss and false 
loop detection. 

Recently, in the ITS and mobile robotics domains, deep 
learning-based SLAM and object recognition methods have 
been actively discussed [13]. In SLAM, semantic segmentation 
improves the representation of surface and point features and the 
accuracy and robustness of loop detection. Many semantic 
segmentation-based loop detection methods have then been 
proposed [14]–[16]. However, applying semantic information to 
loop detection remains a challenge. 

From this viewpoint, this paper improves the performance of 
our previous geometric loop detection method [12] by 
introducing semantic information from the RangeNet++ 
semantic segmentation method [17]. RangeNet++ is a 
projection-based semantic segmentation method with lower 
computation overhead and memory requirements than point- 
and voxel-based methods [18]. For this reason, RangeNet++ is 
used in this study. 

The remainder of this paper is organized as follows. Section 
II describes LiDAR SLAM. Section III explains loop detection 
method. Section IV presents the experimental results obtained 
from the KITII dataset [19] to demonstrate the performance of 
the proposed method, followed by the conclusions in Section V. 

II. OVERVIEW OF LIDAR SLAM 
LiDAR SLAM is based on NDT-Graph SLAM. First, the 

point cloud data captured from a vehicle-mounted LiDAR are 
mapped onto a three-dimensional (3D) grid map (voxel map) 
represented in the LiDAR coordinate system attached to the 
LiDAR. Then, a voxel grid filter is applied to downsize the 
LiDAR point cloud data. The block used for the voxel grid filter 
is a cube with a side length of 0.2 m. 

In the world coordinate system, a voxel map with a voxel 
size of 1 m is used for NDT scan matching. For the i-th (i = 1, 2, 
…n) measurement in the LiDAR point cloud data, the position 
vector in the LiDAR coordinate system is denoted as bip  and 
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that in the world coordinate system is denoted as ip . The 
following relation is obtained: 

( )
1 1

i bip p
Τ x  (1) 

where ( , , , , , )Tx y zx   denotes the pose of the vehicle. 
( , , )x y z  and ( , , )  denote the 3D position and attitude angle 
(roll, pitch, and yaw angles) of the vehicle, respectively, in the 
world coordinate system. T(x) denotes the homogeneous 
transformation matrix. 

The LiDAR point cloud data obtained at the current time 
step are referred to as the current point cloud data, and the point 
cloud data obtained up to the previous time step are referred to 
as the reference map. The vehicle pose x at the current time step 
is determined by matching the current point cloud data with the 
reference map. The vehicle pose is used for coordinate 
transform using (1). Then, the current point cloud can be 
mapped to the world coordinate system, and the reference map 
is updated.  

The LiDAR obtains point cloud data by scanning laser 
beams. Thus, when a vehicle moves, the entire point cloud data 
in the LiDAR sampling period cannot be acquired at a single 
point in time. Therefore, if the entire point cloud data at the 
current time step are mapped onto the world coordinate system 
using vehicle-pose information at a single point in time, motion 
artifact (distortion) arises in the LiDAR point cloud data and 
degrades SLAM accuracy. The motion artifact is corrected 
using an unscented Kalman filter-based algorithm [20].  

The point cloud data captured by the LiDAR is processed 
into semantic segmentation using RageNet++, and semantic 
information is obtained for each LiDAR measurement. In this 
study, 12 semantic classes are considered: cars, two-wheelers, 
other vehicles, people, roads, lawns, buildings, fences, 
vegetation, trunks, poles, and traffic signs. As shown in Figure 
1, LiDAR point cloud data with semantic information are 
mapped onto a voxel map with a voxel size of 1 m. Then, in 
each voxel, majority voting of the semantic class of the LiDAR 
point cloud data is selected, and the voxel semantic class is 
determined. Figure 2 presents an example of voxel semantic 
classification. 

In SLAM, the use of LiDAR point cloud data related to 
moving objects (referred to as moving point cloud data), such 
as cars, two-wheelers, and pedestrians, degrades accuracy. 
Thus, these data are removed using an occupancy grid method, 
and those related to stationary objects (stationary point cloud 
data) are used in NDT SLAM. Semantic segmentation can 
detect moving objects. However, this paper focuses on loop 
detection using semantic information; thus, moving point cloud 
data are removed using the occupancy grid method. 

The accuracy of NDT SLAM deteriorates over time due to 
accumulation errors. To reduce the error, Graph SLAM is 
employed [21]. Figure 3 shows a pose graph for Graph SLAM. 
Here, the relative poses of the vehicle, which are calculated by 
NDT SLAM for every LiDAR sampling period, are set to a pose 
graph as graph edges (the black arrows depicted in Figure 3). 
When loops previously visited by the vehicle are detected using 
the method described in Section III, the current pose of the 
vehicle relative to its pose at the revisit node is set to the pose  

 

 
Figure 1. Flow of voxel classification using semantic information. 

 

Figure 2. Example of voxel semantic classification using RangeNet++. 

 
Figure 3. Pose graph. The black triangle indicates the graph node (vehicle pose), 
and the black and blue arrows indicate graph edges (relative poses between two 
neighboring nodes and loop constraint, respectively).  
 
graph as a loop constraint (the blue arrow in Figure 3). Using 
the least squares method, Eq. (2) is then minimized to improve 
the accuracy of NDT SLAM as follows: 

1 1, 1 1,( ) {( ) } {( ) }T pose
i i i i i i i i

i
J χ x x δ Ω x x δ  

   , ,
, loop

{( ) } {( ) }
A B

T loop
B A A B B A A B

x x
x x δ Ω x x δ       (2) 

where the first and second terms on the right side indicate the 
constraints on NDT SLAM and loops, respectively; 

1 2( , , , , )T T T T
iχ x x x ; ix denotes the vehicle pose at the i-th 

time step; 1,i iδ  denotes the relative pose of the vehicle between 
the i-th and (i+1)th time steps, which is calculated from NDT 
SLAM; Ax  and Bx  denote the vehicle poses at the loop and 
current nodes, respectively; ,A Bδ  denotes the relative pose of 
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the vehicle at the two nodes, which is calculated from the 
LiDAR point cloud using NDT scan matching; poseΩ  and loopΩ  
denote the weighting matrices. 

III. LOOP DETECTION METHOD 

A. Detection of Loop Candidates 
A key component of Graph SLAM is loop detection. To this 

end, loop candidates are first obtained using vehicle self-
location information via NDT SLAM. If the distance between 
an old node and the current node is less than 15 m, the old node 
is recognized as a loop candidate.  

In our previous work [11][12], geometric surface shape 
features of surrounding objects were used to identify loop 
candidates (see Appendix A). In this paper, semantic 
information is used to improve the performance of selecting loop 
candidates. The similarity indicator (referred to as Semantic 
Similarity Indicator, SSI) is calculated to select loop candidates．
For the SSI, six voxel semantic classes are considered: buildings, 
fences, vegetation, trunks, poles, and traffic signs.  

Based on these classes of voxels, two feature descriptors, Fs 
= (f1, f2, …, f6) and Gs = (g1, g2, …, g6), are defined, where Fs 
denotes the feature descriptor, which is calculated from LiDAR 
point cloud data captured at loop candidates, and Gs denotes the 
feature descriptor, which is calculated from LiDAR point cloud 
data captured at the current place; fi and gi, i = 1, 2,…., 6, denotes 
the number of the i-th semantic class. The SSI is then defined 
using the feature descriptors as follows: 

6

1
6

1

{max( , ) }
100

max( , )

i i i i
i

i i
i

f g f g
SSI

f g
                  (3) 

A higher degree of similarity between the LiDAR point 
cloud data at loop candidates and current places leads to a larger 
SSI. Thus, if the SSI is 60% or higher, the loop candidates are 
accepted. 

B. Loop Detection and Relative Pose Calculation 
Loops are determined from the loop candidates using a 

Point cloud Overlap Indicator (POI). From two LiDAR point 
cloud data captured at the current place and each loop candidate, 
the relative pose of the vehicle is calculated using NDT scan 
matching. The POI is then given by:  

1

1 overlap( ) 100
n

i
i

POI d
n

                          (4) 

where n represents the number of measurements in the LiDAR 
point cloud data captured at the current place of the vehicle; di 
denotes the nearest neighbor distance between the 
measurements in the LiDAR point cloud data captured at the 
current place and each loop candidate. The function overlap (di) 
is defined by  

1 for  threshold
overlap( )

0 otherwise
i

i

d
d                  (5) 

A higher similarity between the LiDAR point cloud data 
captured at the current place and loop candidate leads to a 
smaller POI value. Thus, if the POI value is 80% or higher, the 
loop can be detected from the loop candidates.  

In NDT scan matching, if the initial relative pose is 
incorrect, both the relative pose estimate and POI become 
inaccurate due to local minima issues. In our previous work 
[12], to accurately set the initial relative pose, geometric point 
feature histograms, FPFH, were used. In this paper, geometric 
and semantic point feature histograms (referred to as Semantic 
Point Feature Histograms, SPFH) are presented to improve the 
performance of setting the initial relative pose. 

First, LiDAR point cloud data captured at the current place 
are mapped onto a voxel map (grid size of 0.2 m) in the LiDAR 
coordinate system and downsampled using a voxel grid filter. 
The centroid of the point cloud data in the i-th voxel (i = 1, 2, 
…) on the voxel map is then obtained. The centroid is referred 
to as the feature point Ai in this paper. The geometric three-
angle feature in the feature point is calculated, and geometric 
point feature histograms (33 dimensions in this study) are then 
calculated based on FPFH (see Appendix B). 

In addition, a semantic feature histogram is calculated using 
the semantic information of the six semantic classes: buildings, 
fences, vegetation, trunks, poles, and traffic signs (see Section 
III-A).  

Let Ai be the feature point in the i-th voxel and Aj be the 
feature point in the j-th voxel (j = 1, 2, ..., n) located around the 
i-th voxel. Here, semantic information is assigned to each 
feature point, which is classified as a voxel semantic class using 
the voxel classification method shown in Figure 1.  

By obtaining the semantic class of the feature point Ai and 
the semantic classes of the n feature points (A1, A2,… , An) 
around Ai, a six-dimensional semantic feature histogram, which 
is the ratio of each semantic class of Ai to the n feature points, 
is calculated. Here, n represents the number of voxels within a 
radius of 2 m from the i-th voxel. The semantic feature 
histogram of Ai is referred to as Simplified Semantic 
Histograms (SSH) of Ai, SSH(Ai). Similarly, SSH(Aj) is 
calculated for the feature point Aj (j = 1, 2, ..., n) around Ai. 

The six-dimensional Semantic Histogram (SH) related to Ai 
is then given by 

1

1( ) ( ) ( )
n

i i j j
j

A A w A
n

SH SSH SSH                    (6) 

where the weight wi is given as the inverse number of the 
distance between Ai and Aj.  

The six-dimensional semantic feature histogram is 
combined with the 33-dimensional geometric feature histogram 
using FPFH. The 39-dimensional point feature histogram 
(referred to as Semantic Fast Point Feature Histogram, SFPFH) 
is then used to accurately set the initial relative pose. 

From the LiDAR point cloud data captured at each loop 
candidate, the feature point Bi and the related SFPFH are 
obtained in the same way. Their feature points Ai and Bi are 
matched using the 3PCS method [12] as follows: 

Step 1: Three feature points Ai (i = 1, 2, 3) are randomly 
extracted from the set of feature points obtained at the current 
location, and a triangle A  is composed of the three feature 
points A1, A2, and A3. Then, 100 feature points Bj (j = 1, 2, …, 
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100) with similar SFPFH as those of Ai (i = 1, 2, 3) are extracted 
from the set of feature points obtained at each loop candidate 
using the k-nearest neighbor method. A triangle B  is composed 
of any three feature points from 100 feature points Bj. The three 
feature points B1, B2, and B3 are selected such that the two 
triangles A  and B  are congruent. 

Step 2: The pose of the loop candidate relative to the current 
place is denoted by ( , , ,x y zx , , )T , where 
( , , )x y z  and ( , , )  denote the relative position and 
attitude angle, respectively. 

In the matched triangles A  and B , the centroid positions of 
the three-feature point sets (A1, A2, A3) and (B1, B2, B3) are 
denoted by a  and b , respectively. The positions of the feature 
points iA  and Bi, where i = 1, 2, 3, are denoted by *

ia  and *
ib , 

respectively. The feature point matrices are then given by 
1 2 3( , , )Ta a a a  and 1 2 3( , , )Tb b b b , where 

*
i ia a a  and *

i ib b b . Based on the matrices W1 
and W2, which are defined by the singular value decomposition 
(H = 1 2

TW ΣW ) of the matrix TH b a , the homogeneous 
matrix related to the relative pose x is given by  

2 1( )
0 1

TW W a RbT x                           (7) 

where R represents the rotational matrix related to ( , , ) . 
The position of the i-th feature point Ai (i = 1, ..., nA) in the 

feature point set A is denoted by ai, and that of the j-th feature 
point Bj (j = 1, ..., nB) in the feature point set B is denoted by bj. 
The distance rj between bj and its nearest neighbor feature point 
ai is then calculated by 

( ) ( )
1 1 1 1

T
i j i j

jr
a b a b

T x T x            (8) 

Step 3: Steps 1 and 2 are repeated 100 times to find the 
relative pose x with the largest value in the following cost 
function: 

1

1 overlap( )
Bn

j
jB

J r
n

                                (9) 

where overlap (ri) denotes the overlap function defined in (5). 
The relative pose x is then obtained. In NDT scan 

matching, the relative pose x is used as the initial value, and 
an iterative calculation is performed. Therefore, the accurate 
relative pose is calculated, and the POI in (4) can be obtained 
accurately.  

IV. FUNDAMENTAL EXPERIMENTS 

A. Dataset 
The Semantic KITTI dataset [19] is used to evaluate the 

performance of the proposed method. In the KITTI dataset, a 
mechanical 64-layer LiDAR (Velodyne HDL-64E) is mounted 
on a vehicle. The horizontal field of view of the LiDAR is 360° 
with an angular resolution of 0.08°, and the vertical field of view 
is 26.8° with an angular resolution of 0.42°. The LiDAR 
sampling period is 0.1 s, where the laser beam makes one 
rotation in the horizontal direction. The LiDAR obtains 
approximately 120,000 point cloud data points during the 

sampling period. Each observation point has information about 
its 3D position and reflection intensity. 

In the KITTI dataset, 11 sequences (sequences 00–10) 
containing true semantic information, are used in this study. 
Four sequences (sequences 00, 02, 05, and 08), which have 
many loops, are used to evaluate the proposed method. 
Therefore, cross-validation is performed for the four sequences; 
thus, when sequence 00 is used for evaluation data, sequences 
01–10 are used as training data, when sequence 02 is used for 
evaluation data, sequences 00, 01, and 03–10 are used as training 
data, and so on. The distances traveled by the vehicle in 
sequences 00, 02, 05, and 08 are 3.7, 5.0, 2.2, and 3.2 km, 
respectively. 

B. Performance of Object Recognition by RangeNet++ 
The recognition performance of RangeNet++ is evaluated. 

Table I shows the accuracy (Intersection over Union (IoU), 
precision, and recall) for 12 semantic classes. As shown in the 
table, accuracy tends to be high for large objects, such as cars, 
roads, buildings, and vegetation, whereas it decreases for small 
objects, such as people and traffic signs. 

For the six sematic voxel classes used in the loop detection 
method, including buildings, fences, vegetation, trunks, poles, 
and traffic signs, the average IoU, precision, and recall aree 
58.6%, 73.7%, and 72.1%, respectively. 

C. Performance of Loop Detection 
The performance of SSI and SFPFH in loop detection is 

evaluated. First, a dataset of pairs of loops and current places 
with a relative distance of α m is generated from the KITTI 
dataset; these pairs should be detected accurately as true loops. 
The relative distance is set at 0 5 m and 5 10  m. In 
addition, a dataset of pairs of loops and current places with a 
relative distance 300 m is generated; these pairs should be 
detected as false loops. 

The performance of loop detection is then evaluated using 
the true and false loop datasets. If a true loop is determined to be 
a loop, it is considered a correct loop detection; if a true loop is 
determined not to be a loop, it is considered a miss loop 
detection; if a false loop is considered a loop, it is considered a 
false loop detection.  

First, the performance of loop candidate detection is 
evaluated in terms of the SSI. The precision and recall results of 
loop candidate detection are shown in Table II. For comparison, 
the results of loop candidate detection using the conventional 
geometric method (Geometric Similarity Indicator, GSI) [12]  

TABLE I.  PERFORMACE OF OBJECT CLASSIFICATION USING RANGENET++ 

Class IoU [%] Precision [%] Recall [%] 
Car 89.5 91.4 97.7 
Two-wheeler 43.6 63.1 58.6 
Other vehicles 40.8 69.1 49.9 
Person 22.8 52.8 28.7 
Road 94.2 97.9 96.1 
Lawn 65.4 81.0 77.4 
Building 84.5 90.9 92.5 
Fence 56.1 73.2 70.6 
Vegetation 80.5 88.1 90.3 
Trunk 53.1 68.5 70.2 
Pole 40.1 51.5 64.5 
Traffic sign 37.4 69.9 44.5 
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TABLE II. PERFORMANCE OF LOOP CANDIDATE DETECTION IN TERMS OF SSI 
AND GSI 

Sequence 
Recall 

Precision 0 5  m 5 10  m 
00 99.7 (82.6) 98.8 (75.6) 64.0 (54.1) 
02 99.9 (67.9) 99.4 (62.8) 62.5 (52.9) 
05 98.2 (80.7) 98.9 (79.7) 53.5 (49.9) 
08 100 (78.3) 99.4 (72.9) 61.3 (52.0) 

The performance evaluation in terms of conventional GSI is shown in brackets. 

TABLE III. PERFORMANCE OF LOOP DETECTION IN TERMS OF SFPFH AND 
FPFH 

Sequence 0 5  m 5 10  m 

00 96.2 (94.3) 71.0 (65.7) 
02 89.9 (85.3) 59.8 (58.0) 
05 92.5 (92.7) 67.0 (65.2) 
08 89.2 (77.8) 74.8 (57.1) 

The performance evaluation in terms of conventional FPFH is shown in brackets. 

(Appendix A) are also shown in the table. The higher the 
precision value, the fewer the incorrectly detected loop 
candidates, and the higher the recall value, the fewer the falsely 
extracted loop candidates. As shown in the table, the proposed 
SSI provides higher loop candidate extraction performance than 
the conventional GSI. 

Next, the performance of loop detection is evaluated in terms 
of using SFPFH. The Matching Success Score (MSS) is defined 
as follows: 

1

1 ( ) 100
n

i
i

MSS f POI
n

                    (10) 

where n represents the number of true loop pair; POIi denotes 
the POI of the i-th pair. The function f (POIi) is defined by  

1 for  threshold
( )

0 otherwise
i

i

POI
f POI               (11) 

Higher loop detection accuracy from loop candidates leads 
to a larger MSS. The result is shown in Table III. For comparison, 
the results obtained using the conventional geometric method 
(FPFH) are also shown in the table. The results show that the 
proposed method (SFPFH) provides higher loop detection 
performance than the conventional method (FPFH). 

D. SLAM Performance 
 Figures 4 and 5 show environment maps of sequence 00 
constructed by SLAM using the proposed and conventional 
geometric methods, respectively. Figure 6 shows the vehicle 
movement path estimated by SLAM. As an enlarged map shown 
in Figure 5, the conventional method distorts the environment 
map because of miss detections of loops, whereas the proposed 
method does not cause distortion, as shown in Figure 4. In 
addition, in the area surrounded by the pink frame in Figure 6, 
the conventional method has a large error in vehicle self-pose 
estimation, whereas the proposed method achieves accurate 
estimation of vehicle self-pose. 
 Figure 7 shows an image of a location where distortion in the 
environment map occurs using the conventional method. The 
image contains many parked cars and the surface features of the 

cars are all similar; thus, incorrect loops are detected using only 
the conventional FPFH. This is why distortion occurs when 
using the conventional method. However, in such an 
environment, the proposed SFPFH can accurately detect loops. 

Next, the following three evaluation values are used to 
evaluate SLAM performance in sequences 00, 02, 05, and 08: 

 

 
Figure 4. Environment map built using proposed method. 

 
Figure 5. Environment map built using conventional method. 

 
Figure 6. Vehicle movement path estimated using SLAM. The black line 
indicates the ground truth. The red and light blue lines indicate the results 
obtained using proposed and conventional methods, respectively. 
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Figure 7. Photo of area surrounded by the red frame in Figures 4 and 5. 

TABLE IV.   SLAM PERFORMANCE 

Sequence ATE [m] NLD MELC [%] 

00 3.19 (6.92) 1030 (889) 9.6 (18.0) 
02 38.62 (94.14) 334 (213) 51.6 (68.0) 
05 3.75 (4.55) 594 (575) 23.5 (24.3) 
08 11.05 (11.63) 458 (424) 12.1 (17.5) 

The performance evaluation using the conventional geometric method is shown 
in brackets. 

 Absolute Trajectory Error (ATE): Root-Mean-Square 
(RMS) error of estimate of vehicle self-position 

 Number of Loop Detection (NLD) 
 Miss Extraction rate of Loop Candidates (MELC) 

The results are shown in Table IV. The proposed method 
achieves a smaller ATE, larger NLD, and smaller MELC than 
the conventional method, which demonstrates its superior 
SLAM performance improvement. 

V. CONCLUSION AND FUTURE WORK 
 This paper presented a method for improving loop detection 
performance using semantic information in LiDAR SLAM. 
Semantic information about the surrounding environment was 
recognized using RangeNet++, and the SSI and SFPFH were 
introduced to improve the accuracy of loop detection in NDT-
Graph SLAM. Experiments using the Semantic KITTI dataset 
were conducted to evaluate the performance of the proposed 
method compared with our previous geometry-based loop 
detection method. 
 This paper focused on applying semantic information to loop 
detection in Graph SLAM. Currently, we are applying semantic 
information to NDT SLAM in conjunction with Graph SLAM. 
In addition, semantic information will be applied to map updates 
and maintenance in the future. 
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APPENDIX A: GEOMETRY BASED DETECTION OF LOOP 
CANDIDATES 

Loop candidates are detected based on a Geometric 
Similarity Indicator (GSI) [11][12], which is calculated using 
LiDAR point cloud data captured at the loop candidate and 
current place of the vehicle. LiDAR point cloud data are mapped 
onto the voxel map (grid size of 1 m). Each grid of the voxel 
map is first classified into three types: line, plane, or other voxels 
(Figure A). Three eigenvalues ( 1 2 3 0 ) are calculated 

from LiDAR point cloud data in voxels based on principal 
component analysis, and the following features are calculated: 

1 2
1

1

r , 2 3
2

1

r , 3
3

1

r                   (A) 

When the maximum values are r1, r2, and r3, the voxel is 
determined as being of line, plane, or other types. Based on the 
surface normal vector of the plane voxels, the plane voxels are 
further divided into nine classes which are different directions 
of normal vectors. 

The two feature descriptors A = 1 2 11( , , , )Ta a a  and B =
1 2 11( , , , )Tb b b are defined. A is calculated from LiDAR point 

cloud data captured at loop candidates, and B is calculated from 
the LiDAR point cloud data at the current place. 1a  and 1b  
denote the numbers of line voxels in the voxel map. 2a – 10a  and 

2b – 1 0b  denote the numbers of plane voxels divided into nine 
classes. 11a  and 1 1b  denote the numbers of other voxels. 

From the feature descriptors A and B, the GSI is given by  
11

1
11

1

{max( , ) }

max( , )

i i i i
i

i i
i

a b a b
GSI

a b
                    (B) 

Among loop candidates, loops with large GSI values can be 
accepted. 

LiDAR point cloud data are sparse in the vertical direction 
of the mechanical LiDAR; thus, voxels located far from LiDAR 
have fewer points in the voxel. This reduces the classification 
accuracy of surface shape features. To solve this problem, when 
voxels are located far from LiDAR (35 m or more in this study), 
adjacent voxels are combined, and all point cloud data of the 
combined voxels are used for principal component analysis. 

APPENDIX B: FPFH FOR GEOMETRIY BASED LOOP DETECTION 
Let ai be the position of feature point Ai in the i-th voxel and 

aj be the position of feature point Aj in the j-th voxel around the 
i-th voxel. As shown in Figure B, Let ni and nj be the normal 
vectors of these feature points and (aj - ai) be the difference 
vector of feature point positions. Using these vectors, the  

 

                           
(a) Line                              (b) Plane                            (c) Other 

Figure A.  Voxel classification. 

 
Figure B.  Angle features. 
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angular feature ( j, j, j) is defined by 'j jy n , 
' ( )j j ix a a ,and arctan( ' / ' )j j jz n x n . 

By obtaining the angle features of the n feature points (A1, 
A2,…, An) around Ai, a set of angle features is defined. The set 
is referred to as the Simplified Point Feature Histograms of Ai 
(SPFH(Ai)). Here, n represents the number of voxels that exist 
within a radius of 2 m from the i-th voxel. Similarly, SPFH(Aj) 
is calculated for the feature point Aj (j = 1, 2, ..., n). The 33-
dimensional point feature histograms related to Ai (FPFH(Ai)) 
are then given by [9] 

1

1( ) ( ) ( )
n

i i j j
j

A A w A
n

FPFH SPFH SPFH               (C) 

where the weight wi denotes the inverse number of the distance 
between Ai, and Aj.  

REFERENCES 
[1] J. Zhao et al., “Autonomous Driving System: A Comprehensive 

Survey,” Expert Systems with Applications 242, pp. 1–27, 2023. 
[2] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, “A Survey of 

Driving Safety with Sensing, Vehicular Communications, and 
Artificial Intelligence-Based Collision Avoidance,” IEEE Trans. 
on Intelligent Transportation Systems, Vol. 23, Issue 7, pp. 6142–
6163, 2022. 

[3] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous 
Localization and Mapping: A Survey of Current Trends in 
Autonomous Driving,” IEEE Trans. on Intelligent Vehicles, Vol. 
2, Issue 3, pp. 194–220, 2017. 

[4] E. Arnold, et al., “A Survey on 3D Object Detection Methods for 
Autonomous Driving Applications,” IEEE Trans. on Intelligent 
Transportation Systems, Vol. 20, Issue 10, pp. 3782–3795, 2019. 

[5] Y. Li, et al., “A Review of Simultaneous Localization and 
Mapping Algorithms Based on Lidar,” World Electric Vehicle J., 
2025, 16(2), pp. 1–29, 2025.  

[6]  Z. Wang, Y. Shen, B. Cai, and M. T. Saleem, “A Brief Review on 
Loop Closure Detection with 3D Point Cloud,” Proc. 2019 IEEE 
Int. Conf. on Real-time Computing and Robotics, pp. 929–934, 
2019. 

[7] F. Martín, R. Triebel, L. Moreno, and R. Siegwart, “Two 
Different Tools for Three-Dimensional Mapping: DE-based Scan 
Matching and Feature-Based Loop Detection,” Robotica, Vol. 32, 
pp. 19–41, 2017. 

[8] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilienthal, 
"Automatic Appearance-Based Loop Detection from 3d Laser 
Data Using the Normal Distributions Transform," J. of Field 
Robotics, Vol. 26, Issue 11-12, pp. 892–914, 2009. 

[9] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature 
Histograms (FPFH) for 3D Registration,” Proc. IEEE Int. Conf. 
on Robotics and Automation, pp. 3212–3217, 2009. 

[10] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point 
Feature Extraction on 3D Range Scans Taking into Account 
Object Boundaries,” Proc. 2011 IEEE Int. Conf. on Robotics and 
Automation, pp. 1–8, 2011. 

[11] S. Tanaka, C. Koshiro, M. Yamaji, M. Hashimoto, and K. 
Takahashi, “Point Cloud Mapping and Merging in GNSS-Denied 
and Dynamic Environments Using Only Onboard Scanning 
LiDAR,” Int. J. on Advances in Systems and Measurements, Vol. 
13, No. 3&4, pp. 275–288, 2020. 

[12] R. Nakamura, T. Kambe, M. Hashimoto, and K. Takahashi, 
“SLAM-based Mapping in Truck-and-Robot System for Last-
Mile Delivery Automation,” Proc. the 2023 IARIA Annual 
Congress on Frontiers in Science, Technology, Services, and 
Applications, pp. 31–37, 2023. 

[13] L. Wang and Y. Huang, “A Survey of 3D Point Cloud and Deep 
Learning-Based Approaches for Scene Understanding in 
Autonomous Driving,” IEEE Intelligent Transportation Systems 
Magazine, Vol. 14, Issue 6, pp. 135–154, 2022. 

[14] S. Arshad and G. W. Kim, “Role of Deep Learning in Loop 
Closure Detection for Visual and Lidar SLAM: A Survey,” 
Sensors, 2021, 21, 1243, 2021. 

[15] L. Li, X. Kong, X. Zhao, T. Huang, and Y. Liu, “Semantic Scan 
Context: A Novel Semantic-Based Loop-Closure Method for 
LiDAR SLAM,” Autonomous Robots, Vol. 46, pp. 535–551, 
2022. 

[16] Y. Fan, et al., “A Semantic-Based Loop Closure Detection of 3D 
Point Cloud,” Proc. 2021 IEEE Int. Conf. on Robotics and 
Biomimetics, 2021. 

[17] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++: 
Fast and Accurate LiDAR Semantic Segmentation,” Proc. 2019 
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2019. 

[18] A. Jhaldiyal and N. Chaudhary, “Semantic Segmentation of 3D 
LiDAR Data Using Deep Learning: A Review of Projection-
Based Methods,” Applied Intelligence, 2022. 

[19] J. Behley et al., “SemanticKITTI: A Dataset for Semantic Scene 
Understanding of LiDAR Sequences,” Proc. the IEEE/CVF Int. 
Conf. on Computer Vision (ICCV), pp. 9297–9307, 2019. 

[20] R. Nakamura, I. Inaga, M. Hashimoto, and K. Takahashi, 
“SLAM-Based Mapping Using Micromobility-Mounted Solid-
State LiDAR,” Proc. the 11th IIAE Int. Conf. on Intelligent 
Systems and Image Processing, pp. 93–100, 2024. 

[21] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A 
Tutorial on Graph-Based SLAM,” IEEE Intelligent 
Transportation Systems Magazine, Vol. 2, Issue 4, pp. 31–43, 
2010. 

 
 

51Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-273-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ALLSENSORS 2025 : The Tenth International Conference on Advances in Sensors, Actuators, Metering and Sensing


