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Abstract—Sensors are quite important for data collection from
the physical agricultural world, and also a key part of the Internet
of Things (IoT) ecosystem. The IoT has enabled monitoring
and automation in agriculture, supporting the implementation
of precision agriculture applications using sensors in the field.
However, the effectiveness of these systems depends on the
accurate verification and assessment of network parameters such
as connectivity, sensor reliability, and data integrity. Ensuring
the proper functioning of IoT devices is crucial to maintaining
efficiency, reducing costs, and improving overall agricultural out-
comes. This study highlights factors to consider when developing
an IoT system based on an experimental field study for pattern
recognition of invasive plants in groundnut crops, resulting in
classifiers with an accuracy of approximately 80%.

Keywords-IoT sensor; IoT communication; pattern recognition;
precision agriculture; weed management.

I. INTRODUCTION

Since its initial conception, the Internet of Things (IoT) has
enabled a range of application possibilities in different areas,
as the concept of devices acquiring data from the environment,
communicating with each other, and performing actions based
on this exchange of information would allow for a multitude
of control and surveillance actions, managed locally and in an
automated manner. With the new opportunity landscape driven
by lower hardware prices, advanced computing, cloud storage,
higher speed and lower connectivity costs, current investments
in IoT applications are predicted to contribute to an annual
global growth of 0.99% Gross Domestic Product (GDP) by
2030 [1].

Such applications make use of a variety of sensors capable
of wireless communication with other devices. The main
objectives of these sensors are to obtain information of inter-
est from the external physical environment, sample internal
signals from the system, and interpret the data, allowing
decision-making performance [2]. Sensors must be part of a
wireless network with other devices, not necessarily connected
to the Internet, as there is data exchange. Therefore, it is
important to highlight that there are three key points in IoT
systems: capture and processing of data collected by sensors;
communication between devices; and aggregation, processing
and interpretation of data from different sensors.

Sensors used in IoT can vary greatly, as long as there is
the possibility that their output can be transmitted wirelessly.

For agricultural applications, for example, position sensors can
be used to detect the location of the device when attached
to a drone or an animal; temperature, chemical and humidity
sensors to know what the environmental situation is in real
time in the field; water quality sensors to monitor water
reservoirs; and infrared and optical sensors to monitor crops
or livestock in the field [3].

The use of IoT sensors can help address one of the chal-
lenges in groundnut (Arachis hypogaea) cultivation, which is
invasive plant interference, since the crop is highly susceptible
to competition due to its slow initial growth [4]. The presence
of invasive plants in groundnut crops can result in productivity
losses greater than 90% and can interfere with the harvesting
process, increasing production costs and potentially impacting
product quality [5]. Optical and position sensors can then be
used to assist in the use of computer vision, based on the
development of systems that recognize invasive plants in the
environment and allow specific and localized decisions on how
to treat the crop [6].

In the literature, many studies propose methods to combine
weed detection and classification with IoT systems. Most of
them focus more on processing operations but leave aside IoT
assessments and sensor data management, focusing more on
hypothetical applications of the algorithms in an IoT model.
Kansal et al. proposed an IoT-Fog computing-enabled robotic
system for weed and soybean classification during normal and
foggy seasons, processing well hazy images [7], while Tiwari
et al. also developed a system using IoT camera sensors and
cloud computing for a Deep Learning (DL) weed classification
for a public dataset of 12 weed species [8]. On the other
hand, Dankhara et al. proposed a model using a Raspberry
Pi (RPi) 3 with a camera sensor and a sprayer for use with a
weed classifier controlled remotely with the help of an Internet
connection to an external server [9].

Kulkarni et al. developed a system capable of acquiring
images using a RPi, detecting weeds by a Convolutional
Neural Network (CNN) model trained offline, and the weed
segments are marked and sent to farmers via email by the
Global System for Mobile Communications (GSM) module
[10]. Likewise, Farooq et al. built a fast and high-performance
DL model that required less computing power on a RPi 4 to
enable on-device machine learning, using a public dataset for
weed detection [11]. All these studies used images acquired
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from existing databases, not testing the proposed systems in
real field conditions using their own sensors, and therefore
their IoT specifications and limitations were not considered
and prioritized, except for those related to the computational
cost of data processing and strategies to reduce it.

Moreno and Cruvinel presented previous studies related to
a stereo camera’s system using IoT principles, specifying the
optical sensor bias correction process [12], and the develop-
ment of a software based on semantic computing concepts
for the segmentation of invasive plants [13]. Expanding the
previous studies, this work aims to develop an IoT system for
recognizing more than one invasive plant species in ground-
nut crops capable of acquiring stereo images in a real-field
operation, providing processing in real images acquired from
wireless commands in an experimental field. Therefore, the
limitations regarding handling data obtained by IoT sensors in
practical application are considered more carefully.

This paper is structured as follows. Section II presents
the materials and methods used, including IoT sensor data
insights, IoT communication protocols, camera sensor spec-
ifications, and method for recognition of invasive plants.
Section III presents the results and discussion of the IoT
system developed and the classifiers utilized, with the final
conclusions and proposed future works in Section IV.

II. MATERIAL AND METHODS

This section will delve into the specifications and points of
interest when collecting and managing data from IoT sensors,
important protocols for IoT communication, and specifications
of the devices and camera sensors used. Furthermore, an
overview of the algorithm for invasive plant recognition is
presented, including the experimental setup for collecting and
working with data collected by the camera sensors in a real
cultivation environment.

A. IoT Sensor Data Insights
The development of IoT systems must take into account the

quality and quantity of data generated by sensors in order to
generate useful information that can be verified as a whole.
Data is also transmitted over a network, and therefore both
aspects related to the transmission and storage of this data
and those related to the security of the network as a whole
must be considered. Therefore, when analyzing sensor data,
the following characteristics need to be points of interest in
the system development stages:

1) Security: The network and its transmitted data must
guarantee the privacy of information, that is, sensor data
will only be transmitted to trusted devices. Data cannot be
transmitted or captured by other devices outside the config-
ured and trusted network, while data on the network must
remain authentic, not suffering from external attacks with the
injection of erroneous data packets. Data must also remain
intact, considering the transmission errors inherent in wireless
networks. Measures that can be taken include Secure Sockets
Layer/Transport Layer Security (SSL/TLS), Datagram Trans-
port Layer Security (DTLS), Blockchain and Elliptic Curve
Cryptography (ECC) [14].

2) Scalability: Because the sensor network includes data
sources from multiple sensors and actuators, it must be scal-
able to handle the exponential growth of devices and data han-
dling. Latency should not be so high that it hinders processing
steps to the point of making operations and decision-making,
especially in real time, impractical [15].

3) Bandwidth Availability: Bandwidth can be a bottleneck
in the transmission path, resulting in many problems such as
sensor data loss, delays and congestion. It is necessary to
correctly predict which communication path between devices
will have the most information being transmitted or to develop
algorithms to be able to dynamically change the bandwidth
availability of the paths, creating a reallocation plan according
to a set of criteria such as data importance and data volume.
If system latency and bandwidth are not critical, a cloud
computing scenario can be enough [16].

4) Battery Life: Devices and sensors in an IoT system must
be energy efficient and capable of low-power communica-
tion with low-cost on-node processing. They can be battery-
powered, capable of alerting when power is low to allow
for early battery replacement, or harvest energy from the
environment, for example, using a solar cell.

5) Data Volume: Due to the large volume of data generated
by sensors, it is necessary to pass them through cleaning,
noise removal and outlier detection processes to obtain only
the relevant information. This volume can generate both an
increase in the computational cost of the system in these
steps and overload the transmission network. In addition, this
data and the processing results can be saved on the devices,
which means that their memory and storage capacity must be
considered when building the system, even in cases where the
data is partially saved in the cloud.

6) Exposure Risk: Technical constraints of devices, such
as sensor size, make them vulnerable and prone to failure,
attack and breakage. Therefore, it is recommended to use
protective cases against unwanted external elements, especially
for field operations where sensors may be exposed to rain,
dust, extreme temperatures and even damage from animals.
IoT systems must also be secure so that they cannot be
accessed inappropriately or subject to fraud by human action,
ensuring reliable information.

B. IoT Communication Protocols

The general structure of an IoT system can be exemplified
by Figure 1, in which fog processing can be performed near
or at the sensor node. In the Edge Computing node, the data
can be stored and processed locally, allowing only useful data
to be transmitted to other devices or to the cloud, while the
Fog Computing node waits for a considerable amount of local
computation, storage, and communication to complete before
performing the transmission over the web.

The Bluetooth used communication can support up to 7
devices connected simultaneously, supporting a maximum
transfer rate of 1 Mbps, with a signal range of 10 m away
from the device indoors and up to 50 m outdoors.
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Figure 1: Example of IoT systems structure, with sensor data processing
level node [14].

One of the protocols used is Radio Frequency Commu-
nication (RFCOMM). The RFCOMM protocol is a serial
interface to the Bluetooth transport layer, emulating an RS-
232 interconnect cable. RFCOMM is built upon the ETSI
07.10 standard, which allows the emulation and multiplexing
of multiple serial ports on a single transport [17]. Additionally,
the OBEX protocol (OBject EXchange) is utilized for file
transfer, which is a software implementation of the File
Transfer Protocol (FTP) network protocol, which runs on top
of RFCOMM.

C. Camera Sensor Specifications

For the task of invasive plant recognition, an optical sensor
in the visible spectrum is capable of capturing sufficient data.
Therefore, an RGB camera and a control device for managing
the sensor (responsible for turning on, adjusting settings, and
triggering the camera) and the wireless data transmission are
required in the development of the IoT system. Thus, the RPi
3 model B+ and Pi Camera v1 were chosen as the device and
the sensor, as can be seen in Figure 2.

The use of the RPi in agriculture has been observed because
it is a state-of-the-art computer with numerous practical appli-
cations in all areas of activity [18]. The embedded computer,
combined with its sensors, allows both image capture and
processing in the same module, allowing applications in stereo
systems and precision agriculture [19]. The RPi requires a 5 V
power supply and up to 2.5 A to power itself and the attached
optical sensor, with its own operating system installed, the RPi
OS, known as Raspbian.

The RPi model has a 64-bit BCM2837B0 Cortex-A53
(ARMv8) processor, 1 GB of SDRAM, and a processor speed
of 1.4 GHz. The size of the internal memory is determined by
the capacity of the chosen micro SD card, with a minimum
of 8 GB being recommended. The RPi supports Local Area
Network (LAN) and Bluetooth Low Energy (BLE) wireless
communication from a Cypress CYW43455 chip. The Pi

camera has a fixed focal length of 3.60 mm, a maximum sensor
resolution of 2592 x 1944 pixels, and a camera aperture angle
of 53.50º horizontally and 41.41º vertically. In addition, the
camera’s ideal focus is 1 m - ∞ and its signal-to-noise ratio
is 36 dB. Another important detail is that the RPi automatically
adjusts the camera’s brightness and white balance, but if
necessary, it is possible to correct these values via software.
These and other specifications can be seen in Table I.

D. Recognition of Invasive Plant

1) Experimental Setup: For the practical experiment, two
invasive plants of groundnut crops (cultivar IAC OL3) were
chosen for analysis: velvet bean (Mucuna aterrima), a plant
with broad and dark green leaves; and signal grass (Urochloa
decumbens), a plant with long and blade-shaped leaves. The
experiment was carried out in the municipality of Jaboticabal-
SP, Brazil. Pest and disease management was carried out
according to specific recommendations for the crop [20]. The
groundnut cultivation area selected for the experiment totals
72 m2 and, to simulate the presence of the invasive plants,
they are sown together and separately with the groundnuts.
Once grown, field images are captured from this simulation.

2) Feature Extraction: Once collected, the images are
preprocessed, filtering out noise and biases derived from the
intrinsic characteristics of the sensor.

Figure 2: Sensor and connected device.

TABLE I: Pi Camera Characteristics

Size 25 x 24 x 9 mm
Resolution 5 MP
Video modules 1080p30, 720p60, 640x480p60/90
Sensor OmniVision OV5647
Sensor resolution 2592 x 1944 pixels
Sensor image area 3.76 x 2.74 mm
Pixel size 1.4 µm x 1.4 µm
Optical size 1/4”
Full-frame SLR equivalent 35 mm
S/N Ratio 36 dB
Dynamic range 67 dB @ 8 times gain
Fixed focus 1 m - ∞
Focal length 3.60 ± 0.01 mm
Horizontal field of view (HFOV) 53.50° ± 0.13°
Vertical field of view (VFOV) 41.41° ± 0.11°
Focal ratio (F-stop) 2.9
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The object of interest is selected from a histogram threshold
segmentation, in which the original image is converted to the
Hue-Saturation-Value (HSV) color space and a range in the H
channel corresponding to the colors of the plants is selected.
This method presents a better result when segmenting plants,
reducing the impact of variations in illumination and saturation
in different images [21]. To improve the result, morphological
closing and opening operations are applied to reduce small
holes and objects present, respectively.

From this point on, the segmented image is used as a
mask on the original image, and based on the intensity of
the remaining pixels, the features of the imaged plants are
extracted using a texture descriptor and a shape descriptor. The
texture descriptor used is based on five Haralick moments:
energy, entropy, contrast, homogeneity and correlation [22].
The shape descriptor is the Local Binary Patterns (LBP),
applied on the edges of the leaves obtained by the Canny edge
detection algorithm [23][24].

3) Pattern Recognition: The descriptor data are grouped
into vectors, corresponding to windows present in the image,
which are used to train a classifier that assists in the separation
of invasive plant species from families. Each window is
manually and binary labeled with the presence or absence of
each plant. The classifier used was the Support Vector Machine
(SVM) [25], varying the internal parameters and dividing the
samples into 80% for training and 20% for testing. As the
main evaluation metric, the accuracy of the classifier is used,
in which the rate of correct predictions is analyzed in relation
to the total number of samples tested. Other metrics, such
as precision, sensitivity and F-score, are also considered for
evaluating the robustness of the classifier, weighting both false
positives and false negatives predictions.

III. RESULTS AND DISCUSSION

The system was evaluated in relation to the modeling of IoT
systems and its experiment in real field application, analyzing
the hardware used in its construction and the operational
parameters, including the communication protocols and sensor
data management. In addition, the results of the classifier for
the experimental groundnut cultivation plot were obtained,
with its metrics, processed digital images, and application cost
analysis.

A. IoT System Evaluation

The IoT system developed consists of two camera sensors
each one attached to an RPi with a 32 GB micro SD card,
power supplied by a 12 V 60 Ah battery with voltage converted
to 5 V, an Android cell phone for user control, and a structure
and protective case to house the sensors. The cameras are
pointed downwards to correctly capture the crop area. One of
the RPis was defined as master, responsible for managing the
network via Bluetooth, communicating with the other devices
(the slave RPi and the cell phone).

The system was then evaluated, considering each of the
topics of interest in IoT sensors. In terms of power, each
RPi had a power consumption of around 3 W, and the total

system, including other peripherals and converters, reached a
maximum of 18 W. Thus, the battery was able to power the
system uninterruptedly for 15 hours. The structure in which the
sensors are located does not yet have autonomous movement
and requires human supervision during its operation. However,
if the equipment is coupled to a vehicle, robot or drone,
its power supply may be shared with them, requiring a new
evaluation of the energy consumption.

Regarding the volume of data, it was decided that each
captured image would have a resolution of 1280 x 960 pixels, a
resolution chosen so that the digital image would still contain
a good amount of information without generating files that
require a lot of storage capacity, using the PNG compression
format. The data captured by both sensors was stored on the
master RPi, because if it were necessary to perform stereo
processing of the data, it would already be stored there. In this
way, the system was able to save 6,000 images in memory.

To ensure system security, it is connected only to trusted
equipment, using each device’s Media Access Control (MAC)
address and specific ports when creating wireless communi-
cation sockets. The devices automatically initiate their con-
nection algorithms and protocols during their boot. If it is
necessary to allow pairing of new mobile phones, the embed-
ded systems must be accessed directly, which requires a fixed
username and password to access the operating system.

Once communication was established, image capture was
controlled via the cell phone, as shown in the pseudocodes
in Figure 3. The Android application had buttons that, when
pressed, sent a sequence of commands to the Master RPi via
Bluetooth and serial communication. Each command consisted
of a five word string. This command was used to capture
images, transmit files to the cell phone, or shut down the
system. The app interface can be shown in Figure 4, and is
a Bluetooth serial controller that allows customization by the
user, adding buttons and commands as needed.

Each operation had a 15-second delay to ensure that file
management operations (especially saving the image file) were
performed correctly by the devices. Wireless communication
allowed data transmission to be performed uninterruptedly
when manually requested by the user, avoiding corrupted files
received. If the operator needed to view the image captured on
his device only to monitor the system operation, a command
could be sent that returned an image with a resolution of 320
x 240 pixels. This option ensured wireless communication
during field operations with lower latency, in addition to
allowing the user to check the number of images saved in
memory based on the file name. In this way, the system was
controlled wirelessly and thus able to capture and form a
stereo image database relating to the groundnut cultivation
field analyzed.

Compared to existing IoT models, the decision was made
to store the data on the device instead of sending it to an
external server or cloud. Furthermore, capturing real data
using the system’s own sensors allows for a more problem-
focused assessment, acquiring images to train the classifier
that represent the real challenges of the weed recognition
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Figure 3: Pseudocode for image capture on both RPis controlled by
bluetooth.

Figure 4: Android application interface for wireless communication.

task. Thus, the results of the classifiers will be more robust
when compared to classifiers trained with images that may not
accurately represent the variability found in real environments.

B. Classifier Results

Sixty-four georeferenced images of 1280 x 960 pixels
were obtained, representing the crop field where the plants
grew. Each image captured 0.76 m² of the experimental area,
forming an 8 by 8 grid. The ideal threshold range for the
segmentation process was H channel values between 25 and
70; morphological operations eliminated objects with less than
75 pixels in area and holes smaller than 150 pixels. By dividing
the images into square windows of 100 pixels (eliminating
the regions where the foot of the device responsible for the
capture was located), a total of 6912 samples were obtained
(108 per image), of which 5529 were separated for training
the classifiers and 1383 for testing. The vector obtained by the
feature extraction stage had a size equal to 14 per window.

For the SVM classifiers, three kernels were analyzed: linear,
Gaussian and Radial Basis Function (RBF). The kernel func-
tions aim to better deal with non-linear patterns of similarity
between elements of the same class. Analyzing all of them
and considering the processing time and accuracy, the best
configuration for weed classification was the RBF kernel (C
= 1000 and γ = 0.01), with an accuracy of 79.2% for signal
grass and 81.1% for velvet bean.

Table II shows the final result of the SVM classifiers for
each invasive plant, with the total values and individuals for
each class, considering that for the samples the null hypothesis
H0 corresponds to the case of no invasive plant, while the
alternative hypothesis H1 is when there is presence of the
invasive plant in the sample window of the image. It can be
observed that, although they have good accuracy and precision,
the sensitivity for invasive plants is low, which could be
improved by using a feature vector with more elements (adding
more descriptors at the expense of processing time).

Figure 5 shows an example of the original image, the label
used for training, and the results of the classifiers (black is
not an invasive plant, false color is). In the labeled image, the
green pseudocolor represents velvet bean, the blue represents
signal grass, and the red represents other plants (including the
groundnut plant).

Regarding the costs of a possible herbicide application, the
control of signal grass was considered using Cletodim (0.4
L/ha) and mineral oil as adjuvant (0.5 L/ha) and the control
of velvet bean with Imazapic (140 g/ha) and adjuvant (0.25
L/ha). The costs for the control of signal grass were estimated
at USD 11.19/ha, and for velvet bean they were USD 51.43/ha.
Since the experimental area was 72 m2, if the product were
applied uniformly throughout the area, the total cost of the
weed management would be USD 0.45. Using the developed
system, the classifiers obtained an area of occupation of signal
grass of 4.12%, and of the velvet bean of 14.54%. Thus, if
the herbicide application followed the proposed method and
applied the product only where there are invasive plants, the
cost of weed control would be USD 0.057 for the same area.
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TABLE II: SVM classifier results

Classifier Precision Sensitivity F-score Samples Accuracy
SVM velvet bean 1383 81.1%
H1 0.80 0.41 0.54 349 80.2%
H0 0.83 0.97 0.89 1034 82.8%
SVM signal grass 1383 79.2%
H1 0.72 0.14 0.23 313 71.7%
H0 0.80 0.98 0.88 1070 79.6%

Figure 5: Recognition of invasive plants: (a) original image captured by the
system, (b) manually labeled image, (c) classifier result for velvet bean, and

(d) classifier result for signal grass.

It is possible to refine even more this result, using the
information provided by the stereo sensors-based images to
utilize the depth perception of the acquired images in the
control of the invasive plants, allowing treatment in layers in
relation to the height of the plants.

IV. CONCLUSION

It can be concluded that the use of IoT sensors can aid the
task of recognizing and distinguishing the presence of different
invasive plants in groundnut crops. This aids in more precise
use of herbicides on crops and can be adapted to crops other
than groundnuts, reducing the cost and environmental impact
of weed control. Considering the decision-making steps, re-
sults have proved the usefulness of the developed sensor-
based system to operate with great precision and generate
information for agricultural management. Besides, important
factors in handling IoT sensor data and communication have
been observed, leading to a specific protocol and requirements
related to security breaches as much as possible, and including
functionalities to decrease latency.

The invasive plants classifiers achieved accuracy close to
80%; however, sensitivity can still be improved by refining
the descriptors and the image working window. Despite the
promising results, the current system is limited by the hard-
ware on-device processing. For future work, it is being con-
sidered the integration of the system into Field Programmable

Gate Array (FPGA) platform in order to have configurable
possibilities related to prototyping based on high performance
computing and thus improving the processing cost.
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