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Abstract—This paper presents a study on the relationship
between sensors, control systems and actuators for agricultural
spraying. Sensors associated with appropriate control systems can
be used to support decision-making processes for nozzles in rela-
tion to the correct application of pesticides. In such a context, re-
sults related to a comparison were evaluated considering not only
an adaptive generalized predictive control based on both fuzzy
and sigmoid-based strategies for scheduling management but also
the enhancement of the dead zone management improving actua-
tors performance in relation to the nozzles stitching’s processes.
These systems involving sensors, controllers and switching are
essential for the automation of agricultural sprayers, especially
for those that work with variable rate application, in management
based on precision agriculture. A Sigmoid-based Generalized
Predictive Control (SGPC) is proposed for flow rate regulation
in agricultural pesticide sprayers. Evaluated against conventional
Fuzzy Logic-based GPC (FGPC), the SGPC shows reduced
Integral Absolute Error (IAE) and faster rise time despite
higher overshoot in certain scenarios. Results indicate enhanced
tracking accuracy and dynamic response compared to traditional
fuzzy logic approaches. This framework demonstrates potential
for improving precision in agricultural spraying systems. Such
results can be valuable for the current machinery agricultural
industry, which needs to improve productivity and quality gains
and reduce negative externalities in favor of food security and
sustainability.

Keywords-Agricultural sensors; Agriculture actuators; Predictive
controller; Agricultural sprayers; Precision agriculture.

I. INTRODUCTION

Pesticide application using agricultural sprayers is tradition-
ally performed at a constant rate (liters per hectare), indepen-
dent of the spatial variability in pest and disease density into
a crop field. This approach often leads to inefficiencies, as it
does not account for localized needs, potentially resulting in
over-application or even an under-application of chemicals [1].

Considering precision agriculture applications, the Variable
Rate Application (VRA) systems leverage prescription maps,
sensor data, and real-time actuator adjustments to tailor pesti-
cide application rates based on the specific spatial distribution
of pests and diseases across one crop agricultural field. By
dynamically controlling flow rate and pressure, VRA enhances
precision and reduces losses, aligning with the principles of
precision agriculture [2].

Effective control of flow rate and pressure in agricultural
spraying systems is critical for multiple reasons. Accurate flow
regulation ensures that the correct amount of pesticide can be
applied, reducing production costs and minimizing environ-
mental impact. Similarly, precise pressure control improves
spray quality by optimizing droplet size and distribution,
which directly influences the effectiveness of the application.
In addition, together with these factors, one may find a way
to contribute to minimizing resource losses, enhancing appli-
cation efficiency, and promoting sustainable farming practices
[3].

The reliability of instruments responsible for monitoring
flow and pressure, such as flowmeters and pressure sensors,
as well as that regulating system performance, such as propor-
tional valves, is critical. Malfunctions in these components can
lead to significant errors in pesticide application, including ei-
ther over-application, which increases costs and environmental
risks, or under-application, which compromises pest control.
Such inaccuracies not only jeopardize crop health but also can
raise the risk of contaminating neighboring ecosystems due to
drift or runoff [1].

From the perspective of automatic control, the performance
of a spraying system can be evaluated based on parameters
such as overshoot, steady-state error, rise time, and settling
time. Issues such as overshoot and a high positive steady-state
error are associated with overapplication, a phenomenon in
which the applied volume exceeds the desired rate. This leads
to waste of inputs, increased operational costs, and negative
environmental impacts. On the other hand, an elevated rise
time combined with a negative steady-state error can result in
underapplication, compromising the effectiveness of phytosan-
itary treatments and negatively affecting crop development [4]
[5].

In fact, the regulation of flow rate and pressure in
agricultural sprayers are predominantly achieved using the
Proportional-Integral-Derivative (PID) controllers. However,
actuator control valves are inherently nonlinear systems, which
can impair the performance of linear controllers, such as PID
or even a Generalized Predictive Control (GPC) in regulating
application rates [6]–[8].
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On the other hand, advanced control strategies, such as
those leveraging adaptive algorithms, can further enhance
sprayer system reliability and adaptability to varying field
conditions. Recent works have explored the use of Artificial
Neural Networks (ANNs) to introduce non-nonlinearities into
GPC strategies. For instance, [9] and [10] investigate ANNs
for modeling the dynamic behaviors and adapting to changing
conditions and disturbances. However, the use of ANNs can be
challenging due to the extensive data requirements for training.

In [11], an adaptive GPC controller is introduced, discrete-
time fuzzy model with parameter estimation. Additionally, in
[12], where a predictor error approach based on the recursive
least squares method is proposed for microclimatic control in
a fan-ventilated tunnel greenhouse. In [5], results are presented
utilizing fuzzy logic for scheduling the parameters λ and δ of
the GPC controller.

In this paper, a study is presented replacing a fuzzy logic
based GPC by a sigmoid function to simplify gain scheduling
and reduce the time processing required for the adaptive
parameters. Additionally, the stability analysis is presented.
Finally, a sensitivity function analysis is also conducted to
determine boundary values for λ and δ to satisfy robustness
conditions against noise and disturbances.

In this work, following the introduction, Section II presents
a preliminary study of the main components of the Generalized
Predictive Controller (GPC). Section III introduces an S-
shaped function to implement gain-scheduling of the GPC
parameters λ and δ, aiming to reduce the influence of dead
zones. Section IV provides a discussion of the simulation
results obtained using MATLAB®. Finally, conclusions and
future research directions are outlined in Section V.

II. PRELIMINARIES

A model-based GPC is defined by its capability to anticipate
the future behavior of dynamic systems through mathematical
modeling. This is achieved by computing an optimal control
sequence that minimizes a predefined objective function. The
GPC framework employs a receding horizon approach, also
referred to as a sliding horizon, where the control horizon is
continuously updated as the system evolves. In this strategy,
only the first element of the computed control sequence is
implemented at each time step [13] [14].

The prediction of future outputs relies on the system model,
meaning that the accuracy of the model directly influences the
precision of the predictions. More specifically, the closer the
predicted output is to the actual system response, the more
effective the control strategy becomes. At each time step k,
the predicted output sequence −→y (k) is computed based on the
past input increments ∆←−u (k−2), past output sequence←−y (k−
1), and future control increments ∆−→u (k − 1). The control
signals and their respective increments are determined over
a predefined control horizon to ensure that the plant output
closely follows the desired reference trajectory −→r (k − 1).

The control law in GPC is derived by minimizing a
quadratic cost function [14]. For Single-Input Single-Output
(SISO) systems, this cost function is formulated as:

J(∆u, r, y) =
∑Np

k=1 δ∥(
−→r (k)−−→y (k))∥22+∑Nc

k=1 λ∥∆
−→u (k − 1)∥22

(1)

where J represents the cost function, Np is the prediction
horizon, and Nc is the control horizon. The parameters δ > 0
and λ > 0 are weightings associated with the error sequence
−→e (k) = −→r (k) − −→y (k) and the future control increment
sequence ∆−→u (k − 1), respectively. The tuning process of
parameters λ and δ, including their impact on the control law,
is detailed in Section III.

Using this cost function, the control law for the GPC is
formulated as follows:

∆u(k) = Pr
−→r (k)−Dk∆

←−u (k − 2)−Nk
←−y (k − 1) (2)

where Pr = ET
1

(
δHTH + λI

)−1
δHT , Dk = PrP , and

Nk = PrQ. The matrix ET
1 =

[
I 0 · · · 0

]
ensures that

only the first control increment ∆u(k) from the computed
control sequence ∆u

→
(k) is applied to the system input. To

reduce computational effort and operational costs, the control
law in (2) can be simplified by limiting the calculations to the
control horizon:

∆u(k) = −ET
1 S

−1a (3)

where S = δHT
1 H1 + λI with H1 = H(1 : NP , 1 : Nc)

with H = C−1
A Cb ∈ RNp×Np , and a = X[∆←−u (k −

2) ←−y (k−1) −→r (k)]T with X =
[
δHT

1 P δHT
1 Q −δHT

1 L
]

with L =
[
1 1 · · · 1

]T
, P = C−1

A Hb ∈ RNp×nb and
Q = −C−1

A HA ∈ RNp×na , the matrices Cb ∈ RNp×Np , Hb ∈
RNp×nb , HA ∈ RNp×na and CA ∈ RNp×Np are obtained
through the polynomials Ã(z) and B(z) from the Controlled
Auto-regressive Integrated Moving Average (CARIMA) model
and Toeplitz and Hankel matrices as described in [15].

This formulation ensures that the control action is efficiently
computed while maintaining the desired tracking performance.

Given the plant transfer function G(z) = b(z)
a(z) , the closed-

loop characteristic polynomial, is expressed as:

Pc(z) = Dk(z)∆a+ bNk(z) (4)

Considering the loop transfer function G(z)ϕ(z), where
ϕ(z) = Nk(z)

Dk(z)∆
, the sensitivity functions to noise and dis-

turbances are given as follows [14]:

Sd =
ϕ(z)

1 +G(z)ϕ(z)
= −aNk(z)

Pc(z)
(5)

Sn =
1

1 +G(z)ϕ(z)
=

aDk(z)∆

Pc(z)
(6)

These sensitivity functions characterize the system’s re-
sponse to external perturbations and uncertainties, playing a
crucial role in the robustness analysis of the control strategy.

The stability of the constrained GPC can be established
through Theorem 1 and Corollary 1.1, which utilize the
method of Lagrange multipliers. These theoretical foundations
provide a rigorous framework for ensuring stability while
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accounting for system constraints, thereby enhancing the ro-
bustness and reliability of the control strategy in practical
applications [5].

Theorem 1: Let matrices C and rt be as in [5]. Assume
that there exists an optimal minimization solution that satisfies
the Karush-Kuhn-Tucker (KKT) conditions along an infinite
trajectory for given weightings λ and δ . The optimum
constrained cost function of the GPC at the k-th instant given
by:

J(k) = min
∆u(k+i),i=0,1,···

∑∞
i=1 δ(e(k + i))2

+
∑Nc

i=1 λ(∆u(k + i− 1))2

subject to C∆−→u (k − 1) ≤ rt

(7)

is a monotonic decreasing function.
Corollary 1.1: Let S and a be defined as in (3). The

constrained GPC is stable if there exists an optimal solution
that satisfies the KKT conditions such that the control law can
be written as:[

S CT

C 0

] [
∆−→u (k − 1)
−→
ϕ (k)

]
=

[
−a
rt

]
. (8)

III. S-SHAPED FUNCTION BASED GPC STRATEGY

The developed S-shaped function based GPC strategy in-
corporates a gain scheduling stage for the cost weighting
parameter λ, to update the matrix of the standard GPC. The
configuration of the proposed GPC approach is illustrated in
Figure 1, where a sigmoid output is used to adjust the S matrix
of the GPC.

Sigmoid system for gain scheduling

GPC Sprayer module

Update of matrix S

 

Figure 1. Adaptive GPC with λ scheduling via a sigmoid function, based on
the last control signal dv.

The proposed sigmoid-based GPC is formulated as the
following optimization problem:

min
∆u(k+i),i=0,1,···

J(∆u, r, y) =

Np∑
i=1

δ∥−→r (k)−−→y (k)∥22 +
Nc∑
i=1

λ̂(k)∥∆−→u (k − 1)∥22 (9)

subject to
C∆−→u (k − 1) ≤ rt

∀ λ(k) = λmin + (λmax − λmin) · f(u(k − 1))

where λmax and λmin are predefined bound values for the
estimates of λ established by the designer to enhance the
controller’s efficiency in handling nonlinearities, mainly in

the dead-zone region. The function f(u(k − 1)) represents
the output of a sigmoid function, resulting values between
zero and one that span the range between λmin and λmax,
depending on the previous control input

The control strategy is implemented in conjunction with an
S-shaped function known as the sigmoid function, a commonly
used activation function in neural networks. The sigmoid
function ensures continuity and differentiability of the system,
particularly around the dead zone region, enabling smooth
transitions and improved adaptability in system behavior [16].
The sigmoid function is described as:

f(dv(k − 1), ak, ck) =
1

1 + e−ak(dv(k−1)−ck)
(10)

where the parameter ak determines the inclination or spread
of the transition region, while ck specifies the midpoint of the
sigmoid region.

Figure 2 illustrates the sigmoid function with varying slopes
(ak), demonstrating how the slope influences the transition
between states. Smaller values of ak result in a smoother
transition (broader curves), while larger values of ak produce
a sharper transition (narrower curves). The midpoint of the
sigmoid function is chosen to be around ±20 in order to
encompass the dead zone at small values of λ(k).

The general idea of the sigmoid S-shaped function based
GPC is that smaller values of λ(k) should be adopted for the
dead zone regions, causing larger control variations ∆u(k).
This is because, in such cases, the ideal scenario is δ > λ(k),
which results in larger control variations ∆u(k), driving the
control signal dv away from the dead zone. Outside the dead
zone, larger values of λ(k) stabilize the system by reducing
unnecessary control activity.

Figure 2. Proposed sigmoid S-shaped function with different inclinations.

The reason for keeping one weighting gain fixed while
modifying only the other, instead of adjusting both gains
simultaneously, is simplifying the system design. This sim-
plification arises from the fact that the control signal ∆u(k)
varies depending on the ratio λ

δ :
• When δ > λ(k), the emphasis is on minimizing the

tracking error, promoting aggressive control actions.
• When δ ≤ λ(k), the ontrol effort is penalized more heav-

ily, leading to smoother but potentially slower responses.
Fixing one parameter and dynamically adjusting the other, the
complexity of tuning both parameters is reduced, while still
achieving the desired balance between tracking performance
and control effort.
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A. Stability analysis of constrained GPC with variable λ gain

The stability of the constrained GPC with a variable λ(k)
weighting gain is ensured through the careful design of the cost
function and the dynamic adjustment of λ(k). By exploiting
the properties of the sigmoid function and bounding λ(k)
within predefined limits, the controller achieves a balanced
trade-off between tracking performance and control effort.
The stability analysis can be accomplished by Theorem 1
e Corollary 1.1 proposed in [5] for the constrained GPC,
extended to the case of varying λ(k).

Since the optimization problem involves minimizing a
quadratic cost function (7), if matrix S is positive definite,
the problem is convex, ensuring a global minimum solution.
Since λ interferes with the main diagonal of the matrix S,
to guarantee that the variation of λ(k) does not affect the
positive definiteness of S, λ(k) is treated as a parametric
uncertainty. Specifically, λmin must be greater than zero, and
λmax must be less than a design-specified value, where the
range between λmin and λmax is known to be stable and
robust. Consequently, as long as S remains positive definite,
the problem remains convex with a global minimum solution,
and the stability is guaranteed.

B. Sensitivity analysis

To illustrate the effects of varying λ and δ on the robustness
of the system, sensitivity analyzes were conducted, as depicted
in Figures 3 and 4. These analyzes provide insights into how
these parameters influence the system’s ability to handle noise
and disturbances. The agricultural spraying system model is
considered to be described by the discrete ARMAX model
obtained using 14 spray nozzles of the model 422SFC11005-
ARAG and a sampling period of 300 ms:

A(z)y(t) = B(z)u(t) (11)

where

A(z) = 1− 14.67 · 10−2z−1 + 24.52 · 10−2z−2

+ 22.22 · 10−2z−3,

B(z) = 0.277 · 10−2z−3 + 19.54 · 10−5z−4

Figure 3. Sensitivity analysis curves for noise a) and disturbance b) with
variable λ.

Figure 4. Sensitivity analysis curves for noise a) and disturbance b) with
variable δ.

Figures 3 and 4 analyze the effects of varying λ and δ
on system robustness, revealing a trade-off between noise
suppression and disturbance rejection. In Figure 3, with δ held
constant (δ = 1) and λ varied within 0 < λ ≤ 8, higher values
of λ reduce the amplitude of the noise sensitivity function
(Sn) at high frequencies, enhancing robustness against high-
frequency noise by penalizing abrupt control signal variations
and promoting smoother actions. However, this comes at the
expense of increased sensitivity to low-frequency disturbances,
as indicated by the rise in the disturbance sensitivity function
(Sd). Conversely, Figure 4 examines the impact of varying δ
while keeping λ fixed (λ = 1) within 0 < δ ≤ 8. Smaller
δ increases Sn at high frequencies, reducing noise robustness
due to more aggressive control adjustments that amplify high-
frequency components, whereas larger δ improves robustness
to low-frequency disturbances by decreasing Sd, though it may
increase susceptibility to high-frequency noise. Together, these
results highlight the opposing roles of λ and δ and the need
for careful parameter tuning to balance performance across
different operating conditions.

The opposing behaviors of λ and δ highlight the necessity
for careful tuning to strike an optimal balance between noise
suppression and disturbance rejection. Furthermore, system
nonlinearities can introduce regions where λ and δ become
inefficient for specific tuning scenarios, complicating the pa-
rameter adjustment process. This emphasizes the importance
of considering gain scheduling for these parameters to address
such limitations and ensure robust performance across varying
operating conditions.

IV. RESULTS AND DISCUSSIONS

A simulation was conducted in MATLAB® to evaluate
the regulation of a proportional valve in a sprayer module.
The performance of the proposed sigmoid-based GPC is
compared with that of the conventional GPC and fuzzy-based
GPC controllers. The block diagram of the sprayer system is
presented in Figure 5. The proportional valve actuator consists
of a Direct Current motor and an H-bridge with gain KpH ,
including a saturation block to limit the piston angle between
θv = 0 and 94.2 rad. The flow rate QF and pressure PS depend
on the proportional valve’s fluidic resistance KV P , the total
equivalent fluidic resistance KTeq, and the pump flow QB .
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Parameters α0, α1, and β define the valve’s fluidic resistance
curve, obtained experimentally. The parameters of the sprayer
system were identified and are described in detail in [8], with
the key parameters summarized in Table I.

DC motor IntegratorDead-zone SaturationH-Bridge

DC motor and H-bridge

a)

DC motor 
and H-bridge

Relationship of fluid resistance

b)

Proportional valve

Figure 5. Block diagram of the sprayer module. Adapted from [15].

The standard GPC was tuned to minimize overshoot,
achieve a faster response time, and ensure accurate predictions,
with parameters set as Nc = 4, Np = 20, λ = 1, and
δ = 5. For the fuzzy GPC and Sigmoid GPC designs, the
same prediction and control horizons (Np and Nc) were used.
However, δ and λ were dynamically adjusted: λ was scheduled
according to the fuzzy system proposed in [5], and the Sigmoid
function described in Section III was employed for adaptive
weighting, using ck = 16, ak = 0.4, λmin = 0 and λmax = 5.

TABLE I
PARAMETERS OF SPRAYER MODULE [8].

Parameter Value
α 2.8110−6

β 6.53
KM 1.10 rad/V
TM 5.0010−2

KpH 0.12
τF 0.6 s
QB 40 l/min

KTeq (CH0.5) 5.71 kPa/(l/min)2

KTeq (CH01) 1.91 kPa/(l/min)2

KTeq (CH03) 0.97 kPa/(l/min)2

KTeq (CH06) 0.48 kPa/(l/min)2

The simulations were repeated for each controller using
two bars, each equipped with seven MagnoJet® nozzles. Con-
straints on the control input were handled using the Acceler-
ated Dual Gradient-Projection Method (GPAD for short), with
the input restricted to −100 < dv(k) < 100 due to limitations
in the duty cycle of the Pulse Width Modulation (PWM)
signal. A step variation was used as the reference signal
using four different spray nozzles. This type of reference was
chosen to approximate the problem to a real-world scenario,

based on pesticide prescription maps. The simulation results
are presented in Figure 6 from a) to d) for the M063/1
CH6, M061 CH3, M059 CH1, and M059/1 CH0.5 nozzles,
in this sequence. The GPAD method [17] is used for handling
constraints in the controllers.

For most simulations, the sigmoid based GPC controller
exhibits a shorter rise time and lower steady-state error.
However, for the CH0.5 nozzle in Figure 6 d), the sigmoid
based GPC controller showed oscillations around the dead
zone in the interval between 10 and 22 seconds. Table II
provides a numerical comparative analysis of the Integral
Absolute Error (IAE), Overshoot (OS), and rise time for the
simulations conducted with the four nozzles.

TABLE II
PERFORMANCE OF THE CONTROLLERS WITH DIFFERENT NOZZLES

Controller IAE (l/min) OS (l/min) Rise time (s)

CH06
GPC 2.11 0.51 11.1
SGPC 1.61 0.62 8.4
FGPC 1.96 0.51 8.6

CH03
GPC 2.22 0.6 11.4
SGPC 1.73 0.51 8.4
FGPC 2.00 2.00 9.9

CH01
GPC 2.22 0.6 11.4
SGPC 2.00 0.61 8.5
FGPC 2.17 0.51 9.9

CH0.5
GPC 2.48 0.2 12.7
SGPC 2.18 2.4 9.6
FGPC 2.31 0.1 11.1

The analysis of Table II reveals that the Sigmoid-based GPC
(SGPC) generally outperforms the standard GPC and Fuzzy
GPC (FGPC) in terms of IAE and rise time across most nozzle
configurations. For instance, with the CH06 nozzle, SGPC
achieves a 23.7% and 7.1% reduction in IAE compared to
GPC and FGPC and a slightly faster rise time (8.4 s vs. 11.1
s and 8.6s). Similarly, for CH01, SGPC reduces IAE by 10.8%
compared to GPC, while maintaining a comparable rise time.
However, overshoot varies significantly: SGPC exhibits higher
OS in some cases, such as CH05, where it reaches 2.4 l/min,
contrasting sharply with FGPC’s 0.1 l/min. This suggests a
trade-off between error minimization and transient response
smoothness.

Across all nozzles, FGPC demonstrates moderate perfor-
mance, balancing IAE and OS but often failing to match the
IAE reductions achieved by SGPC. For example, in CH03,
FGPC shows a high OS of 2.0 l/min, indicating potential
instability or excessive control effort despite reducing IAE
by 10.4% compared to GPC. Overall, SGPC emerges as the
most effective controller for minimizing IAE and rise time,
achieving improvements of up to 23.7% in IAE, though its
higher OS in certain scenarios may require further tuning to
optimize robustness.
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Figure 6. Step response to MagnoJet ® nozzles.

V. CONCLUSION AND FUTURE WORK

In this paper, the performance of GPC, fuzzy-based GPC,
and a sigmoid-based GPC controller for regulating flow rate
in agricultural sprayers is discussed and compared. The simu-
lation results demonstrate the feasibility of using the sigmoid
function to schedule the GPC parameter λ, enhancing system
response and addressing dead zone nonlinearities.

The incorporation of the sigmoid function enables the inclu-
sion of bounds for the GPC parameters in the stability analysis,
as discussed. Furthermore, the sensitivity analysis provides
insights into determining the bounds of the sigmoid-based
GPC parameters while considering the system’s response to

noise and disturbances. The results confirm the practical ef-
fectiveness of the sigmoid-based GPC in agricultural sprayers,
reducing actuator wear and minimizing application errors
caused by abrupt reference changes.

For future research, an embedded programmable sigmoid-
based GPC is proposed for real-time processing. The sigmoid
S-shape function simplifies the embedded implementation of
adaptive systems, requiring minimal code and reducing pro-
cessing time compared to fuzzy logic, which often depends
on lookup-table searches or surface inference methods. This
method is promising for real-time applications in resource-
constrained environments.
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