
Parameter Optimization for BLE Mesh Sensor Networks Using an MQTT Gateway

Philipp Bolte

Dept. of Electronics and Circuit Technology

South Westphalia University of Applied Sciences

Soest, Germany

bolte.philipp@fh-swf.de

Ulf Witkowski

Dept. of Electronics and Circuit Technology

South Westphalia University of Applied Sciences

Soest, Germany

witkowski.ulf@fh-swf.de

Abstract— The BLE Mesh standard is well suited for use in IoT

applications because of its low energy consumption. The Mesh

extension enables communication beyond directly connected

devices. The provisioning of the network can be performed using

a smartphone utilizing a compatibility layer for traditional BLE.

Connectivity to the Internet is required for many Internet of

Things applications, which is not supported by BLE Mesh by

default. We propose a bidirectional BLE Mesh to MQTT Gateway

(GW) architecture to overcome this limitation. We have evaluated

the effect of several BLE Mesh parameters on packet loss using

the proposed GW architecture.

Keywords—Mesh Networks, Internet of Things, Sensor Node,

BLE Mesh, MQTT

I. INTRODUCTION

The smart home industry is growing at a rapid pace. In
Europe, the number of smart homes increased from 83.9 million
to 111.9 million from end of 2018 to end of 2019 while an annual
increase of 20.2% is excepted until 2024 [1]. Similar growth is
also predicted for the smart building sector. For Europe, the
market share of smart building sector is estimated to grow at an
annual rate of 17.6% from 2021 to 2028 [2]. Smart home and
smart building are a segment of the Internet of Things (IoT) with
special characteristics and requirements. Protocols traditionally
used for smart building, e.g., BACnet, DALI or KNX, are using
wired connections [3]. Those wired networks are inflexible and
their expansion is often not easy to realize. Wireless protocols
targeted for smart home applications, e.g., ZigBee, Z-Wave or
Wi-Fi, are widely used [4]. Those systems can be retrofitted
comparatively easily to existing buildings. However, these IoT
protocols, except for Wi-Fi, require a sophisticated
configuration. Furthermore, most of the wireless protocols are
not designed for battery operated devices in terms of power
consumption.

We propose a Bluetooth Low Energy (BLE) Mesh based
sensor network for the use with smart building and smart home
that solves the previous mentioned issues. This mesh extension
of the BLE standard implements a flooding algorithm to forward
messages across the network, so participants who are not in
direct reach can communicate with each other. Low-power
nodes with a very low current consumption enable the
integration into battery powered devices. One key advantage of
using BLE Mesh is the ability to configure the network using a
smartphone or laptop without the need of additional accessory.
The BLE Mesh standard further defines the application layer,
providing interoperability between devices of different

manufactures. We have designed a Gateway (GW) that forwards
messages between the BLE Mesh network and a Message
Queuing Telemetry Transport (MQTT) broker, e.g., for
integration into cloud-based services or for bridging multiple
spatial separated networks.

The second Section of the paper gives an introduction of the
BLE Mesh standard with focus on IoT relevant features. The
third Section introduces the proposed BLE Mesh to MQTT GW.
In Section 4, the used set-up for the experiments is described.
The results of the experiments are evaluated in Section 5.
Section 6 concludes the paper.

II. BLE MESH

 The BLE Mesh standard is based on the Bluetooth low-
energy part of the Bluetooth 4.0 specification and shares the
lower protocol layers [5]. Bluetooth devices usually implement
a point-to-point connection between one central and multiple
peripherals. In contrast, in a BLE Mesh network each device is
able to communicate with all reachable devices of the network.
The protocol stack of BLE Mesh is shown in Figure 1.

Figure 1. BLE Mesh protocol stack [5]

The lower two levels of BLE Mesh are shared with
traditional BLE. The bearer level implements the transport of
Protocol Data Units (PDU) using either advertisement packets
of BLE at fixed time intervals or Generic Attribute (GATT)
profiles for communication with legacy BLE devices. Packets
are encrypted on network layer with a network key. The
decrypted packets are retransmitted by the relay nodes while the
Time-To-Live (TTL) field is decremented until it reaches zero.

13Copyright (c) IARIA, 2022. ISBN: 978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing

This flooding approach does not require knowledge of the
network structure. However, this approach is resulting in poor
performance issues that can lead to an increased packet loss for
large networks with many participants [7]. The simplicity, on
the other hand, is especially beneficial for resource constraint
devices typically used in IoT. The transport layer implements
message segmentation, buffering of messages for coupled
Low-Power Nodes (LPNs) that are currently not reachable, and
encryption of the data from upper layers with application
specific keys. The application specific encryption enables
multiple isolated applications within a single network. Messages
are retransmitted by the relay nodes even if the corresponding
application key is not known. A BLE Mesh device can integrate
multiple elements that are identified by a unique address. An
element is an addressable unit, e.g., a switch panel with multiple
buttons, in a BLE Mesh network. Each element includes one or
multiple models. The models exchange data by a publish and
subscribe pattern. BLE defines various mesh models with
standardized attributes. Data producing devices usually
implement some sort of server model. Data consuming devices,
on the other hand, typically implement a client model. There are
many predefined models, ranging from generic on/off or level
models to very specific models, e.g., for lighting applications
[8]. For the proposed application, we are using a sensor server
for the temperature sensor nodes and sensor clients for the
display nodes. The GW implements both, a sensor client to fetch
sensor data and a sensor server to transmit requests from MQTT
to a BLE Mesh device.

A. Message Transport

The maximum size of access PDUs is 380 bytes, while
packets above 11 bytes are segmented by the network layer [9].
The performance of segmented messages is poor compared to
unsegmented messages [10]. The transport PDUs of segmented
messages are not transmitted instantly but rather in successive
BLE advertise packets. Therefore, it is reasonable to send the
data in several smaller access layer messages, as the overhead is
negligible. In this case, a lost transport PDU affects only a single
measurement and not a complete data series.

Figure 2 shows the transfer of BLE Mesh transport PDUs
using the Advertising (ADV) bearer. The advertiser, i.e., sender,
transmits the transport PDU in three identical
ADV_NONCONN_IND packets on BLE channels 37, 38 and 39,
that are primary used for BLE advertisement. The sequence of
packets is determined by the fixed advInterval, that is between
20 ms and 10.24 s, and a random delay advDelay between 0 and
10 ms [11]. The scanner, i.e., receiver, listens successively on
the advertisement channels for the time scanWindow with an
interval defined by scanInterval.

Figure 2. BLE Mesh data transfer using ADV bearer

Since the receiver does not listen permanently, the data must
be sent multiple times to ensure reception. BLE Mesh
implements three types of retransmissions [12]. The
retransmission of network PDUs sent by the note is controlled
by the Network Transmission Count (NTC), which allows 1 to 8
transmissions, and Network Transmit Interval (NTI), in a range
between 10 to 320 ms. The retransmission of received network
PDUs from other nodes of the network is controlled by the
parameters Relay Retransmit Count (RRC) and Relay
Retransmit Interval (RRI), having the same range as for network
scope. On model layer, the retransmission of published
messages is controlled by the Publish Retransmit Count (PRC)
and Publish Retransmit Interval (PRI), ranging from 50 ms to
1.6 s. A message can be sent up to 64 times if the network and
publish retransmit count parameters are set to maximum.

B. Device Addressing

Messages, respectively transport PDUs, have a source and a
destination address, which are both 16 bit wide. Each node of a
network is assigned a unique unicast address during
provisioning in the address range from 0x0001 to 0x7FFF,
which is half of the available address space. Furthermore,
various multicast address spaces are available. The address
space between 0x8000 and 0xBFFF is reserved for virtual
addresses. Those addresses represent a 128 bit Universally
Unique Identifier (UUID) that can be used by manufactures to
uniquely address elements of their products. However, this
function has been barely used so far. Addresses starting from
0xC000 are used as group addresses. This address range is
further subdivided to assignable addresses up to 0xFEFF and
special addresses, e.g., 0xFFFE for all relays and 0xFFFF for all
nodes [14]. E.g., the assignable group address could be used for
assigning all devices of a certain room.

Incoming messages with the unicast address of the receiving
node are always processed by the device. The models of a node
can additionally subscribe to virtual addresses and group
addresses. For outgoing messages, either a unicast or a multicast
address can be used as destination.

C. Low-Power Features

The BLE standard by itself is already optimized for low
energy consumption. The BLE Mesh specification introduces
additional low-power features. E.g., a node can operate as LPN
to further increase battery runtime. This type of node couples
with a friend node and suspends the scanning for advertisement
packets. The LPN periodically polls the permanent listening
friend node for messages that were received since the last
polling. The polling interval can be set between 10 s and several
hours. The LPN enters the lowest possible power state between
polling and is not reachable by other nodes.

D. Network Provisioning

A provisioner node is used to set-up the network. The
provisioning process involves five stages. First, the
unprovisioned devices announce their presence by sending mesh
beacons. The provisioner sends an invitation which is replied by
a capabilities report from the device. In the key exchange stage,
both devices exchange their public keys. It is recommended to
perform an authentication, e.g., by a pin code afterwards. This
step can be skipped if the devices are not able to interact with
the user. The actual provisioning is performed by the provisioner

14Copyright (c) IARIA, 2022. ISBN: 978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing

by setting the network and application keys and a unicast
address and optionally configure the models. Afterwards the
device has joined the network and is able to send and receive
messages.

E. BLE Connectivity

By default, the BLE Mesh nodes are communicating by
embedding the network PDUs inside of ADV_NONCONN_IND
advertisement packets. The hardware of legacy BLE devices,
e.g., Smartphones is, in theory, capable of processing those
packets but the software stack does not support the BLE Mesh
protocol. To enable communication with those legacy devices,
the BLE Mesh standards provides a GATT proxy feature. The
network PDUs are then transmitted using the Mesh Proxy
GATT service (0x1828) [15]. Typically, the provisioning of new
nodes is performed using a smartphone utilizing the GATT
proxy feature for easy management of the network. The GATT
proxy feature is optionally and does not need to be implemented
by the nodes.

III. MQTT GATEWAY

BLE Mesh devices are only capable of sending messages to
other nodes of a network. For typical IoT applications, an
integration of cloud services is at least desired, if not mandatory.
The integration of cloud services, e.g., could enable a deeper
analysis of sensor data for process optimization and remote
control of actuators [16]. Our proposed GW enables the
integration of low-power BLE Mesh nodes into online cloud
services using the widely used MQTT protocol.

Figure 3 shows the components of our BLE Mesh to MQTT
GW solution. The hardware of the system is composed of a
Raspberry Pi miniature computer and a Nordic nRF52840 BLE
development board. The Raspberry Pi itself embeds a Bluetooth
radio which cannot be used as the software stack since is not
Mesh compatible.

Figure 3. BLE Mesh to MQTT GW components

A. BLE Mesh Endpoint

The nRF52840 BLE development kit (DK) acts as the BLE
Mesh Endpoint (EP) of our proposed GW. The nRF52840
System-on-Chip (SoC) of the DK embeds a 2.4 GHz radio and
an ARM Cortex-M processing core. The developed BLE Mesh
EP was derived from application examples of the Zephyr
framework. We have implemented a generic sensor client
model. The non-uniform data representation for different sensor
types does not allow a generic conversion between BLE sensor
values and standard floating point format [17]. We have
implemented hooks for sensor types present ambient humidity,
precise present ambient temperature and present input voltage.
The integration of other sensor types can be achieved by
implementing according hooks with data conversion to a generic
float value. The sensor client is able to receive messages from

multiple devices by subscribing to a group address (e.g.,
0xC000). All received sensor readings are redirected to the
MQTT EP after adding meta information, e.g., the sender
address and Received Signal Strength Indicator (RSSI).
Incoming messages from the MQTT EP are redirected to other
BLE Mesh nodes by the implemented sensor server. Currently,
only the above listed sensor types are supported for sending
messages from MQTT to a BLE Mesh node. The integration of
other sensor types requires the extension of the sensor server
model. A final version of the GW would implement all defined
sensor types. The destination address of the redirected sensor
values is fetched from the included meta data included in the
MQTT message. The configuration of the model parameters is
performed by the provisioner of the network.

B. MQTT Endpoint

The MQTT protocol is based on TCP/IP stack. The used
nRF52840 SoC does not support Ethernet or Wi-Fi interface.
Therefore, the MQTT EP is executed on a Raspberry Pi
miniature computer that integrates an Ethernet interface. Newer
models also integrate a Wi-Fi module. The software of the
MQTT EP is written in Python and utilizes the threading library
to prevent I/O blocking. The Python program reads the required
connections parameters from a configuration file. The
configuration file includes the MQTT broker address, user
credentials and a topic prefix to enable the use of multiple GWs
on a single MQTT broker. Incoming JSON formatted messages
from the MQTT broker are parsed to a Protobuf object that is
then transferred to the BLE EP using the serial handler. The
MQTT protocol was designed for ASCII-formatted payload,
while Protoc serializes to a binary representation. Furthermore,
Protoc is not supported by all cloud stacks. Therefore, the
MQTT payload is JSON formatted, to enhance compatibility.
Since the message objects are no longer specified by a hard-
coded protocol definition, it is now the responsibility of the
developer to correctly format the JSON message. Incorrectly
formatted messages are discarded by the broker. All received
sensor values from the BLE Mesh EP are parsed to a JSON
object that is published by the MQTT client. The topic of the
message includes the source address of the BLE Mesh message.
Additional meta data, e.g., RSSI, is included in the payload, as
shown in Figure 4.

Figure 4. MQTT message payload example

{
 "seq": 236,
 "timestamp": 29470814,
 "addr": 31,
 "recvRssi": -86,
 "recvTtl": 6,
 "ambientHumidity": {
 "ambientHumidity": 33.91
 }

}

15Copyright (c) IARIA, 2022. ISBN: 978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing

C. Internal Message Coding

The messages transfer between the BLE Mesh EP and the
MQTT EP is realized using Google Protocol Buffers (Protobuf)
format. With Protobuf, structured data objects, that are specified
in a platform independent “.proto”-file, can be translated to
different programming languages using the Protocol Buffers
compiler (protoc) [18]. The same protocol definition can be used
in both, the C program on the BLE SoC and the Python program
on the Raspberry Pi. In the C program, the data objects are
represented by structures. In Python each defined data object is
represented by a class that can be instantiated. The Protobuf
library serializes those structured data objects to a binary stream
that can be deserialized by the receiver. The Protoc data format
is substantially more efficient compared to the common used
JSON protocol and usually only produces negligible overhead
[19]. The capacity of the UART connection between the
Raspberry Pi and the nRF52840 board is limited to 115200
bauds, therefore an efficient data transfer minimizes packet
delay and ensures good utilization of the limited UART link.

IV. REFERENCE SET-UP

A reference BLE Mesh network was set-up to evaluate the
use of BLE Mesh for indoor IoT applications. We have deployed
a typical smart home environment with multiple low-power and
relay nodes, as shown in Figure 5. The proposed GW
architecture was used to track messages inside the mesh network
and to collect meta data.

Figure 5. BLE Mesh reference set-up

The mesh network is made up of two LPN acting as

temperature and humidity sensors. One LPN is equipped with

an e-paper display that shows sensor readings that were

transferred over the BLE Mesh network. The LPNs have no

direct connection, instead three relay nodes are used to bridge

all devices. Each relay acts as an MQTT GW. The LPNs

establish a friendship with one of the relay nodes in reach to

further reduce energy consumption. The display LPN

implements a sensor client that subscribes to a group address

(0xC000). The display is divided into two slots. One dataset is

gathered from the mesh-local sensor S1 (indoor) and the dataset

for the second slot is injected from MQTT by router R1

(outdoor). In this example, the second dataset is fetched from

OpenWeather Application Programming Interface (API). The

LPN sensors gather temperature and humidity readings each 15

minutes. The outdoor temperature and humidity is fetched at an

interval of 30 minutes from the web API. The transmission of

BLE Mesh messages inside the network can be tracked as each

relay redirects incoming messages to the MQTT broker.

V. EXPERIMENTS

We have evaluated the reliability of the data transmission
based on the previously described set-up. The packet loss was
used as the primary metric. The received meta data from the
GWs was evaluated as well. The received RSSI values provide
additional information about the link reserve. The experiments
were primarily conducted to study the effect of retransmission
settings. A high number of repetitions increases the probability
that a message will reach the recipient. On the other hand, the
medium is shared by all participants of the network. The total
transmitted messages increase exponentially with the number of
participants and the transmit count values, increasing the
probability for collisions.

In total, three experiments were performed in an office
building under real conditions. The experiments were carried out
consecutively for a period of 7 days using the same hardware.
Table 1 shows the used parameters for the experiments.

TABLE I. BLE MESH PARAMETERS

 Exp. 1 Exp. 2 Exp. 3

PTC 1 1 -

PTI [ms] 250 500 -

NTC 3 6 2

NTI [ms] 50 50 50

RRC * 3 6 2

RRI * [ms] 60 60 60

* only for relay nodes

Figure 6 shows the packet loss of the three experiments for
the transmissions of LPN S1. The LPN S1 transmits three
messages each 15 minutes, reporting its battery voltage, ambient
temperature and humidity. The messages are first received by
relay node R1 and get retransmitted until they finally reach the
display node D1. The messages are tracked by the GWs.

Figure 6. Packet loss for messages from LPN S1

The packet loss at the first relay node is less than 5% for all
parameter sets. The loss increases to almost 10% for all
experiments at node R2. Up to this point, however, no major
differences are discernible between the various parameter sets.
Significant differences could be observed between the
transmissions from relay nodes R2 to R3. Here, the packet loss

16Copyright (c) IARIA, 2022. ISBN: 978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing

of experiments 1 and 2 is around 70%. In the last experiment,
the packet loss at R3 was 44.5% although the transmit counter
was set lowest. Figure 7 shows boxplots of the RSSI parameter
of the received messages sent by LPN S1.

Figure 7. RSSI distribution for messages from LPN S1

The RSSI values of the received messages from S1 at relay
node R1 are widely spread. The mean value ranged
from -55.2 dB for Experiment 3 to -59.4 dB for Experiment 1.
At stations R2 and R3 a smaller spread of the recoded RSSI
values was observed. The mean values were located around -86
dB for station R2 for all experiments. For node R3 the mean
values of the RSSI measurements are between -86 dB for
experiment 1 and -91 dB for experiment 2. The smallest
recorded RSSI value was –94 dB. The sensitivity of the used
nRF52840 module is specified with -95 dB [20]. The spatial
conditions used for the experiments demonstrate a reliable
transmission with a link margin of 10 dB. Compared to the
significantly better signal strengths at station R1, no increased
packet loss could be detected. For stations that are just in reach,
however, the presence of a small interferer is sufficient to
interrupt the transmissions. The scatter of successive RSSI
values was rather small. However, there were occasional jumps
in the measured values, which can be explained by the presence
of interferer. Then the signal of all messages is suppressed to the
extent that they can no longer be decoded by the receiver. In
such cases, the increase of transmission counters does not
improve reachability. If sufficient link margin is available, the
already low packet loss will not be significantly improved by the
increase of transmissions.

VI. CONCLUSIONS AND FUTURE WORK

The proposed GW architecture provides connectivity
between a BLE Mesh network and the Internet. The
provisioning of the network can be done via smartphone. Only
the MQTT parameters need to be set in a configuration file on
the GW. Even existing networks can be easily connected to the
Internet using the proposed GW architecture. The GW includes
meta data of the received BLE Mesh messages before
redirection to the MQTT broker. The proposed GW architecture
can be used to perform experiments on BLE Mesh networks
without the need for expensive measurement equipment.

We have evaluated the effect of transmission counters and
delays on packet loss when transmitting data over multiple hops.
A BLE Mesh node does not listen continuously on the RF
interface but instead implements a complex scheduling of scan

intervals on multiple channels to reduce current consumption. A
re-transmission of messages, in theory, should improve
reliability. However, too many repetitions lead to a high
utilization of the radio channel. Our experiments have shown
that the receiver of the used nRF52840 module works very
reliably with little packet loss, even at the lowest possible packet
repetition rates, if sufficient link margin is given. In such cases,
an increase repetition of messages does not improve the packet
loss. The experiments were performed under real conditions. We
could observe a significant drop of RSSI values for longer time
periods on all relay nodes, caused by the presence of disturbers,
e.g., Wi-Fi and other BT devices located in the lab. When a
station is positioned close to the range limit, the decreased signal
strength cannot be compensated by increasing the repetition
counters, resulting in high packet loss during the presence of the
disturber. Our recommendation is to set the corresponding
parameters as small as possible, in order to reduce the RF
channel utilization as low as possible.

The proposed architecture could be extended to detect packet
loss between multiple GWs and to retransmit lost messages
using the MQTT link. However, the flooding of the mesh
network with always the same message must be prevented.

REFERENCES

[1] M. Bäckman, “Smart Homes and Home Automation - IoT Research
Series,” Berg Insight, Gothenburg, Sweden, 2021.

[2] “Europe Smart Building Market Size, Share & COVID-19 Impact
Analysis, By Solution, By Application, and Europe Forecast, 2021-2028,”
Furtune Business Insights, Apr. 2021.

[3] K. Lohin, Y. Jain, C. Patel, and N. Doshi, “Open Communication
Protocols for Building Automation Systems,” in Procedia Computer
Science, vol. 160, Nov. 2019, pp. 723-727, doi:
10.1016/j.procs.2019.11.020.

[4] S. J. Danbatta, A. Varol, “Comparison of Zigbee, Z-Wave, Wi-Fi, and
Bluetooth Wireless Technologies Used in Home Automation,” in 2019 7th
International Symposium on Digital Forensics and Securits (ISDF), Jul.
2019, pp. 1-5, doi: 10.1109/ISDFS.2019.8757472.

[5] Nordic, nRF SDK for Mesh v3.2.0, Accessed: Nov. 19, 2021. Accessed:
Mar. 02, 2022. [Online]. Available: https://infocenter.nordicsemi.com/
topic/com.nordic.infocenter.meshsdk.v3.2.0/md_doc_introduction_basic
_concepts.html

[6] S. M. Darroudi, C. Gomez, and J. Crowcroft, “Bluetooth Low Energy
Mesh Networks: A Standards Perspective,” in IEEE Communications
Magazine, vol. 58, Apr. 2020, pp. 95-101, doi:
10.1109/MCOM.001.1900523.

[7] R. Rondón, A. Mahmood, S. Grimaldi, and M. Gidlund, “Understanding
the Performance of Bluetooth Mesh: Reliability, Delay, and Scalability
Analysis,” in IEEE Internet of Things Journal, vol. 7, Mar. 2020, pp.
2089-2101, doi: 10.1109/JIOT.2019.2960248.

[8] Bluetooth Specification - Mesh Model, rev. 1.0.1, Jan. 2021. Accessed:
Mar. 02, 2022. [Online]. Available: https://www.bluetooth.com/
specifications/specs/mesh-model-1-0-1.

[9] Á. Hernández-Solana, D. Pérez-Díaz-De-Cerio, M. García-Lozano, A. V.
Bardají, and J. Valenzuela, "Bluetooth Mesh Analysis, Issues, and
Challenges," in IEEE Access, vol. 8, pp. 53784-53800, 2020, doi:
10.1109/ACCESS.2020.2980795.

[10] A. Aijaz, A. Stanoev, D. London, and V. Marot, “Demystifying the
Performance of Bluetooth Mesh: Experimental Evaluation and
Optimization”, in in IEEE Wireless Days 2021, Preprint

[11] Rohde & Schwarz, “Bluetooth Low Energy Over-The-Air Advertiser
Testing,” Application Note, Rev. 1C109, Dec. 2017.

[12] Bluetooth Specification - Mesh Profile, rev. 1.0.1, Jan. 2019. Accessed:
Mar. 02, 2022. [Online]. Available: https://www.bluetooth.com/
specifications/specs/mesh-profile- 1-0-1.

17Copyright (c) IARIA, 2022. ISBN: 978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing

[13] M. Woolley, „Bluetooth Mesh Networking: An Indtoduction for
Developers,“ Version 1.0.1, Dec 2020. Accessed: Mar. 02, 2022.
[Online]. Available: https://www.bluetooth.com/wp-content/
uploads/2019/03/Mesh-Technology-Overview.pdf.

[14] Kai R. and M. Woolley, „The Fundamental Concepts of Bluetooth Mesh
Networking“, Aug. 2017. Accessed: Mar. 02, 2022. [Online]. Available:
https://www.bluetooth.com/blog/the-fundamental-concepts-of-
bluetooth-mesh-networking-part-2/.

[15] Bluetooth Specification – 16-bit UUID Numbers Document, Jan. 2022.
Accessed: Mar. 02, 2022. [Online]. Available:
https://btprodspecificationrefs.blob.core.windows.net/assigned-
values/16-bit%20UUID%20Numbers%20Document.pdf

[16] A. Rajith, S. Soki, and M. Hiroshi, „Real-time optimized HVAC control
system on top of an IoT framework,“ in 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC), Barcelona,
Spain, Apr. 2018, pp. 181-186, DOI: 10.1109/FMEC.2018.8364062 .

[17] Nordic, nRF Connect SDK, Accessd: Mar. 16, 2022. [Online]. Available:
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/libr
aries/bluetooth_services/mesh/sensor_types.html

[18] Google, Protocol Buffers Language Guide, Mar. 06, 2022. [Online].
Available: https://developers.google.com/protocol-buffers/docs/proto3

[19] S. Popić, D. Pezer, B. Mrazovac, and M. Teslic, „Performance evaluation
of using Protocol Buffers in the Internet of Things communication,“ in
2016 International Conference on Smart Systems and Technologies
(SST), Oct. 2016, pp. 261-265.

[20] Nordic, „High-end multiprotocol Bluetooth Low Energy (LE) SoC
supporting: Bluetooth 5.3 / Bluetooth mesh / Thread / Zigbee / 802.15.4 /
ANT,“ nRF52840 Product Brief, Rev. 3.0. Accessed: Mar. 02, 2022.
[Online]. Available: https://nsscprodmedia.blob.core.windows.net/
prod/software-and-other-downloads/product-briefs/nrf52840-soc-
v3.0.pdf

18Copyright (c) IARIA, 2022. ISBN: 978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing

