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Abstract— The BLE Mesh standard is well suited for use in IoT 

applications because of its low energy consumption. The Mesh 

extension enables communication beyond directly connected 

devices. The provisioning of the network can be performed using 

a smartphone utilizing a compatibility layer for traditional BLE. 

Connectivity to the Internet is required for many Internet of 

Things applications, which is not supported by BLE Mesh by 

default. We propose a bidirectional BLE Mesh to MQTT Gateway 

(GW) architecture to overcome this limitation. We have evaluated 

the effect of several BLE Mesh parameters on packet loss using 

the proposed GW architecture.  

Keywords—Mesh Networks, Internet of Things, Sensor Node, 

BLE Mesh, MQTT 

I. INTRODUCTION 

The smart home industry is growing at a rapid pace. In 
Europe, the number of smart homes increased from 83.9 million 
to 111.9 million from end of 2018 to end of 2019 while an annual 
increase of 20.2% is excepted until 2024 [1]. Similar growth is 
also predicted for the smart building sector. For Europe, the 
market share of smart building sector is estimated to grow at an 
annual rate of 17.6% from 2021 to 2028 [2]. Smart home and 
smart building are a segment of the Internet of Things (IoT) with 
special characteristics and requirements. Protocols traditionally 
used for smart building, e.g., BACnet, DALI or KNX, are using 
wired connections [3]. Those wired networks are inflexible and 
their expansion is often not easy to realize. Wireless protocols 
targeted for smart home applications, e.g., ZigBee, Z-Wave or 
Wi-Fi, are widely used [4]. Those systems can be retrofitted 
comparatively easily to existing buildings. However, these IoT 
protocols, except for Wi-Fi, require a sophisticated 
configuration. Furthermore, most of the wireless protocols are 
not designed for battery operated devices in terms of power 
consumption. 

We propose a Bluetooth Low Energy (BLE) Mesh based 
sensor network for the use with smart building and smart home 
that solves the previous mentioned issues. This mesh extension 
of the BLE standard implements a flooding algorithm to forward 
messages across the network, so participants who are not in 
direct reach can communicate with each other. Low-power 
nodes with a very low current consumption enable the 
integration into battery powered devices. One key advantage of 
using BLE Mesh is the ability to configure the network using a 
smartphone or laptop without the need of additional accessory. 
The BLE Mesh standard further defines the application layer, 
providing interoperability between devices of different 

manufactures. We have designed a Gateway (GW) that forwards 
messages between the BLE Mesh network and a Message 
Queuing Telemetry Transport (MQTT) broker, e.g., for 
integration into cloud-based services or for bridging multiple 
spatial separated networks. 

The second Section of the paper gives an introduction of the 
BLE Mesh standard with focus on IoT relevant features. The 
third Section introduces the proposed BLE Mesh to MQTT GW. 
In Section 4, the used set-up for the experiments is described. 
The results of the experiments are evaluated in Section 5. 
Section 6 concludes the paper. 

II. BLE MESH 

 The BLE Mesh standard is based on the Bluetooth low-
energy part of the Bluetooth 4.0 specification and shares the 
lower protocol layers [5]. Bluetooth devices usually implement 
a point-to-point connection between one central and multiple 
peripherals. In contrast, in a BLE Mesh network each device is 
able to communicate with all reachable devices of the network.  
The protocol stack of BLE Mesh is shown in Figure 1.  

 
Figure 1. BLE Mesh protocol stack [5] 

The lower two levels of BLE Mesh are shared with 
traditional BLE. The bearer level implements the transport of 
Protocol Data Units (PDU) using either advertisement packets 
of BLE at fixed time intervals or Generic Attribute (GATT) 
profiles for communication with legacy BLE devices. Packets 
are encrypted on network layer with a network key. The 
decrypted packets are retransmitted by the relay nodes while the 
Time-To-Live (TTL) field is decremented until it reaches zero. 
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This flooding approach does not require knowledge of the 
network structure. However, this approach is resulting in poor 
performance issues that can lead to an increased packet loss for 
large networks with many participants [7]. The simplicity, on 
the other hand, is especially beneficial for resource constraint 
devices typically used in IoT. The transport layer implements 
message segmentation, buffering of messages for coupled 
Low-Power Nodes (LPNs) that are currently not reachable, and 
encryption of the data from upper layers with application 
specific keys. The application specific encryption enables 
multiple isolated applications within a single network. Messages 
are retransmitted by the relay nodes even if the corresponding 
application key is not known. A BLE Mesh device can integrate 
multiple elements that are identified by a unique address. An 
element is an addressable unit, e.g., a switch panel with multiple 
buttons, in a BLE Mesh network. Each element includes one or 
multiple models. The models exchange data by a publish and 
subscribe pattern. BLE defines various mesh models with 
standardized attributes. Data producing devices usually 
implement some sort of server model. Data consuming devices, 
on the other hand, typically implement a client model. There are 
many predefined models, ranging from generic on/off or level 
models to very specific models, e.g., for lighting applications 
[8]. For the proposed application, we are using a sensor server 
for the temperature sensor nodes and sensor clients for the 
display nodes. The GW implements both, a sensor client to fetch 
sensor data and a sensor server to transmit requests from MQTT 
to a BLE Mesh device. 

A. Message Transport 

The maximum size of access PDUs is 380 bytes, while 
packets above 11 bytes are segmented by the network layer [9]. 
The performance of segmented messages is poor compared to 
unsegmented messages [10]. The transport PDUs of segmented 
messages are not transmitted instantly but rather in successive 
BLE advertise packets. Therefore, it is reasonable to send the 
data in several smaller access layer messages, as the overhead is 
negligible. In this case, a lost transport PDU affects only a single 
measurement and not a complete data series. 

Figure 2 shows the transfer of BLE Mesh transport PDUs 
using the Advertising (ADV) bearer. The advertiser, i.e., sender, 
transmits the transport PDU in three identical 
ADV_NONCONN_IND packets on BLE channels 37, 38 and 39, 
that are primary used for BLE advertisement. The sequence of 
packets is determined by the fixed advInterval, that is between 
20 ms and 10.24 s, and a random delay advDelay between 0 and 
10 ms [11]. The scanner, i.e., receiver, listens successively on 
the advertisement channels for the time scanWindow with an 
interval defined by scanInterval.  

 
Figure 2. BLE Mesh data transfer using ADV bearer 

Since the receiver does not listen permanently, the data must 
be sent multiple times to ensure reception. BLE Mesh 
implements three types of retransmissions [12]. The 
retransmission of network PDUs sent by the note is controlled 
by the Network Transmission Count (NTC), which allows 1 to 8 
transmissions, and Network Transmit Interval (NTI), in a range 
between 10 to 320 ms. The retransmission of received network 
PDUs from other nodes of the network is controlled by the 
parameters Relay Retransmit Count (RRC) and Relay 
Retransmit Interval (RRI), having the same range as for network 
scope. On model layer, the retransmission of published 
messages is controlled by the Publish Retransmit Count (PRC) 
and Publish Retransmit Interval (PRI), ranging from 50 ms to 
1.6 s. A message can be sent up to 64 times if the network and 
publish retransmit count parameters are set to maximum. 

B. Device Addressing 

Messages, respectively transport PDUs, have a source and a 
destination address, which are both 16 bit wide. Each node of a 
network is assigned a unique unicast address during 
provisioning in the address range from 0x0001 to 0x7FFF, 
which is half of the available address space. Furthermore, 
various multicast address spaces are available. The address 
space between 0x8000 and 0xBFFF is reserved for virtual 
addresses. Those addresses represent a 128 bit Universally 
Unique Identifier (UUID) that can be used by manufactures to 
uniquely address elements of their products. However, this 
function has been barely used so far. Addresses starting from 
0xC000 are used as group addresses.  This address range is 
further subdivided to assignable addresses up to 0xFEFF and 
special addresses, e.g., 0xFFFE for all relays and 0xFFFF for all 
nodes [14]. E.g., the assignable group address could be used for 
assigning all devices of a certain room.  

Incoming messages with the unicast address of the receiving 
node are always processed by the device. The models of a node 
can additionally subscribe to virtual addresses and group 
addresses. For outgoing messages, either a unicast or a multicast 
address can be used as destination.  

C. Low-Power Features 

The BLE standard by itself is already optimized for low 
energy consumption. The BLE Mesh specification introduces 
additional low-power features. E.g., a node can operate as LPN 
to further increase battery runtime. This type of node couples 
with a friend node and suspends the scanning for advertisement 
packets. The LPN periodically polls the permanent listening 
friend node for messages that were received since the last 
polling. The polling interval can be set between 10 s and several 
hours. The LPN enters the lowest possible power state between 
polling and is not reachable by other nodes.  

D. Network Provisioning 

A provisioner node is used to set-up the network. The 
provisioning process involves five stages. First, the 
unprovisioned devices announce their presence by sending mesh 
beacons. The provisioner sends an invitation which is replied by 
a capabilities report from the device. In the key exchange stage, 
both devices exchange their public keys. It is recommended to 
perform an authentication, e.g., by a pin code afterwards. This 
step can be skipped if the devices are not able to interact with 
the user. The actual provisioning is performed by the provisioner 
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by setting the network and application keys and a unicast 
address and optionally configure the models. Afterwards the 
device has joined the network and is able to send and receive 
messages.  

E. BLE Connectivity 

By default, the BLE Mesh nodes are communicating by 
embedding the network PDUs inside of ADV_NONCONN_IND 
advertisement packets. The hardware of legacy BLE devices, 
e.g., Smartphones is, in theory, capable of processing those 
packets but the software stack does not support the BLE Mesh 
protocol. To enable communication with those legacy devices, 
the BLE Mesh standards provides a GATT proxy feature. The 
network PDUs are then transmitted using the Mesh Proxy 
GATT service (0x1828) [15]. Typically, the provisioning of new 
nodes is performed using a smartphone utilizing the GATT 
proxy feature for easy management of the network. The GATT 
proxy feature is optionally and does not need to be implemented 
by the nodes. 

III. MQTT GATEWAY 

BLE Mesh devices are only capable of sending messages to 
other nodes of a network. For typical IoT applications, an 
integration of cloud services is at least desired, if not mandatory. 
The integration of cloud services, e.g., could enable a deeper 
analysis of sensor data for process optimization and remote 
control of actuators [16]. Our proposed GW enables the 
integration of low-power BLE Mesh nodes into online cloud 
services using the widely used MQTT protocol.  

Figure 3 shows the components of our BLE Mesh to MQTT 
GW solution. The hardware of the system is composed of a 
Raspberry Pi miniature computer and a Nordic nRF52840 BLE 
development board. The Raspberry Pi itself embeds a Bluetooth 
radio which cannot be used as the software stack since is not 
Mesh compatible.  

 
Figure  3. BLE Mesh to MQTT GW components 

A. BLE Mesh Endpoint 

The nRF52840 BLE development kit (DK) acts as the BLE 
Mesh Endpoint (EP) of our proposed GW. The nRF52840 
System-on-Chip (SoC) of the DK embeds a 2.4 GHz radio and 
an ARM Cortex-M processing core. The developed BLE Mesh 
EP was derived from application examples of the Zephyr 
framework. We have implemented a generic sensor client 
model. The non-uniform data representation for different sensor 
types does not allow a generic conversion between BLE sensor 
values and standard floating point format [17]. We have 
implemented hooks for sensor types present ambient humidity, 
precise present ambient temperature and present input voltage. 
The integration of other sensor types can be achieved by 
implementing according hooks with data conversion to a generic 
float value. The sensor client is able to receive messages from 

multiple devices by subscribing to a group address (e.g., 
0xC000). All received sensor readings are redirected to the 
MQTT EP after adding meta information, e.g., the sender 
address and Received Signal Strength Indicator (RSSI). 
Incoming messages from the MQTT EP are redirected to other 
BLE Mesh nodes by the implemented sensor server. Currently, 
only the above listed sensor types are supported for sending 
messages from MQTT to a BLE Mesh node. The integration of 
other sensor types requires the extension of the sensor server 
model. A final version of the GW would implement all defined 
sensor types. The destination address of the redirected sensor 
values is fetched from the included meta data included in the 
MQTT message. The configuration of the model parameters is 
performed by the provisioner of the network.  

B. MQTT Endpoint 

The MQTT protocol is based on TCP/IP stack. The used 
nRF52840 SoC does not support Ethernet or Wi-Fi interface. 
Therefore, the MQTT EP is executed on a Raspberry Pi 
miniature computer that integrates an Ethernet interface. Newer 
models also integrate a Wi-Fi module. The software of the 
MQTT EP is written in Python and utilizes the threading library 
to prevent I/O blocking. The Python program reads the required 
connections parameters from a configuration file. The 
configuration file includes the MQTT broker address, user 
credentials and a topic prefix to enable the use of multiple GWs 
on a single MQTT broker. Incoming JSON formatted messages 
from the MQTT broker are parsed to a Protobuf object that is 
then transferred to the BLE EP using the serial handler. The 
MQTT protocol was designed for ASCII-formatted payload, 
while Protoc serializes to a binary representation. Furthermore, 
Protoc is not supported by all cloud stacks. Therefore, the 
MQTT payload is JSON formatted, to enhance compatibility. 
Since the message objects are no longer specified by a hard-
coded protocol definition, it is now the responsibility of the 
developer to correctly format the JSON message. Incorrectly 
formatted messages are discarded by the broker. All received 
sensor values from the BLE Mesh EP are parsed to a JSON 
object that is published by the MQTT client. The topic of the 
message includes the source address of the BLE Mesh message. 
Additional meta data, e.g., RSSI, is included in the payload, as 
shown in Figure 4.  

 

Figure 4. MQTT message payload example 

  

{ 
  "seq": 236, 
  "timestamp": 29470814, 
  "addr": 31, 
  "recvRssi": -86, 
  "recvTtl": 6, 
  "ambientHumidity": { 
    "ambientHumidity": 33.91 
  } 

} 
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C. Internal Message Coding 

The messages transfer between the BLE Mesh EP and the 
MQTT EP is realized using Google Protocol Buffers (Protobuf) 
format. With Protobuf, structured data objects, that are specified 
in a platform independent “.proto”-file, can be translated to 
different programming languages using the Protocol Buffers 
compiler (protoc) [18]. The same protocol definition can be used 
in both, the C program on the BLE SoC and the Python program 
on the Raspberry Pi. In the C program, the data objects are 
represented by structures. In Python each defined data object is 
represented by a class that can be instantiated. The Protobuf 
library serializes those structured data objects to a binary stream 
that can be deserialized by the receiver. The Protoc data format 
is substantially more efficient compared to the common used 
JSON protocol and usually only produces negligible overhead 
[19]. The capacity of the UART connection between the 
Raspberry Pi and the nRF52840 board is limited to 115200 
bauds, therefore an efficient data transfer minimizes packet 
delay and ensures good utilization of the limited UART link. 

IV. REFERENCE SET-UP 

A reference BLE Mesh network was set-up to evaluate the 
use of BLE Mesh for indoor IoT applications. We have deployed 
a typical smart home environment with multiple low-power and 
relay nodes, as shown in Figure 5. The proposed GW 
architecture was used to track messages inside the mesh network 
and to collect meta data.  

  

 
Figure 5.  BLE Mesh reference set-up 

The mesh network is made up of two LPN acting as 

temperature and humidity sensors. One LPN is equipped with 

an e-paper display that shows sensor readings that were 

transferred over the BLE Mesh network. The LPNs have no 

direct connection, instead three relay nodes are used to bridge 

all devices. Each relay acts as an MQTT GW. The LPNs 

establish a friendship with one of the relay nodes in reach to 

further reduce energy consumption. The display LPN 

implements a sensor client that subscribes to a group address 

(0xC000). The display is divided into two slots. One dataset is 

gathered from the mesh-local sensor S1 (indoor) and the dataset 

for the second slot is injected from MQTT by router R1 

(outdoor). In this example, the second dataset is fetched from 

OpenWeather Application Programming Interface (API). The 

LPN sensors gather temperature and humidity readings each 15 

minutes. The outdoor temperature and humidity is fetched at an 

interval of 30 minutes from the web API. The transmission of 

BLE Mesh messages inside the network can be tracked as each 

relay redirects incoming messages to the MQTT broker. 

V. EXPERIMENTS 

We have evaluated the reliability of the data transmission 
based on the previously described set-up. The packet loss was 
used as the primary metric. The received meta data from the 
GWs was evaluated as well. The received RSSI values provide 
additional information about the link reserve. The experiments 
were primarily conducted to study the effect of retransmission 
settings. A high number of repetitions increases the probability 
that a message will reach the recipient. On the other hand, the 
medium is shared by all participants of the network. The total 
transmitted messages increase exponentially with the number of 
participants and the transmit count values, increasing the 
probability for collisions.  

In total, three experiments were performed in an office 
building under real conditions. The experiments were carried out 
consecutively for a period of 7 days using the same hardware. 
Table 1 shows the used parameters for the experiments.  

TABLE I.  BLE MESH PARAMETERS 

 Exp. 1 Exp. 2 Exp. 3 

PTC 1 1 - 

PTI [ms] 250 500 - 

NTC 3 6 2 

NTI [ms] 50 50 50 

RRC * 3 6 2 

RRI * [ms]  60 60 60 

* only for relay nodes 
 

Figure 6 shows the packet loss of the three experiments for 
the transmissions of LPN S1. The LPN S1 transmits three 
messages each 15 minutes, reporting its battery voltage, ambient 
temperature and humidity. The messages are first received by 
relay node R1 and get retransmitted until they finally reach the 
display node D1. The messages are tracked by the GWs.  

 
Figure 6.  Packet loss for messages from LPN S1 

The packet loss at the first relay node is less than 5% for all 
parameter sets. The loss increases to almost 10% for all 
experiments at node R2. Up to this point, however, no major 
differences are discernible between the various parameter sets. 
Significant differences could be observed between the 
transmissions from relay nodes R2 to R3. Here, the packet loss 

16Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing



of experiments 1 and 2 is around 70%. In the last experiment, 
the packet loss at R3 was 44.5% although the transmit counter 
was set lowest. Figure 7 shows boxplots of the RSSI parameter 
of the received messages sent by LPN S1.  

 
Figure 7. RSSI distribution for messages from LPN S1 

The RSSI values of the received messages from S1 at relay 
node R1 are widely spread. The mean value ranged 
from -55.2 dB for Experiment 3 to -59.4 dB for Experiment 1. 
At stations R2 and R3 a smaller spread of the recoded RSSI 
values was observed. The mean values were located around -86 
dB for station R2 for all experiments. For node R3 the mean 
values of the RSSI measurements are between -86 dB for 
experiment 1 and -91 dB for experiment 2. The smallest 
recorded RSSI value was –94 dB. The sensitivity of the used 
nRF52840 module is specified with -95 dB [20]. The spatial 
conditions used for the experiments demonstrate a reliable 
transmission with a link margin of 10 dB. Compared to the 
significantly better signal strengths at station R1, no increased 
packet loss could be detected. For stations that are just in reach, 
however, the presence of a small interferer is sufficient to 
interrupt the transmissions. The scatter of successive RSSI 
values was rather small. However, there were occasional jumps 
in the measured values, which can be explained by the presence 
of interferer. Then the signal of all messages is suppressed to the 
extent that they can no longer be decoded by the receiver. In 
such cases, the increase of transmission counters does not 
improve reachability. If sufficient link margin is available, the 
already low packet loss will not be significantly improved by the 
increase of transmissions. 

VI. CONCLUSIONS AND FUTURE WORK 

The proposed GW architecture provides connectivity 
between a BLE Mesh network and the Internet. The 
provisioning of the network can be done via smartphone. Only 
the MQTT parameters need to be set in a configuration file on 
the GW. Even existing networks can be easily connected to the 
Internet using the proposed GW architecture. The GW includes 
meta data of the received BLE Mesh messages before 
redirection to the MQTT broker. The proposed GW architecture 
can be used to perform experiments on BLE Mesh networks 
without the need for expensive measurement equipment.  

We have evaluated the effect of transmission counters and 
delays on packet loss when transmitting data over multiple hops. 
A BLE Mesh node does not listen continuously on the RF 
interface but instead implements a complex scheduling of scan 

intervals on multiple channels to reduce current consumption. A 
re-transmission of messages, in theory, should improve 
reliability. However, too many repetitions lead to a high 
utilization of the radio channel. Our experiments have shown 
that the receiver of the used nRF52840 module works very 
reliably with little packet loss, even at the lowest possible packet 
repetition rates, if sufficient link margin is given. In such cases, 
an increase repetition of messages does not improve the packet 
loss. The experiments were performed under real conditions. We 
could observe a significant drop of RSSI values for longer time 
periods on all relay nodes, caused by the presence of disturbers, 
e.g., Wi-Fi and other BT devices located in the lab. When a 
station is positioned close to the range limit, the decreased signal 
strength cannot be compensated by increasing the repetition 
counters, resulting in high packet loss during the presence of the 
disturber. Our recommendation is to set the corresponding 
parameters as small as possible, in order to reduce the RF 
channel utilization as low as possible.  

The proposed architecture could be extended to detect packet 
loss between multiple GWs and to retransmit lost messages 
using the MQTT link. However, the flooding of the mesh 
network with always the same message must be prevented.  
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