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Abstract—The purpose of this research is to develop a low-cost 

and high-accuracy force sensor. The three-axis magnetic field 

change value and the surface temperature of the touch object 

can be obtained by using a magnet, a silicone block, and a Hall 

sensor. Through the self-developed automatic calibration 

machine and machine learning, the magnetic field value can be 

directly output as a three-axis force. Today's three-axis force 

sensors are bulky and expensive, even if the single-axis force 

sensors have been developed. However, it cannot provide 

precise tactile information like human beings, and we believe 

that multi-axial force perception is bound to provide more 

control information for robots. Therefore, this study designs a 

high-precision and low-cost triaxial force sensor by machine 

learning and an automatic calibration machine. 
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I.  INTRODUCTION  

In recent years, the ability of visual recognition and 
speech recognition has become stronger and stronger. 
Accurate portrait recognition and ubiquitous voice assistants 
have been integrated into our lives. However, the feedback 
of robots for touch is still insufficient [1], and cannot be like 
human fingers. It can accurately sense changes in the 
hardness, temperature, and weight of objects, so if the robot 
wants to grab objects that change in weight, it can usually 
only apply enough force. In case of plastic bottles that are 
filling water, excessive force can cause deformation of the 
bottle, so the force applied must be adjusted as the amount of 
water increases. 

Most of the force sensors used in current automation 
equipment and robots are rigid materials, which are less able 
to withstand excessive impact and deformation [2]-[4], and 
sensors that can measure more than one axis are usually 
larger in size. Common tactile sensors, such as capacitive, 
optical and resistive types, have high measurement accuracy, 
but the disadvantage is that such sensors are relatively 
precise and large in size, and the disadvantages are as 
follows: (1) The shear force cannot be measured, (2) the 
scalability is poor, and (3) the temperature of the grasped 
object cannot be determined. 

Usually, the body of the tactile sensor with higher 
resolution is more precise, so the expansibility will be poor, 
the number of circuits will be increased, and the 
measurement range will be sacrificed if the resolution is high. 
Therefore, the force sensor composed of soft materials, 

magnets, and Hall sensors in this study is expected to 
achieve the following goals: (1) Accurately measure normal 
force and shear force, (2) Accuracy less than 0.1N, (3) 
Identify temperature of touched items. 

Different from the work done by Holgado et al. [5], since 
the sensor body is converted into the force value by the 
deformation of the soft material, the force can be accurately 
identified when the positive force is applied alone, but if the 
force of more than two axes is given, there will be a coupling 
situation, and the normal force value at this time will be 
affected by the lateral force, so it is difficult to accurately 
derive it with a general calculation formula. We collect data 
from our self-developed auto-calibration platform and use 
Neural Network and Recurrent Neural Network to convert 
sensor data to force. 

In order to obtain a more anthropomorphic touch, we will 
identify the temperature of the object touched by the sensor, 
so that the mechanical gripper or other applications equipped 
with this sensor can obtain more sensing information. 

II. SENSOR ARCHITECTURE 

The main body of the sensor is shown in Fig.1, which 
includes a silicone block, a magnet, and a flexible circuit 
board. The Hall sensor MLX90393 is used on a 13 mm * 13 
mm flexible circuit board to read the three-axis magnetic 
flux. The communication between the sensor and the host 
computer uses I2C to communicate because it can share a 
common data bus with more sensors to save wiring space.  

 

 

Figure 1.  Sensor Schematic. 

A. Flexible circuit board 

Since the sensor body is composed of a silicone block, a 
magnet, and a sensor chip, and communicates through I2C, 
the circuit and wiring can be simplified, and the values of all 
sensors can be connected in series through a bus, and the 
assembly. When it is installed on the gripper, it can reduce 
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the wiring on the equipment, and the host computer is also 
more convenient for control. 

B. Silicone structure 

The silicone structure uses TSE 221-4U, the specifications 

are shown in the Table I, a ø2*1mm N35 axial magnet is 

embedded in the center of the structure, as shown in Fig.2, a 

hole is designed in the silicone layer to accommodate the 

magnet, and ensure that the magnet is not under stress 

directly above the sensing wafer. TSE 221-4U silicone is 

suitable in the range of 30(N) in our designed structure. 

 

 
Figure 2.  Silicone structure Schematic. 

TABLE I.  SILICONE RUBBER TYPICAL PROPERTY DATA 

Specification TSE221-4U unit 

Density 1.13 g/cm³ 

Hardness 40 °A 

Tensile strength 8.4 MPa 

Tear strength 23 N/mm 

Elongation 500 % 

Compression set 19 % 

C. Magnetic 

For the selection of magnets, we evaluated two types of 

magnets, N35 and N50, and observed the relationship 

between the magnetic field strengths of the magnets and the 

sensing chip at different positions. As shown in the Fig.3, 

when the N50 magnet is close to 1 mm or less, the 

measurement of the magnetic field is almost saturated, and 

the sensing range is also reduced. Therefore, the N35 magnet 

is used to make the sensor. 

 

 

Figure 3.  The relationship between the magnetic field and the position of 

the N35 and N50 magnets 

III. AUTOMATIC CALIBRATION MACHINE 

In order to identify the relationship between the real force 

and the magnetic field, we design an automatic calibration 

machine, which can perform force calibration in three axes. 

As shown in the Fig.4, using stepper motors, linear slides, 

and six-axis force-torque sensors, high-precision position 

and force control can be performed, and tactile sensors can 

be verified and analyzed. 

The six-axis force and torque sensor use ATI 

Force/Torque Sensor Axia80-M20, which can measure the 

maximum 900(N) normal force and 500(N) lateral force 

with an accuracy of 0.1(N). Therefore, the 3D forces value 

and the magnitude of the magnetic field change can be 

obtained by using this automatic calibration machine and 

then the magnetic field can be converted into 3D forces 

through subsequent processing. 

 

 
Figure 4.  Automatic calibration machine 

IV. MACHINE LEARNING MODELS 

In recent years, the application of machine learning has 

developed vigorously. The most common ones are image 

recognition, speech recognition, and various applications. At 

present, most people use the Deep Neural Networks (DNN), 

Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), which can analyze and calculate many 

tasks with such neural network models, among which we 

found that neural network models related to time series are 

more suitable for use in calibrating sensor models. So we try 

to use this for sensor development. 

Through the test of the sensor by the automatic 

calibration machine, we can obtain the original data of the 

sensor corresponding to the real 3D forces. When the 

normal force is applied alone, the accuracy is about 0.1 (N), 

but because of the relationship of the silicone structure, the 

multi-axis force will cause the signals to couple with each 

other, and it is difficult to calculate the relationship using 

general mathematical formulas. Therefore, we have tried a 

neural network model and a time series model to convert 
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data and power, and use this method to distinguish the two 

relationships between them. 

A. Data format 

During calibration, we use the Arduino Uno board as the 
host computer of the sensor and use the serial port 
monitoring window to read the sensor's three-axis data and 
temperature values (Rx, Ry, Rz, T). The automatic calibration 
machine obtains three-axis force values (Fx, Fy, Fz). Through 
the above data, our sensor data Ri is the input, and the force 
value Fi is the output. The temperature value does not need 
to be used since it does not need to be calibrated. 

B. Data processing 

The initial value of the sensor is read in before training, 
and we set the maximum value of the data to 57000 bits and 
normalize it. The collected initial data (input_min) and the 
upper limit data (input_max) are used as the maximum and 
minimum values of the formula. When performing 
calibration in the future, the initial state also needs to be read 
as the initial value of the sensor. Its purpose is to reduce the 
situation that the results will fail to converge during training. 

C. Neural Networks force fitting model 

Using machine learning to convert between magnetic field 
and force, we designed a four-layer model architecture, as 
shown in the Fig.5, using functions such as ReLU, Tanh, 
Linear, and BatchNorm1d, and each function has 500 
neurons. This is the best model architecture we have tried so 
far. 

 

 

Figure 5.  Neural Networks Model Architecture 

D. Transformer force fitting model 

Compared with neural networks, Transformer is a time 

series model (Sequence to Sequence model), which is similar 

to Recurrent Neural Networks (RNN), but RNN adopts a 

sequential structure, while Transformer adopts parallel 

training, which can make full use of all signal. 

The special feature is the self-attention [6]. When we 

input three elements, the self-attention can simultaneously 

perform operations on these three elements related to each 

other. As shown in the Fig.6, the three axes of the sensor 

itself are affected by the silicone, and the three will be 

related to each other when the force is applied, so we think 

that using the Transformer will be very suitable for this 

project. 

 

Figure 6.  self-attention diagram 

The data processing type is originally a two-dimensional 

matrix, but the time series model training must take into 

account the before and after the status of each data, so we 

will first reshape the data into a three-dimensional matrix. 

Each piece of data is the current data and the next 30 pieces 

of data as a unit for training. 

The model architecture is designed with two layers. The 

first layer is the Transformer layer, including functions such 

as ReLU and Linear. The second layer uses functions such as 

ReLU, Tanh, Linear, and BatchNorm1d, and each layer is 

calculated by 64 neurons. 

V. EXPERIMENT 

From the reading value of the sensor to the pressure 
value, we divide the system structure into 5 layers, as shown 
in the Fig.7, from top to bottom are data reading, data 
processing, and power conversion. For the power conversion 
part, we use an automatic calibration machine to calibrate 
and store the data into the machine learning model for 
training. 

 

 
Figure 7.  System Architecture Diagram 
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A. Temperature recognition 

When we touch different objects, we can identify their 
temperature by the conduction of thermal energy. We use a 
heat gun to heat the sensor and use an infrared thermal 
imager as the ground truth of the thermal energy. As shown 
in Fig.8, when it is not heated, the ambient temperature is 
about 26 degrees C. After heating, we increase the 
temperature to 30 degrees C and identify its temperature 
value. 

 

 
Figure 8.  Comparison of sensor heating temperature and infrared thermal 

imager 

B. Sensor Calibration 

In order to convert the sensor data, we obtain the real 
pressure value through automatic machine calibration, and 
apply more than two axes of force for grasping objects. As 
shown in Fig.9, the first is the normal force applied to the 
object, and the second and third are the shear forces parallel 
to the sensor against gravity. Therefore, the calibration is 
also divided into two types: normal force correction and 
shear force correction. We record 5000 pieces of data every 
5(N) for the sensor and record 7 groups from 0 to 30(N). The 
second part applies the lateral force of the X-axis for every 
5(N) of the normal force, the third part applies a Y-axis 
lateral force for every 5(N) of the normal force. 

 

 

Figure 9.  Sensor Calibration Diagram 

As shown in Fig.10, a normal force of 10 (N) is applied. We 

can find that the accuracy of the automatic calibration 

machine is 0.1 (N). The actual measurement result increases 

with the increase of the normal force, and the sheer force 

also increases. By applying positive and negative X-axis 

shear force, you can see that the X-axis force value of the 

automatic calibration machine will follow the fluctuation.  

We repeat this method to collect normal force and shear 

force data, and then throw them into the neural network 

model training. 

 

Figure 10.  Sensor and calibration platform 10N force value(a) Magnetic 

force raw data measured by the sensor.(b) Triaxial force measured by 

automatic calibration machine. 

C. Neural Network and Transformer comparison 

In the first experiment, we use an automatic calibration 

machine to simulate grasping an object. As shown in Fig.11, 

a positive force and a gradually increasing lateral force will 

be applied at this time, and the middle will gradually 

increase by 1(N), so that the force of the Y-axis will 

gradually increase, and the positive force will be constant. 

 
Figure 11.  Automatic calibration machine pressure test chart 
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As shown in Fig.12, the vertical axis is the force value N, 

and the horizontal axis is the number of data strokes. We 

apply a normal force of 15(N) and gradually increase the 

force on the Y axis, the target is the ground truth, and pred 

is the force value predicted by the model. It can be seen that 

the results calculated by the model generally follow the 

trend of the real data. We use the same data to compare the 

differences between the two models.  As shown in Table II, 

we compared the root mean square error and absolute value 

average error between the two models, and the difference in 

root mean square error is 1.06 (N), so it can be seen that 

using Transformer does get better results.  

 

 

Figure 12.  Three-axis force ground truth (target), force prediction value 

(pred)) and measured temperature value 

TABLE II.  NEURAL NETWORKS AND TRANSFORMER WITH OR 

WITHOUT TEMPERATURE COMPENSATED RMSE AND MAE 

type RMSE MAE 

NN 1.39 1.1 

Transformer 0.33 0.22 

D.  Temperature Identification Test 

This experiment is to place a water glass above the 
sensor and gradually add hot water to measure the 
temperature change while sensing the normal force. In the 
process, we first put a mug on the pressure and shear force 
sensor, and then gradually pour hot water. The temperature 
part is verified by an infrared thermal imager. The weight of 
the mug is 3.4 (N), and 180 ml of hot water at 50 degrees C 

is equivalent to 1.8 (N). As shown in Fig.13, in section 1, the 
weight of 3.4(N) is measured after placing the mug.  

In section 2, the weight change gradually increases by 
1.9(N) after adding hot water, and in section 3 is the shaking 
during the experiment. As a result, the fourth section is 
placed above the sensor stably, and the measured total 
weight is 5.31(N). As shown in Fig.14, the temperature of 
the cup was measured to be about 23 degrees C when the hot 
water was not poured, and the temperature of the cup rose to 
37.1 degrees C after the hot water was poured. The 
temperature measured at the bottom of the cup is about 26.2 
degrees C. In the graph of pressure and temperature change 
in Fig.13, it can be seen that the sensor can accurately 
measure the temperature of the bottom of the cup and the 
change in the weight of the item.. 

 
 

 
Figure 13.  Normal force measurement and temperature measurement 

diagram: (a) normal force actual force curve and force prediction curve, (b) 

3D force sensor surface temperature diagram 

 
Figure 14.  Infrared thermal imager temperature change 

VI. CONCLUSION 

This research was to design a tactile sensor, which could 
make the device have skin like the human body, and could 
know the weight and temperature of the object. We also used 
machine learning and a calibration machine to calculate the 
precise force value. Therefore, the tactile sensor designed in 
this research will be able to be used in the robot as a 
feedback signal for precise force control. 

At present, the accuracy of the automatic calibration 
machine may not be high enough, so the corrected error was 
relatively large, and we continued to improve the machine 
learning model, hoping to reduce its error and consider the 

5Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-987-4

ALLSENSORS 2022 : The Seventh International Conference on Advances in Sensors, Actuators, Metering and Sensing



hysteresis of the sensor itself. Since the contact surface of the 
sensor body was a silicone structure, the heat conduction will 
be slightly delayed when sensing the temperature of the 
object. Therefore, in the future, graphite powder will be 
mixed into the silicone structure to increase the heat 
conduction speed, and the measured temperature value will 
be higher and more precise without long delay time. 

In the future, we hope to design a sensor that can 
recognize the position of multiple points on this sensing 
surface, and improve the application range of 3D force. The 
application of multi-point recognition can improve the 
recognition of the outline of the grasped object, so it can 
provide more accurate information for robots with real tactile 
feedback. 
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