
Detection and Classification of Obstacles
Using a 2D LiDAR Sensor

Alejandro Olivas González

Group of Automation, Robotics
and Computer Vision (AUROVA)

University of Alicante
Alicante, Spain

Email: alejandro.olivas@ua.es

Fernando Torres Medina

Group of Automation, Robotics
and Computer Vision (AUROVA)

University of Alicante
Alicante, Spain

Email: fernando.torres@ua.es

Abstract—Detecting and mapping obstacles is an important com-
ponent in mobile robots. In this paper, we use only an economic
2D Light Detection and Ranging (LiDAR) sensor to make a
3D map of the scene, classifying the scanned data into ground,
obstacles and potholes. To do this, the points from the LiDAR
are clustered in segments, and then they are classified depending
of their height. The method successfully classifies in low dynamic
structured environments, and generates compact 3D map that
represents the scene with a few points.

Keywords–Mobile robots; LiDAR; 3D map; Low-cost.

I. INTRODUCTION

In this paper, we present a novel method to generate a 3D
map from the data of a 2D downward looking LiDAR. This
map has enough information to identify the ground, obstacles
and potholes, but it is also cost efficient in terms of memory.
This information will help the robot to decide where it can
go and where not. The importance of this method is that only
a low-cost sensor is used, so economic mobile robots can be
produced in the future.

To generate the map, each scan is segmented into lines and
then they are classified as ground, obstacle or pothole using
the line height. Therefore, the map is made up of few points
which represent the lines.

The rest of this paper is organized as follows. Section II
describes work that is related to this research. Section III des-
cribes the algorithm that does the detection and classification
of the lines. Section IV presents the experimental results of this
method. Finally, in Section V, the conclusions are exposed and
future work lines are introduced.

II. RELATED WORK

The 2D LiDAR sensor can be used in two ways. On
the one hand, it can be placed horizontally, so the sensor
only detects obstacles with the same height as the sensor or
higher. On the other hand, the sensor can be put downward
looking, enabling the detection of short obstacles and potholes.
However, this way has more difficulty to detect dynamic
objects as a drawback. In the last case, the scanned points
can be divided in segments searching consecutive points with
a difference in height greater that the a given threshold [1].
From this division, the segments can be classified into ground,

obstacles or potholes.
Recently, methods based on neuronal networks have been

used to classify the data from LiDAR sensors. Wang et al. [2]
propose the use of a 3D LiDAR and a camera to determine the
class of the points by projecting the points in the image and
classifying the objects of the image using a You Only Look
Once (YOLO) network. In a different way, VoxelNet [3] is
a neural network that uses the points as input and classifies
them by dividing the point cloud in uniform voxels. Kružić et
al. [4] use the data from a 2D LiDAR in networks trained by
simulation to avoid collisions. In this case, it is not used for
the classification, but to directly avoid the obstacles.

In 2D images, the optical flow has been used to determine
dynamic objects by analysing the movement of the point
between frames. This method can be applied to the points
scanned by a LiDAR. In the case of 2D LiDAR placed
horizontally, the method can be used to detect and track the
trajectory of dynamic objects [5]. By using multiple sensors,
the system is more robust and safe. This method is difficult to
apply in a downward looking LiDAR in movement because the
sensor captures different points constantly. To determine the
optical flow in 3D LiDAR, Vaquero et al. [6] have proposed
a Convolutional Neural Network (CNN), which obtains the
optical flow from the data of the sensor.

III. METHODOLOGY

In this research, the acquisition of the data from the
LiDAR, the creation of the 3D map and the detection of
obstacles are implemented using Robotic Operative System
(ROS) nodes. This makes it possible to obtain a modular
software that can be easily customized for other mobile robots
with other features and sensors.

Next, we explain how the data is obtained and is trans-
formed into a point cloud in a global coordinate system.
Then, the line detection will be explained, and how the lines
are added to the map. At the end of the section, the line
classification will be presented.

A. Data acquisition

In this research, the Hokuyo UBG-04LX-F01 sensor, a 2D
LiDAR sensor, has been used. Since the objective is to detect

63Copyright (c) IARIA, 2020. ISBN: 978-1-61208-766-5

ALLSENSORS 2020 : The Fifth International Conference on Advances in Sensors, Actuators, Metering and Sensing

obstacles or potholes in the ground, the sensor is placed with
an inclination of 15o with respect to the horizontal axis. Data
needs to be obtained from approximately 2 meters in front of
the robot so that it has enough time to change the trajectory, a
sufficient distance if the maximum speed is considered 1 m/s.
With the distance and the inclination, it was determined that
the sensor has to be placed at a height of 55 cm. Besides,
higher heights were tried, but higher the sensor is placed, the
more noise it is seen in the data, so the previous height was
chosen.

The Hokuyo sensor reads the distances in a range of 270o.
To use the sensor in ROS, the node urg node was used with
a median filter of 5 samples to reduce the noise in the data.

B. Point cloud map

The data is represented in a 3D map where the origin
of coordinates of the global axis are in the ground. At the
start of the program, they are just below the sensor. The
global and local axis are represented in Figure 1. Next, the
transformation of the scanned points from local axis to global
will be explained.

Figure 1. Global and local coordinates systems.

First, the obtained data is transformed to a point cloud. It
is a simple transformation from polar coordinates to Cartesian.
Then, a rotation in the Y axis of α degrees and a translation
in the Z axis of h meters are made. With this, the height
and inclination of the sensor are taken into account. In our
case, α = 15o and h = 0.55. So, the following transformation
matrix is applied to every point:

 cos(α) 0 sen(α) 0
0 1 0 0

−sen(α) 0 cos(α) h
0 0 0 1

Finally, another transformation is made to obtain the points

in the global coordinate system. For this purpose, the robot’s
position is obtained from a message, which is published from
other nodes of ROS, like an odometry node. The robot’s
position is represented by the values x, y y z; and the

orientation is determined by a quaternion Q = [q1, q2, q3, q0].
So, the transformation matrix is:

1− 2q22 − 2q32 2q1q2 + 2q0q3 2q1q3− 2q0q2 x
2q1q2− 2q0q3 1− 2q12 − 2q32 2q2q3− 2q0q1 y
2q1q3 + 2q0q2 2q2q3− 2q0q1 1− 2q12 − 2q22 z

0 0 0 1

C. Line detection

To detect the obstacles, the point cloud will be segmented
in lines, which will be classified as ground or obstacle. A
threshold δ around the first point of the line will determine if
a point belongs to the line or not. If the distance in Z axis
between the first point and the new point is lower than δ, then
the point belongs to the line. This is done because big changes
in this axis means the existence of an obstacle or pothole.

Furthermore, it should be considered the distance between
points, because if the sensor does not detect points in a zone,
there will be big distances between points. For this reason,
the euclidean distance between consecutive points cannot be
greater than a maximum distance d. Both conditions are
represented in 2D in Figure 2. In addition, a minimum number
of points n is needed to consider a line. With this, the number
of little lines is reduced.

Figure 2. Diagram of the detection of lines.

Then, the lines are refined because there are a lot of lines
that were segmented because of the height difference with the
first point. This occurs frequently in the lateral walls.

If the normalized vector from the first point to the last point
of a line is equal to the normalized vector of the next line and
to the vector from the first point of the first line to the last
point of the second line, both lines are grouped into one line
because they belong to the same straight. In Figure 3, these
vectors and the result of the refinement can be observed. In
this refinement, a slight error γ in the equality of vectors is
allowed. The different parameters of the detection of lines will
be determined during the experimentation.

D. Map of lines

The map of the segmented lines has been divided into
cells called submaps. The submaps will have the lines that
are between the limits in the X and Y axis. So, the map
will be a vector of submaps that will add dynamically new
submaps when they are needed. This allows to reduce the
time of computation in different functions because it is not
necessary to search in all the lines of the map. When a line is
added to the map, Figure 4 is used.

The lines are defined by two points, the first and the last.
Firstly, we search the submap where the first point is. If it does

64Copyright (c) IARIA, 2020. ISBN: 978-1-61208-766-5

ALLSENSORS 2020 : The Fifth International Conference on Advances in Sensors, Actuators, Metering and Sensing

(a) Initial lines A-B
and C-D.

(b) Unnormalised
vectors A-B, C-D y

A-D.

(c) Final line A-D.

Figure 3. Since the normalized vectors are sufficiently similar, the two lines
have been joined into one.

Data: map,line
submap = searchSubmap(map, line.first);
updateSubmap(submap, line);
if not submap.is in submap(line.last) then

submap = searchSubmap(map, line.last);
updateSubmap(submap, line);
vector = line.last-line.first;
if A point of the line is not in the submaps then

submap = searchSubmap(map, point);
updateSubmap(submap, line);

end
end

not exist in the map, a new submap is created and it is added
to the vector. Then, the submap is updated. In this function,
the nearest line to the new one is searched. If the distance is
smaller than a threshold, then the old line is replaced by the
new one. Otherwise, the line is added to the submap. Doing
this, the submap doesn’t accumulate lines that were detected,
saving the most recent information.

Lastly, we check if the last point of the line is in the same
submap. If it is in another, the other submap is also updated
so that the line is considered in searches in both submaps.
Furthermore, in this last case, it is possible that the line goes
through a third submap (when the line is near the corners of
submaps).

The size of the submaps is customizable. In this research,
it has been decided to use square submaps with the side of
10 m. It is considered large enough that there will not be an
excessive number of submaps and also small enough that the
search of lines is done in the required time. Moreover, as the
sensor has a range of 4 meters, a line can be in a maximum
of three sub-maps of this size.

E. Line classification

The lines are classified depending on the mean heigh of
the line. If the height is in a threshold ζ around the actual
height of the robot, the line is considered as ground. If the
height is greater, the line is classified as obstacle, otherwise
the line is a pothole. The classification is done continuously
because, depending the height of the robot, some lines that
were classified as obstacles can be ground, like on the ramps

IV. EXPERIMENTAL RESULTS

In this section, the results will be shown. During the
experimentation, a mobile robot was not used, the sensor was
moved manually and a ROS node changed the position of the
X axis constantly.

In Table I, the values of the different parameters are shown.
In this research, the parameter settings indicated in Table I
produced good results.

TABLE I. PARAMETERS OBTAINED EXPERIMENTALLY.

Parameter Description Value

δ
Threshold in the Z axis

to consider a point in a line. 0.05

d
DMaximum distance between two

consecutive points of line. 0.2

n
Minimum number of

points in a line 10

ζ
Threshold in the Z axis around

the robot to consider a line as ground. 0.05

γ
Maximum allowed difference

during the line refinement. 0.04

In the visualization of the results, the ground lines are
represented in green, the obstacles in red and the potholes
in yellow. In Figure 5, the generated lines can be compared
with the point cloud of the scene. There were not obstacles,
so the ground and the walls were detected.

During the experimentation, a video was also recorded.
The detected lines can be projected in the video to see the
correspondences of the lines with the real world. In Figure 6,
the projection in a scene with obstacles can be observed.

The detection of potholes can be observed in Figure 7. The
scene shows a flight of stairs from the top,, but there was not
enough space to detect the first steps, so the potholes have to
be seen from far. However, in the absence of ground lines, the
robot should avoid the pothole.

TABLE II. LINE CLASSIFICATION RESULTS.

Predicted class
Ground Obstacle Pothole

True
class

Ground 3633 0 90
Obstacle 0 29415 0
Pothole 0 0 107

Table II shows the results of the line classification in ap-
proximately 7 minutes of experiments. The ground sometimes
is confused with potholes due to the sensor error. Also, it can
be observed that there are many obstacle’s lines, because there
is an oversegmentation in the obstacles. The tests were done
in an indoor environment, so there were no potholes, except
in the case of Figure 7.

V. CONCLUSION AND FUTURE WORK

To conclude, we have presented a method that segments the
data of a 2D LiDAR sensor in lines and classifies them. We

Figure 4. Add a line to the vector of submaps.

65Copyright (c) IARIA, 2020. ISBN: 978-1-61208-766-5

ALLSENSORS 2020 : The Fifth International Conference on Advances in Sensors, Actuators, Metering and Sensing

(a) Point cloud (b) Lines

Figure 5. Comparison between the point cloud and the lines.

Figure 6. Lines projection.

Figure 7. Detection of potholes.

demonstrated that this approach detects correctly the obstacles
and potholes in a structural environment. However, the point
cloud is segmented in more lines than necessary, but it could
be improved changing the parameter of line refinement.The al-
gorithm is less restrictive when grouping lines if the parameter
value is higher.

Moreover, it is necessary to address the issue of dynamic
objects in future works, analysing the movement in the lines. In
the great majority of scenes, there are some dynamic changes
that should be considered to improve the control of the robot.

ACKNOWLEDGEMENT

This work was funded by the Spanish Government’s Mi-
nistry of Science and Innovation through the research project
RTI2018-094279-B-100.

REFERENCES

[1] O. Yalcin, A. Sayar, O. Arar, S. Akpinar, and S. Kosunalp, “Approaches
of road boundary and obstacle detection using lidar,” in IFAC Proc,
vol. 46, no. 25, 2013, pp. 211–215.

[2] H. Wang, X. Lou, Y. Cai, Y. Li, and L. Chen, “Real-time vehicle
detection algorithm based on vision and lidar point cloud fusion,”
Journal of Sensors, vol. 2019, 2019, pp. 1–9. [Online]. Available:
https://dx.doi.org/10.1155/2019/8473980

[3] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4490–4499.

[4] S. Kružić, J. Musić, M. Bonković, and F. Duchonň, “Crash course
learning: an automated approach to simulation-driven lidar-based training
of neural networks for obstacle avoidance in mobile robotics,” Turkish
Journal of Electrical Engineering & Computer Sciences, vol. 28, 2020,
pp. 1107–1120.

[5] V. Vaquero, E. Repiso, and A. Sanfeliu, “Robust and real-time
detection and tracking of moving objects with minimum 2d lidar
information to advance autonomous cargo handling in ports,”
Sensors, vol. 19, no. 1, 2018, pp. 107–132. [Online]. Available:
https://dx.doi.org/10.3390/s19010107

[6] V. Vaquero, A. Sanfeliu, and F. Moreno-Noguer, “Hallucinating dense
optical flow from sparse lidar for autonomous vehicles,” in 2018 24th
International Conference on Pattern Recognition (ICPR), 2018, pp. 1959–
1964.

66Copyright (c) IARIA, 2020. ISBN: 978-1-61208-766-5

ALLSENSORS 2020 : The Fifth International Conference on Advances in Sensors, Actuators, Metering and Sensing

