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Abstract—The paper formulates the problem of 
intercomparing inertial heading sensors to check if the tested 
sensor complies with the specified requirements. We show in 
this paper that the problem can be solved if the error of the 
reference sensor is known with sufficient accuracy. This study 
creates perspectives for solving the problem of calibration 
against the primary standard during marine tests of heading 
sensors. 
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I.  INTRODUCTION 

Intercomparisons of inertial heading sensors are 
generally conducted to determine their corrections during 
pre-cruise preparation and to check their serviceability 
during operation [1]–[3]. These intercomparisons have two 
important features: first, more accurate sensors can be used 
for correction determination, and second, a small volume of 
data samples is available due to limited time of 
intercomparison.  

Accuracy characteristics of the heading sensor during 
marine tests are traditionally determined by the same 
methods because we are supposed not to have heading 
standard at sea. By the latter we mean the device 
determining heading with an error negligibly small 
compared with the error of the tested sensor. Indeed, 
achieving a constant heading and keeping it does not solve 
the problem as the heading keeping accuracy is a fortiori 
lower than the required measurement accuracy (for 
successful intercomparison). Using Global Positioning 
System (GPS) data (if available) for heading calibration is 
usually impossible due to insufficient accuracy (with 
required update rate) or insufficient data rate (with required 
accuracy). Insufficient accuracy is even more degraded by 
the ship deformations, which make it impossible to install 
GPS receivers at the desired distance. 

Thus, the heading sensor error is determined as follows 
during the tests: in static mode, the geodetic direction 
known to the desired accuracy is transferred to the ship, and 
the deviation between this direction and the direction of the 
sensor such as the axis of inertial trihedral formed by the 
heading sensor is determined. For higher reliability, the 
procedure is repeated before the ship goes to sea for marine 

tests and after its return. Clearly, in this case the heading 
sensor is not tested in the most complicated dynamic 
heading generation mode, during maneuvering in the open 
sea. At the same time, there are no obstructions for using a 
traditional metrological procedure of intercomparison of 
measures [4] to determine the heading accuracy.  

This paper aims to demonstrate the possibility of 
checking the tested heading sensor (TS) by intercomparing 
it with another sensor further referred to as a reference (RS). 
In this paper, we assume that the RS generates heading with 
an error known to the required accuracy and without any 
systematic error. It is the set of two parameters – the ratio 
between the errors of the TS and RS, and the accuracy of 
estimating the RS error – which defines the test success. In 
the rest of the article we will refer of estimating both the 
systematic and random components of the TS error.  

The rest of the paper is structured as follows. In Section 
II, we formulate the problem and, in Section III, we present 
the solution to the formal problem. The paper concludes in 
Section IV. 

II. PROBLEM FORMULATION 

To reach this aim, the paper discusses the variants of the 
general problem of processing heading data generated by 
the intercompared sensors, which is formulated as follows.  

As the heading sensors are installed onboard the ship, 
the physical (measured) heading axes of the TS and RS are 
aligned with the ship centerline plane accurate to  and ref, 
respectively. Thus, the relative offset of the axes is 
 =  – ref (see Fig. 1). Because of that, RS has zero 
systematic error, and we can ensure ref = 0 by the special 
measuring procedure. So, it is supposed further that 
 = , and, besides,  is significantly less than the error 
norm of TS. The general error model used in the paper is a 
random value with expected value (at start) presents a 
systematic error of a TS (denoting below by a). So we 
consider intercomparisons of a TS and RS where the latter 
has zero systematic error. As a rule, heading sensors error is 
characterized by standard deviation (denoting below by  
and ref) or confidence limits. This paper mostly addresses 
normalization of standard deviation of random error (setting 
max and ref, max), and setting confidence limits is considered 
to be the secondary normalization method. During the tests, 
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the sensors output current heading arrays {i} and {ref, i} at 
discrete time moments {ti}, where i = 1, … , n. The array 
volume n is determined by the test duration and sampling 
rate of digital signals (data readout rate). Usually, several 
runs are made during the tests, each being several hours 
long (up to 10–12 hours). The initial period of each run is 
occupied by the device thermal stabilization (and other 
kinds of stabilization). Thus, with sampling rate of the order 
of (1–100) Hz the volume of array n can reach several 
thousands and more.  

It is supposed that the array data are generated 
synchronously, which makes it possible to generate the 
difference array {xi}, where xi = i – ref, i. Definitely, 
readings {ref, i} include information on the accuracy of RS, 
though in latent form, since true heading 0 = 0(t) at each 
time t is unknown. 

 
Figure 1.  Measuring scheme of intercomparisons TS and RS. 

Even if the design of RS provides zero heading 
systematic error, the ratio of spectra of sensor random error 
and true heading as a function of time generally remains 
unknown, which does not allow setting adequate averaging 
parameters for random error to find the true heading. Then, 
for a good RS, true ref may turn out to be less than ref, max, 
however, since it is unknown, statistical conclusions about 
the TS based on the normative parameters of RS will be less 
reliable. True rather than normative parameters can be 
obtained using two methods. First, true parameters are 
determined during the installation of RS onboard the ship 
and after its repair, and are recorded in the sensor service 
log. Second, if the spectrum of true heading can be 
determined, one can try to estimate the variance of its 

random error component by filtering the low-frequency part. 
Keeping these possibilities in mind, further we suppose the 
normative parameter ref, max to be rather close to the true 
value of ref. 

Clearly, the difference of readings x can be represented 
by symbolic sum of initial installation error  and the 
errors of intercompared sensors , ref: 

 x =     ref. (1) 

Equation (1) is the principal methodological basis of the 
test method by intercomparison TS with RS. 

Further the array {xi} is considered to be a sample the of 
parent population generated by the sum of 
quasideterministic drift and ergodic stationary process 
modeling the sensor inaccuracy in steady mode. From the 
experience of development and operation of heading 
sensors, the drift nature of a certain device is assumed not to 
change from run to run. When modeling the drift by an 
exponential function, it means that the number of elements 
(power) of polynomial remains unchanged, and only its 
coefficients change. As to the stochastic part of this sum, 
assumption on its character requires thorough experimental 
check. The assumption is based on the fact that development 
and check-out of the device is a long multistep process 
aimed at stabilization of sensor construction in real 
operating conditions. As to the hypothesis of stationary 
stochastic part of the above mentioned sum, it relies on the 
assumption of sensor accuracy independency on the current 
heading (and its variations). This assumption, and therefore, 
stationarity hypothesis, requires verification. This 
verification is quite possible while the samples are large. 
The ergodicity hypothesis can be checked only partially 
(check of equality of ensemble and time averages) because 
of limited number of runs. At the same time, it should be 
emphasized that error time series can be treated as samples 
of the relevant parent populations on ergodicity assumption 
only.  

Assuming that the data of the intercompared sensors 
received in each run after stabilization are analyzed, the 
elements of array {xi} can be considered to be the 
differences of random values i and ref, i characterized by 
mathematical expectations a, aref and variances σ2, σref

2 (or 
standard deviations σ, σref). It is supposed that the moments 
of each value i, ref, i can change from run to run but remain 
unchanged within a run. Then due to large arrays of 
samples, sampling moments will practically coincide with 
the relevant probability characteristics, i.e., the moments of 
the considered parent populations. 

We are not supposed to have information on spectral 
characteristics of errors of the intercompared sensors, firstly, 
the RS, thus, the ship true heading 0 cannot be determined 
by filtering the sensor readings.  

Accuracy requirements on the TS are set as norms of 
statistical characteristics of its error. First of all, standard 
deviations σ and confidence limits (aK(P)σ; P, F) are 
used, where P is the given confidence probability, F is the 
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accepted probability distribution law. In practice, P=0.997 is 
often used, which corresponds to the confidence limits equal 
to the tripled standard deviation σ for symmetrical Gaussian 
distribution. In this case the problem of processing of data 
received by intercomparing the heading sensors is 
formulated as follows: 

(a) by analyzing the array {xi}, i = 1, … , n of difference 
of output signals i and ref, i from the intercompared 
sensors determine, according to the substantiated criterion, 
whether actual standard deviation σ of the error of TS (or 
confidence limit) agrees with the required norm σmax for the 
given data array (run); 

(b) repeat (a) for all arrays (runs) and determine the 
maximum (worst) estimates of these parameters.  

Therefore, further research is aimed to develop solution 
methods for the above given formal problem and its 
components. 

This formal problem falls into several variants 
depending on a priori information on parameters of sensor 
data arrays. Here, we restrict ourselves to a practically 
significant case of a RS without systematic component in the 
error. The variants are presented in Table 1. Notation 
a[alow, aup] means that sample average changes from run to 
run but remains unchanged within a run. Notation a = const 
means that the sample average remains unchanged also from 
run to run. 

TABLE I.  VARIANTS OF PROBLEM CONDITIONS 

A priori information 
on parameters of 

Analyzed 
parameters of Variant 

array {ref, i} array {i} RS TS  

Note 

A aref = 0 a = 0 σref σ – 

B aref = 0 a = const σref a, σ – 

C aref = 0 a[alow, aup] σref a( j), σ j = 1, … , m – 
run no. 

Consider three combinations of parameters given in 
Table 1 step by the step using the same criteria.  

 

III. SOLUTION OF THE FORMAL PROBLEM 

A. Random distortions of recorded signals only: aref = a = 0 

A1.  To receive analytical solutions, with account for 
experience in studying the heading sensors, the character 
and volume of test data, and with account for the fact that 
any sampling moment is asymptotically normal [5], it would 
be expedient to use the following stochastic model with 
unbiased normal (Gaussian) distribution N of both sensor 
errors as a basic model: 

ref(t) = 0(t)+ref(t),  ref(t) ~ N(0, ref
2) with any t=ti, 

(t) = 0(t)+(t),   (t) ~ N(0, 2) with any t=ti, 
 (2) 

where ref is the standard deviation of random error of RS 
(known);  is the standard deviation of random error of TS 
(to be determined); 0(t) is the unknown true heading at 
time t. The readings are supposed to be mutually 
noncorrelated: cov[(t), ref(t)]=0 with any t=ti.  

Under these conditions, the following is true for the 
variance Dx = D[x(t)] of difference x(t) = (t) – ref(t) of 
readings of two intercompared sensors:  

   22)()( refrefx ttDD   . (3) 

Expression (3) serves as a basis for the criterion to check 
whether true standard deviation of the TS error complies 

with the requirements. Determine the sample variance 
xD

~
 of 

differences xi = i – ref, i of sensor discrete readings: 

 )1/()(
~

1

2 


nxxD
n

i
ix

 (4) 

where ixnx  1
, n is the sample size, and with account 

for its proximity to the parent population variance (3), 
compare it with the sum of norms for error variances taken 
as an acceptable upper estimate (4). If the given normative 
limit 
 2

max,
2
max

~
refxD    (5) 

is exceeded, where max, ref, max are the norms of standard 
deviation of the TS and RS, the TS is known bad, while 
then definitely  > max. However, to confirm the fitness of 
the TS (so that the inequality   max is undeniably valid), 
this limit should be toughened while checking 
 2

max,
22

max

~
refx MD   , (5) 

where coefficient M = inf{ref /ref, max}≲1 determines the 
criterion “dead zone”: 

 1

~

max,

2
max 




ref

xD
M




. (5) 

This zone has a relative width 1–M and characterizes the 
acceptable risks of the manufacturer and the customer.  

It should be also noted that criterion (5) is invariant to 
the type of error distribution, and in this sense is far beyond 
the framework of model (2). However, it ignores the 
possible random error of total estimated variance (4), and 
thus has a deterministic nature. 

A more detailed criterion of sensor fitness can be based 
on setting the confidence limit for the module of error 
difference || equal to the module of difference of readings 
from the intercompared sensors: |i| = |i – ref, i| = 
= |i – ref, i| = |xi|. While differences {xi} retain their 
Gaussian distribution in conditions of model (2), the 

confidence limit for || is 
xconf D

~
3  (P=0.997), where 

xD
~

 is calculated by (4). Thus, in accordance with this 

criterion, the TS is considered bad if condition 
 n+ > n(1–P) (6) 
holds, where n+ is the number of “extreme” differences of 
samples xi exceeding the acceptable limits 
 2

max,
2
max3 ref  . (*) 

Then, to rank the TS as good we should count the number 
n++ > n+ of “extreme” differences of samples xi exceeding 
the toughened limits  

 2
max,

22
max3 refM   , (**) 

where M is determined in (5), and check if condition  
 n++  n(1–P) (6) 
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is fulfilled. 
It can easily be seen that the dead zone of this criterion 

is given by  
 n+  n(1–P) < n++ (6) 
and has a relative width (n++ – n+)/[n(1–P)]. Note that 
criterion (6) is highly sensitive to anomalous outliers in raw 
data.  

A2.  If it cannot be established that the TS error has a 
Gaussian distribution, and some interval  
[–, ] exists only which embraces its values, the following 
model should be used instead of model (2): 

ref(t) = 0(t)+ref(t),   ref(t) ~ N(0, ref
2) with any t=ti, 

(t) = 0(t)+(t),   (t) ~ U(–, ) with any t=ti, 
 (2a) 

where U(–, ) is the uniform distribution of TS errors,  is 
the limiting error module (which is to be estimated and 
should not exceed the given normative error max). This is 
justified because the error is set by its limits and uniform 
distribution is the worst variant of unimodal distributions 
[6]. Here, for the sake of uniformity of statistical methods in 
use, instead of  further we will consider equivalent 

standard deviation of uniform distribution  = / 3  with 

the norm max = max / 3 . 

In this case, expressions (3)–(6) remain in force with 
relevant changes of coefficient K=3 for the standard devia-
tions in (*), (**) through composition N⚹U of distributions 
in model (2a) [5], [6]. 

A3.  If the limits of RS error are specified, similarly to 
(2a) we have  

ref(t) = 0(t)+ref(t), ref(t)~U(–ref, ref) with any t=ti, 
(t) = 0(t)+(t),   (t)~N(0, 2) with any t=ti, 

 (2b) 

where ref =ref/ 3  is known;  is to be estimated. For this 
case, as well as above, modified formulas for the criteria 
(5)–(6) can be received through composition N⚹U.  

A4.  If there are no grounds to present the errors of both 
sensors using Gaussian distribution, uniform distribution 
should be used similar to models (2a) and (2b): 

ref(t) = 0(t)+ref(t),  ref(t)~U(–ref, ref) with any t=ti, 

(t) = 0(t)+(t),   (t)~U(–, ) with any t=ti, 
 (2c) 

where ref =ref/ 3  is known; =/ 3  is to be estimated. 
Here, modified formulas of criteria (5)–(6) can also be 

received through composition U⚹U. 

Thus, in the considered cases, where the assumption on 
Gaussian distribution of random errors of intercompared 
sensors is not fulfilled, the solution to the formulated 
problem exists and can be received using formulas (3)–(6) 
or their simple modifications.  

B. RS has random distortions only: aref = 0, and TS has 
both random and constant systematic signal distortions: 
a = const 

By distortions, we mean inaccurate initial zero setting 
and constant error in certain runs of the TS, and if the data 
received in several runs are processed, a is considered to be 
constant from run to run. Thus, the following biased 
stochastic model with Gaussian error distribution is taken:  

ref(t) = 0(t)+ref(t),  ref(t) ~ N(0,ref
2) with any t=ti, 

(t) = 0(t)+(t),   (t) ~ N(a,2) with any t=ti, 
 (2d) 

where ref is known, {a, } are to be estimated on the 
assumption that the readings of intercompared sensors are 
noncorrelated: cov[ref(t), (t)]=0 with any t=ti. Then 
mathematical expectation a is not known, though its 
estimation is needed merely to estimate the standard 
deviation . 

Obviously, in these assumptions for the variances the 
relation (3) is still valid. Then, while the bias a is constant, 
parameter Dx can be estimated by the same formula (4). It 
should be noted that criteria (5)–(6) can be modified with the 
account for these particular conditions.  

Getting back to formula (4), note that the expression for 
x  used in it is the estimate of the bias a of the TS. Thus, the 
confidence limits of its total error in this case are 

 2
,

~
refxlowconf DKx   

 2
,

~
refxupconf DKx   

 (7) 

with K=K(P)=3 for P=0.997 (in Gaussian case). 
We can also apply standard methods to check the 

hypothesis of normal distribution of pairwise differences of 
samples {ref, i}, {i}, and with some rather general 
conditions for unknown signal 0(t), of the samples 
themselves (after reasonable correction). For example, 
transformation to symmetrical first differences of each 
sample ref, i = ref, i–1 – ref, i+1 and i = i–1 – i+1 actually 
compensates the contribution of alternating signal 0(t). 
Then their normal distribution (if such) will be maintained. 
The other method to suppress 0(t) consists in calculating the 
symmetrical moving average (with a window of appropriate 
width) for each realization with further subtraction of the 
result. Samples corrected by this method (i.e., reduced to 
“zero” input signal) should be checked for normality.  

Other than Gaussian error distributions can be considered 
similar to variants (A2)–(A4), and with relevant changes of 
coefficient K=3 for the standard deviations in (7). 

C. RS has random distortions only: aref = 0, and TS has 
both random and constant systematic signal distortions, 
with the latter changing from run to run: a[alow, aup]. 

If only the standard deviation  is to be estimated, variant 
(B) should be repeated m times (with different a) and take 
the worst estimates by (4)–(6). If we are interested in total 
error, we search for confidence limits of the form a  K(P)σ 
(also the worst among m runs), where K(P) corresponds to 
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the composition of the normal N and uniform U distributions 

(in various combinations N⚹N, N⚹U, U⚹U). 

IV. CONCLUSIONS 

Analysis and formulation of the problem of 
intercomparing an inertial heading sensor with some 
reference sensor to check the accuracy of the former show 
that the problem can be solved. Compliance or 
noncompliance of the tested sensor error to the specified 
norms can be reliably established. Traditional condition of 
sensors intercomparing has been analyzed and extended. We 
proceeded on the following assumptions: (a) the volume of 
an initial data (the sample size) under processing is large 
(n>>1); (b) the array data from the sensors are generated 
synchronously; (c) the normative parameter ref, max is rather 
close to true value of ref; (d) the difference array {xi} is a 
sample of parent population generated by the sum of 
quasideterministic drift and ergodic stationary process; 
(e) the drift nature of a certain device is assumed not to 
change from run to run; (f) the moments of each value i, 
ref, i can change from run to run but remain unchanged 
within a run; (g) the mathematical expectation of the 
reference sensor data equals zero; (h) the readings are 
supposed to be mutually noncorrelated: cov[(t), ref(t)]=0 
with any t=ti; (j) all pairs of the popular stochastic models 

(Gaussian and uniform distributions) for the sensor data are 
considered. 

It is shown that the problem can be solved in the presence 
of accurate estimate of characteristic of reference sensor 
error, particularly, the estimate close to the established 
accuracy norm. The obtained theoretical relationships and 
dependencies can serve as a basis for developing procedures 
for heading sensor intercomparisons, and under the defined 
conditions, solve the problem of calibration against the 
primary standard during marine tests of the heading sensors. 
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