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Abstract—Non-negative Matrix Factorization (NMF ) is
one of the algorithms with a wide range of applications,
from dimensionality reduction and computer vision to text
mining. The dimensions of these matrices can be of the
order of several hundreds of thousands to millions, which
is a raw format that would not fit in the main memory.
Additionally, while performing matrix factorization on
these extremely large matrices, the algorithms involving
matrix operations such as transpose, multiplication, and
subtraction; demand more storage for intermediate re-
sultant matrices. In this paper, we store the matrices in
compressed structures ( Compressed Binary Tree CBT and
Compressed Sparse Row CSR) that allow factorization
without decompression. We also perform factorization
CBT without using any intermediate structures by per-
forming a virtual transpose and streaming the intermediate
resultant matrices of a sequence of matrix multiplications
directly into the compressed structure for every iteration.
As an example, for an input matrix A of dimension
65, 536×65, 536 with 1.46M number of non-zero elements,
the peak storage in any iteration of the multiplicative
update factorization algorithm is 32.98GB when using
a 2D array, 200MB when using CSR and 14.8MB for
CBT . The ability to stream (add and delete) into the
CBT structure without reallocation is why CBT performs
the best. Furthermore, we provide a heuristic to reduce
memory usage that also aids in faster convergence.

Keywords—Compression; Matrix Operations; Matrix Fac-
torization

I. INTRODUCTION

Non-negative Matrix Factorization (NMF ) can be
formally defined as follows: Given a non-negative matrix
A ∈ IR+ of dimension m × n and an inner dimension
k > 0, find the factor matrices if any, W ∈ IR+ of
dimension m×k and H ∈ IR+ of dimension k×n such
that:

A = WH

The factor matrices W and H are also non-negative
in nature. The rank of the input matrix A gives a lower
bound for the inner dimension k. This inner dimension

k is referred to as the Non-negative rank of a matrix.
This problem of finding the factors that satisfy condition
A = WH with rank(A) = k has proved to be an NP-
hard problem [1] [2]. The short proof of [2] tries to
reduce the graph coloring problem and equates the NP-
hardness of the graph chromatic number with the non-
negative ranks of the input matrix, which is the smallest
inner dimension for NMF .

There are various applications [3] that use NMF
from computer vision, text mining/information retrieval,
email, and pattern recognition to clustering in machine
learning [4], face recognition [5] and data mining [6],
[7]. Another application of NMF is that it can be used
as a lossy compression algorithm to compress a large
matrix. If the inner dimension k is small enough, then
the input matrix A can be factored in W ×H , resulting
in a lower number of elements in total. The number
of elements in A to be stored will be m × n, but if
factorized, the number of elements to be stored will be
m×k+k×n. The latter is assumed to be smaller when
k is small.

The correctness of the factorization is calculated using
the Frobenius norm suggested by [8] [9]. Now, the
problem can be rewritten as:

min
W≥0,H≥0

∥A−WH∥F

Some of the well-known sequential algorithms to
solve the non-negative factorization are, Multiplicative
Update Algorithms [8] [10], Gradient Descent Algo-
rithms and Alternating Least Squares Algorithms [11]
[12]. There are several approaches as defined in [13] that
can be taken to solve this problem. In this paper, we will
evaluate the Multiplicative Update Algorithm defined by
Lee & Seung [8].

To solve any of the sequential algorithms mentioned
above for large matrices, the algorithms require a system
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configuration that can handle a huge number of gigabytes
of data at a time. We present two state-of-the-art com-
pressed structures (CBT [14] and CSR [15]) that are
used to store these matrices and used for operations and
algorithms. The input matrices and the factor matrices
are all stored in either of these compressed structures.
The matrices used for the analyses are both real-world
and synthetically generated. We have also shown that
there is a space-time trade-off between the two structures
CBT and CSR. CBT taking lesser space and CSR
having a shorter query time [15].

Our contribution is as follows:
• We provide a method for factorizing matrices with

the least memory footprint per iteration using com-
pressed structures.

• Sections III-A and III-B, explain various value-
based matrix−matrix operations that are performed
without decompression.

• We provide a matrix-transpose multiplication algo-
rithm (Section III-C) that provides results without
transposing, by streaming the result directly into
compressed structures.

• In Section III-D, we explain how we sequence 3
or more matrix multiplication operations, without
storing any intermediate matrices.

• Proposed a heuristic (Section III-E) that eliminates
unnecessary rows/columns that leads to lower mem-
ory usage and faster convergence.

II. RELATED WORK

The foundation for the Non-negative matrix factoriza-
tion was laid by Lee and Seung [8] in 1999, opening the
opportunity to hundreds of research journals. Before Lee
and Seung, few other notable contributions were made in
the area of NMF, but none came close to the fame of Lee
and Seung. Paatero and Tapper, 1994 [16], produced the
work on positive matrix factorization. Lee and Seung cite
the work of Paatero and Tapper in their work. Articles
have shown the significance of Paatero’s work prior to
Lee and Seung but have gone unnoticed.

Since Lee and Seung’s NMF was one of the first ones
to be popular, it became a baseline for many research.
Several researchers have proven that the multiplicative
update algorithm proposed by Lee and Seung [8], is
slower to converge, which means that it takes many
more iterations to complete compared to the gradient
descent method and the alternating least squares. Each
implementation required a total of 12 matrix operations,
of which six require O(n3) matrix-matrix multiplication,
and the rest require O(n2) matrix-matrix element-wise
operations.

To overcome this issue, other researchers, such as
Gonzalez and Zhang in 2005 [10], proposed an alteration
to the multiplicative update, but it ended up having the
same convergence issue. Another researcher named Lin
[17] in 2007 proposed a modification that ended with
earlier convergence but at the cost of more operations
per iteration.

Theoretically performing 12 matrix operations on a
matrix is time- and space-consuming; performing the
same operation on larger matrices would require a great
deal of memory. For example, a 65, 536 × 65, 536 re-
quires about 32 GB of storage in its raw format. To
overcome this, in this paper, we use our novel CBT
[18], which works well with binary matrices and the
bit-packing algorithm proposed in [15] to store integer
values. We also propose to store the matrix in CSR [19],
a common data structure for storing matrices.

To perform factorization or any operation on large
sparse matrices, one must efficiently store the matrices so
that the entire data can be loaded onto the main memory
in one go. Given a matrix of size n rows and m column,
the total number of possible elements in the matrix is
the size of the matrix itself, which m × n, therefore,
the cost of storing a matrix in raw format would require
(m×n)×64 number of bits, where 64 is the number of
bits required to store a number. But in a sparse matrix,
this number tends to be very small, where the number
of non-zero elements is extremely less compared to the
number of zeros.

Therefore, the sparsity of a matrix is defined as the
ratio of the number of non-zero elements to the number
of all possible elements that can be in the matrix.

Sparsity = nnz
m×n ,

where nnz is the number of non-zero elements in the
matrices, n is the number of rows and m is the number
of columns.

This type of behavior in the matrices are found in the
real-world, such as social networks, biological network,
topological network, and so on. The cost of storing zeros
in such cases becomes expensive and redundant to an
extent, as they do not contribute to the analysis.

Therefore, to store large sparse matrices, in this paper,
we are using existing structures such as CSR [15] [19],
and CBT [20].

III. MATRIX FACTORIZATION

There are several approaches that can be taken to
factorize a given matrix. To mention a few of the
popular ones, multiplicative update, gradient descent,
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and alternating least squares [8] [11]. Here, we take the
updated rules provided by Lee and Seung [8].

H ← H
(WTV )

(WTWH)
, W ←W

(V HT )

(WHHT )

Figure 1. Multiplicative Update algorithm for NMF using the
Frobenius norm as a cost function

Algorithm 1, shows the workings of how to factorize
the given large matrix using the multiplicative update
algorithm. The algorithm involves a series of operations
to obtain the desired result of W and H . To clarify
the various matrix element-wise operations, the .∗ op-
eration represents an element-wise multiplication, and a
./ represents an element-wise division and matrix-based
operations such as matrix-matrix multiplication. So, we
continue this section by providing the algorithms for the
various operations that are the building blocks of 1.

A. Matrix-Matrix Multiplication

One of the first and most important operations to be
performed during the factorization process is matrix-
matrix multiplication. The work on matrix-matrix mul-
tiplication has been published in [21], which explains
the working of how two matrices stored in either of the
data structures CSR and CBT are multiplied without
the need for an intermediate data structure.

B. Element-Wise Matrix Operation

The multiplicative update algorithm consists of several
element-wise matrix operations. The operations involved
in the algorithm are element-wise multiplication .∗,
element-wise division ./, and element-wise subtraction
− to find the Frobenius norm. Apart from these three, we
can also extend the algorithm for element-wise addition
+.

Algorithm 2, explains the working of the element-wise
matrix operation. The operation to be performed, ”Op,”
is specified as input. The algorithm first checks if the
dimensions of the two matrices are equal and, if not,
throws an error. It then loops through each row of the
matrices, and for each row, it checks if the size of the
row is zero in either matrix. If it is, it appends a zero to

the corresponding row of the resultant matrix C. If both
matrices have a row of size zero, it also appends a zero
to the corresponding row of C. If only one matrix has
a row of size zero, it copies the elements from the non-
zero row and appends them to the corresponding row of
C. If neither matrix has a row of size zero, the algorithm
performs the specified operation on each element of the
corresponding rows of A and B and appends the result
to the corresponding row of C. Finally, the algorithm
returns the resultant matrix C.

Figure 2. Element-wise matrix Addition, Subtraction, Multiplication,
and Division

C. Matrix Transpose

Another important operation required to perform ma-
trix factorization is to transpose a given matrix. There
are two ways we have handled this situation in this
paper, one way is to transpose the given matrix and
store it as another matrix that occupies extra space, and
another way to do it is to incorporate transpose during
the required operation.
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1 2 3
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a1 + d4 + g7 a2 + d5 + g8 a3 + d6 + g9

b1 + e4 + h7 b2 + e5 + h8 b3 + e6 + h9

c1 + f4 + i7 c2 + f5 + i8 c3 + f6 + i9




Figure 3. The working of AT ×B, by storing the result in a pattern
to eliminate the need to transpose the actual matrix.

The multiplicative update algorithm contains matrix-
matrix multiplication where either one of the matrices
needs to be transposed. A way to achieve this operation
would be to transpose the required matrix and use the
algorithm mentioned in [21], but this requires additional
memory; here the additional memory is the transposed
matrix. To avoid this issue, we perform an in-place trans-
pose multiplication. This can be achieved by accessing
the matrices with a different access pattern.

A×BT =

0 1 2 3


0 5 0 2 3
1 3 0 0 5
2 0 0 2 4
3 0 1 2 0

×

0 1 2 3


0 2 4 3 1
1 2 0 0 1
2 0 1 1 0
3 3 0 2 0

(1)

⇒
r0(A)→

c0(B)→

5
×
2

+

5
×
4

+

5
×
3

+

5
×
1


⇒ c0[C] = {10 20 15 5} (2)

Equation 2 shows an example of A × BT , where
the partial resultant of column c0[C], is obtained after
multiplying the first row r0[A] of A, and virtually
transposed the first column of B, in this case, it is still
r0[B].

Figure 3 shows the multiplication of AT × B by
virtually transposing A. Here, the colors along the diag-
onal show the order in which the resultant is obtained.
Multiplying r0[A] with all rows of B, we obtain the main
diagonal; continuing the process to the farther rows of
A, we move the resultant to the upper triangle and wrap
it around to the lower triangle, as shown in red, and
green.

D. Sequence of matrix multiplications
Revisiting algorithm in [21], where algorithms take

two matrices as input and multiply them to produce
the resultant matrix. However, data structures such as
our novel versions of CBT and CSR are amenable
to multiplying multiple matrices without storing the
intermediate resultant matrix.

Algorithm 5 shows multiple matrix-matrix multiplica-
tion. Line 5 takes the output of line 3, the intermediate
resultant row, and computes the resultant row on the third
matrix. This process can be repeated through any number
of input matrices. Therefore, this can be scaled to k as
the number of matrices.

Figure 4. The working of sequential matrix multiplication.

Figure 4 shows the pictorial representation of sequen-
tial multiplications of multiple matrices. A row of matrix
A, Ai is multiplied by matrix B using the partial sum
algorithm to obtain the intermediate resultant row Zi,
then Zi is multiplied with the next matrix C to obtain
the final resultant row Di.

E. Heuristic for faster convergence
One of the drawbacks of the multiplicative update

approach is the convergence time and the iterations it

Figure 5. Matrix-Matrix Multiplication in Sequence
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takes to find an optimal solution. One of the ways to
make the algorithm faster would be to reduce the number
of non-zero values in the input matrix. If we are given a
threshold number of index positions per row that can be
made zero, we can come up with a heuristic approach
to make specific values zero so that our compression is
more efficient. One way to approach this is to remove
the noise in the data; that is, we remove the data that
do not contribute to the overall solution. This may lead
to more loss, but the threshold will dictate the metric
of the percentage of loss added to this already lossy
factorization approach if we had not taken the heuristic
approach. This will be a heuristic approach and will
not be optimal. But it will lead to reduced resource
utilization. Space is reduced in the already compressed
structure and time to query the smaller CBT structure.

IV. EXPERIMENTAL RESULTS

This section evaluates matrix factorization on various
matrices. For this experiment, we considered the variety
of matrices with variable sparsity.

To factorize the matrices, we must first choose low-
rank dense random W and H matrices. Choosing a low-
ranking matrix leads to the formation of a smaller resul-
tant matrix, which in turn consumes less space. Finding
an optimal rank for factorization is a hard problem, as
the algorithm has to go through the process of finding the
number of orthogonal rows in the matrix. It is also more
likely that the larger the inner dimension of the factors
that we compute (W and H), the sparser these matrices
will be, in which case CBT outperforms CSR even
in terms of the storage of dense matrices. Therefore, in
this paper, we perform a brute-force analysis to obtain a
minimal rank that would satisfy the criteria to reproduce
the almost original matrix when W and H are multiplied.

Table I shows the overall result of the computation
performed in this paper. The first set of columns in
the table explains the basic details of the input, matrix
dimensions in the first column, the number of non-zero
elements in the second, matrix size when represented by
using the 2−D matrix in the third, and the compressed
sizes in the fourth and fifth respects. In the next part
of the table, we present the inner rank of the factored
matrices, followed by the result of W × H for both
CBT and CSR, and the amount of memory required to
process factorization at each iteration by CBT , CSR,
and 2−D representation of the matrix.

In the results, one can notice that the memory required
by the 2 − D matrix is the highest. Still, the majority
of the size is just the A matrix. Since the resultants can
be streamed into a matrix in O(1) (constant), the extra

Figure 6. Comparison between the time taken to multiply three
matrices in traditional two steps and uses our novel sequence
multiplication in a single step for a Million-by-Million matrix.

Figure 7. The evolution of W and H during the factorization for
Matrix of size (21,504× 21,504, 1.36M nnz elements)

memory used is very minimal. Still, as the inner rank
increases, memory usage will increase accordingly.

However, when considering the two compressed struc-
tures, the proportion of memory consumed by CSR
is much greater compared to the memory consumed
by CBT [15]. This is due to the inability of CSR’s
to stream (add/delete), as the arrays need to resize,
whereas CBT ’s ability to perform in-line operations,
the advantage of one such operation is shown in the
Figure 6, the figure compares the time taken to multiply
three matrices in traditional two steps and uses our novel
sequence multiplication in a single step for a Million-by-
Million matrix of various levels of sparsity ranging from
1M to 5.4M elements. This memory usage will have a
significant impact for a very large matrix, as shown in
[21].

Figure 7 shows the decrease in the memory required
to store W and H as the iteration progresses, with the
number of non-zero elements represented in the bars.
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TABLE I. THE FACTORIZATION RESULT USING CBT AND CSR AND THE MEMORY REQUIRED TO PROCESS THE FACTORS.

W × H Avg Mem/Iter
Matrix A NNZ Matrix Size CBT CSR Inner Rank CBT CSR Matrix CBT CSR

2688×2688 23,089 55.12 MB 217.36 KB 216.23 KB 448 216.58 KB 216.51 KB 73.5 MB 0.54 KB 0.67 MB
5376×5376 57,752 220.5 MB 547.53 KB 546.68 KB 255 513.87 KB 526.46 KB 241.41 MB 0.29 KB 30 MB

21504×21504 1,385,198 3.44 GB 12.7 MB 12.98 MB 512 12.65 MB 12.95 MB 3.6 GB 13.1 MB 150 MB
43008×43008 998,531 13.78 GB 9.45 MB 9.53 MB 670 9.1 MB 9.98 MB 14.21 GB 9.92 MB 87 MB
65536×65536 1,460,048 32 GB 14.23 MB 14.05 MB 665 13.45 MB 14.12 MB 32.64 GB 14.80 MB 200 MB

All experiments were run on an Intel(R) Xeon(R) W-
2295 CPU @ 3.00GHz (16 Cores) with 64 GB of RAM,
and the programs were written in GNU C/C++.

V. CONCLUSION AND FUTURE WORK

This paper shows that the given million-scale matrix
can be factorized directly on the compressed structure.
We also show that the intermediate result obtained in
the matrix factorization process can be eliminated using
sequential matrix operations. In this paper, we also
introduced element-wise matrix multiplication, division,
subtraction, addition, and sequential multiple matrix
multiplications on top of the existing work of ma-
trix multiplication. We have also shown that traversing
through the matrix in the pattern can avoid an explicit
transpose operation during the matrix factorization. We
also provide the heuristic relationship between inner rank
and the sparsity of the factor matrices, and we have also
shown in the results that the lower the rank, the smaller
the factors W and H . In the future, we would expand
the computation to the Alternating Least Squares and
Gradient Descent approach to factorize matrices. Our
compression algorithms mentioned in this paper natively
support binary matrices. Hence, we would also expand
our work toward Binary Matrix Factorization.
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