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Abstract—As the algorithms mature, the bottleneck in applying 
Machine Learning (ML) to process analysis, monitoring and 
control is often caused by the availability of suitable data and 
the cost of data acquisition. For many ML projects, datasets 
have been collected independently of subsequent analysis. In 
industrial production, data acquisition and coverage of possible 
process uncertainties pose challenges to the preparation of 
suitable datasets. This article discusses dataset generation for 
ML from scratch under the constraint of limited resources with 
process uncertainties. A new approach towards an adapted 
Design Of Experiments (DOE) is proposed with the aim of 
sampling data more efficiently. In this way, we contribute to the 
challenge of preparing datasets for ML applications.  

Keywords-Small-data; Process uncertainty; Design Of 
Experiments(DOE); Machine learning. 

I.  INTRODUCTION 
ML makes it possible to efficiently excavate valuable 

information from data with its powerful data analysis 
capabilities. With the prosperous advancement of algorithm 
research, model building is no longer a challenge limiting ML 
applications [1]. In fact, according to a survey from 
Crowdflower in 2016 [2], the efforts of data scientists are 
mainly (60%) consumed by data organizing and data cleaning. 
After this, 19% of the time is spent collecting datasets. This 
shows that data preparation is the bottleneck of ML 
applications in the current stage. However, this difficulty is 
often overlooked by the informatics community. In most 
cases, the datasets are unthinkingly pre-existing. With this 
standpoint, they simply optimate the algorithm at the software 
side for data analysis. However, the dataset's quality 
determines the upper limit of data analysis. Therefore, in some 
cases, it may be unfeasible to look at a solution only from the 
ML model side. 

It is both a challenge and an advantage to look at data 
preparation from the perspective of a production engineer. 
Collecting a single element of the dataset requires that a 
product is physically produced and the relevant data is 
measured during the manufacturing process. In practice, an 
extra number of products is required to account for deficient 

outcomes. This limits the amount of usable data for ML 
analysis. The overall amount of data is often constrained by 
cost considerations. However, pre-existing knowledge, 
experience or even intuition of the process often allows an 
engineer to focus the data generation on particularly relevant 
subsets of an overly complex parameter space.  

Purpose-built datasets for ML modeling may address two 
possible directions [3]:   

 
I. Finding the control variables and their optimal 

values that give rise to an optimal response  
II. Exploring the neighborhood around the optimal 

values to generate knowledge for monitoring, 
anomaly detection and control  
 

We investigate the latter under the constraint of limited 
resources (e.g., time, budget) for data acquisition and fixed 
overall statistical process uncertainty. Based on the data 
obtained from the Lithium Ion Battery (LIB) production line 
in the KIproBatt project [4], we describe the practical 
difficulties in preparing datasets for industrial production in 
Section 2. In Section 3, existing DOE approaches are 
described. A set of experimental design schemes suitable for 
ML modeling is proposed. In addition, we propose a new 
Small-Data DOE (SD-DOE) suitable for ML modeling with 
process uncertainty.  

II. DESCRIPTION OF SMALL-DATA CONTEXT 

A. Small data problem 
Small-batch production is often unavoidable in laboratory 

research, on a pilot production stage prior to upscaling, or in 
customer-specific (individualized) manufacturing [5]. Often, 
data acquisition is limited by budget or time constraints to 
datasets with less than one thousand elements. The particular 
choice of selected data points affects the outcomes of 
subsequent analysis. For illustration, we consider the project 
KIproBatt as an example of a typical small-scale data 
generation: a total of ca. 500 Li-ion battery cells is to be 
produced with a semi-automatic production line in a 
laboratory environment. Research questions include the imp-
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Figure 1. LIB cell assembly process from separation to EOL-test 

 

 
Figure 2. Cell output capacity related to cycle number in a cycling test 

 
act of process deviations on the quality of final cells as well 
as the exploration of complex correlations among process 
parameters. Note that one cannot define the "small-data 
problem" by sole reference to a fixed amount of data. Instead, 
the characteristics and complexity both of the research 
objectives and the applied ML methods have to be 
considered. 

B. Lack of process knowledge & complexity of the 
production process 
The number of required data depends on the complexity of  

the process. A large number of features, non-linear 
relationships and interactions between features increase the 
complexity of the process and thus the number of data points 
required. These conditions are often found in industrial 
production processes [6]. The assembly process of a LIB 
pouch cell is an example of such a complex process and is 
depicted in Figure 1: cell assembly starts with electrode 
separation. Then, the anodes and cathodes are dried and fed 
into a glove box with a controlled atmosphere. Next, a 
stacking machine assembles the electrodes with a separator 
into cell stacks (Z-fold stacking). After the packaging, sealing 
and electrolyte filling, the cell is activated by the first charge 
and discharge (formation). The gas generated in this 
procedure is removed and the cell is finally sealed.  

The complexity of this multi-step process leads to 
manifold variable interdependencies. Hence, an effective 
analysis should be based on an ML approach. However, it is 

challenged by limited data, which may lead to undersampling 
of the parameter space and a lack of convergence of the ML 
models. We define this as the fundamental characteristic of 
small-data context. 

C. Process uncertainty 
Complex processes are normally investigated for a limited 

set of process parameters only. While the remaining 
parameters are, in theory, assumed to remain constant, their 
unavoidable fluctuations contribute to statistical uncertainty 
in all measured data. Other sources for uncertainties lie, for 
instance, in the measurement uncertainties of the used sensors. 
This uncertainty is manifested in the data as identical input 
parameters will lead to a statistical spreading in the target 
responses.  

In the KIproBatt project, using the injected electrolyte 
volume as the only tunable factor with two levels, we 
produced four cells at each level while ensuring that the rest 
of the process parameters were consistent. Each cell was then 
tested according to the same cycling protocol to evaluate its 
performance. The cycling protocol also includes non-cycling 
tests such as pulse, c-rate, and quick charge tests. As reflected 
in Figure 2, the troughs that occur every 50 cycles indicate the 
pulse test. The results, using Output Capacity (OC) as an 
indicator, are shown in Figure 2. It can be seen that the 
performance of the battery cells within each batch varies. As 
the box plot illustrates, the process uncertainty is so evident in 
batch VF1.09 that cell D is judged to be an outlier (box plot). 

The reasons for this might be processing errors due to 
human operations, a lack of process understanding that leaves 
some potential variables uncontrolled, or measurement errors 
in the hardware. However, in the end, what emerges is the 
uncertainty of the OC.  

No direct conclusion can be derived when the process 
uncertainty exceeds the variation imposed on control 
variables.  

Usually, uncertainty reduction could be achieved either by 
optimizing hardware or by repeated measurement and 
averaging. However, for fixed measurement capacity, the 
latter implies a reduced ability for parameter space 
exploration. Therefore, DOE strategies can be developed 
further to find new compromises between resource allocation 
for uncertainty reduction and for parameter space sampling.  

III. DOE STRATEGY 

A. Existing DOE strategies  
DOE is an established approach to systematically collect  
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Figure 3.   Proposed DOE workflow in small-data context 

 

TABLE I.  ANOVA: OC VERSUS EV  

Source DF Adj SS Adj MS F-Value P-Value 
Electrolyte 1 0.011542 0.011542 8.16 0.029 
Error 6 0.008482 0.001414  
Total 7 0.020024  

 
information about a system or process. It aims at delivering 
the most relevant experimental data for addressing a given 
research objective. The origin of classical DOE can be traced 
back to the Analysis Of Variance (ANOVA) proposed by 
FISHER in the 1920s [7]. Traditional DOE has a set of proven 
paradigms: screening design for identifying relevant 
parameters and response surface design for detailed 
investigation of optimal parameter configurations. With the 
development of data science and easier access to data, ML 
tools have been successfully applied to many data analysis 
problems. ML has unparalleled efficiency advantages in 
analyzing big data (compared to the volume of data in 
traditional DOE) with complex interdependencies.  

However, little attention has been paid to the interplay of 
data set generation and ML-based data analysis. A series of 
studies have conducted the generation of datasets for ML 
based on traditional DOEs in the past five years [8][9]. In 
addition, motivated by some ML algorithm developments, 
iterative data acquisition schemes have been discussed.  

Emukit [9] provides such a model-based iterative DOE 
scheme within a Bayesian optimization framework. The 
Emukit DOE tool starts from a set of given initial data points 
and iterates the following three steps to generate sample points 
in a given input space: 
• fit a prediction model to the existing data  
• find the next point with the highest marginal predictive 

variance as predicted by the prediction model 
• add this new data point to the existing dataset 

Such iteration allows for the most efficient allocation of a 
limited number of data points based on certain metrics, such 
as marginal predictive variance of the model. This model-
based scheme works well with ML data analysis since a 
prediction model (e.g., gaussian process model, GP model) is 

used to predict the target response and calculate the variance 
during each iteration of data acquisition.  

The Emukit approach has shown excellent performance in 
relevant papers and simulation experiments [10][11] but 
would profit from further practical validation. In addition, 
uncertainties are not taken into account for the collected data 
points. Therefore, we use the Emukit method within the 
framework of traditional DOE and extend its iterative 
sampling strategy to account for data uncertainties. The 
resulting approach is particularly suited for the small-data 
context with comparatively large uncertainties. 

B. Iterative DOE for small-data context 
The proposed workflow in a small-data context is shown 

in Figure 3. We first present the first two steps (a) and (b): 
First, factors of interest and their ranges are specified w.r.t. 

the research objective. In the second step, the range of each 
factor can be divided into at least two levels. Then, we 
perform a one-way ANOVA for each factor. ANOVA is 
performed on adjacent pairs with comparable variance to 
evaluate each pair's significance. Depending on the upper 
limit of the data volume, at least two replicate trials at each 
level are required to determine the significance of the factors 
(p-value). A level of significance is fixed, e.g., 𝑝𝑝0 = 0.05  or 
𝑝𝑝0 = 0.1. If 𝑝𝑝 > 𝑝𝑝0, the considered factor is not significant 
within the interval defined by the adjacent levels.   

We illustrate the subsequent DOE procedure for the 
example case of process analysis in battery cell production, as 
performed by the project KIproBatt. 

A large number of factors may influence the battery cell 
performance. Initially, we determine the Electrolyte Volume 
(EV) as the only varying factor of interest and specify its range 
between 1.09 gram and 1.3 gram. We have produced 4 battery 
cells (data points) at each considered level (EV = 1.09 gram, 
1.3 gram). For simplicity, we only illustrate the use of analysis 
of variance for this single factor. We specify the response as 
the lithium battery cell's OC at cycle 200. We perform 
ANOVA and obtain the following results (cf Table I). 

For a given level of significance of 𝑝𝑝0 =  0.05,  we 
identify the electrolyte volume as a significant factor for the 
response (0.029 <  0.05)  in this interval. Adjusted Mean 
Squares (Adj MS) are calculated by dividing the adjusted sum 
of squares by the Degrees Of Freedom (DF). From the 
Adjusted Mean Square Error (Adj MSE), we obtain the within 
variance as an estimate for the data uncertainties ∆𝑂𝑂𝑂𝑂 . Root 
mean square error allows this estimate to have the same units 
as the response. Thus, we have: 

 𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 = ∆𝑂𝑂𝑂𝑂2= 0.001414    (1) 

With the existing within variance in this example, our 
requirement for significance can be relaxed until 𝑝𝑝 = 𝑝𝑝0 . 
Assuming such an extreme 𝑝𝑝 =  0.05, we can calculate the 
minimum required Between-group Variance (BGV) of the 
factor on the response such that the factor can still be 
determined as a significant factor. The corresponding F value 
can be taken from the tabulated F-distribution with group = 2, 
number of observations = 8 (𝐹𝐹 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2−1,8−2,𝑎𝑎=0.05). 
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Figure 4. 𝑩𝑩𝑩𝑩𝑩𝑩𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 defines the regions unsuitable for sampling 

𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 = �𝐹𝐹 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1,6,𝑎𝑎=0.05 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀   (2) 

With the existing ∆𝑂𝑂𝑂𝑂  the critical choice of factor levels in 
a significance test is the limiting choice for level setting in data 
generation. Assuming that the levels we set for the EV are too 
close to each other, then the statistical spreading due to within 
variance may limit the distinguishability between neighboring 
levels. If this principle is applied to select the next data point, 
it can be determined whether this data point represents an 
additional significant level for the considered factor.  

So far, we have only identified an 𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 . We 
still need to map this 𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 to the corresponding 
factor 𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟, e.g., the electrolyte volume. This will be 
addressed in step (c) in Figure 3. 

The response depends on multiple factors. For the battery 
cell production, next to the electrolyte volume, experts believe 
[6] that Drying Time (DT), Wetting Time (WT) after filling, 
Coating Defects (CD) on electrodes, and Stacking Accuracy 
(SA) also have considerable impact on the output capacity. A 
preliminary predictive model for the response 
𝑂𝑂𝑂𝑂𝑓𝑓𝑐𝑐𝑓𝑓𝑐𝑐𝑟𝑟 200(𝑋𝑋𝐸𝐸𝐸𝐸 ,𝑋𝑋𝐷𝐷𝐷𝐷 ,𝑋𝑋𝑊𝑊𝐷𝐷 ,𝑋𝑋𝑂𝑂𝐷𝐷 ,𝑋𝑋𝑆𝑆𝑆𝑆) can be built with the 
data collected in this factorial design. This model allows 
calculating the derivative of the response w.r.t each factor 

 𝑘𝑘𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 = 𝜕𝜕𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 200

𝜕𝜕𝑋𝑋𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓
 (3) 

for local inversion. By using a simple multilinear regression 
model, e.g.:  

 𝑂𝑂𝑂𝑂𝑓𝑓𝑐𝑐𝑓𝑓𝑐𝑐𝑟𝑟 200 = ∑ 𝑘𝑘𝑚𝑚𝑋𝑋𝑚𝑚 + 𝑏𝑏5
𝑚𝑚=1  (4) 

the coefficients 𝑘𝑘𝑚𝑚  for each factor 𝑋𝑋𝑚𝑚 in (4) are the mapping 
coefficients to linear order. Thereby, we can map the 
𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟  (on the responses) to the 𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟  (on 
the factors) and thus determine the minimum required 
between-group variance 𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 for each factor.  

 𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 𝑘𝑘𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟⁄  (5) 

As reflected in Figure 4, the 𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟  defines an 
environment around each factor value where no significant 
data points can be chosen. Each new data point will be used to 
update the model and the mapping coefficients to determine a 
more accurate estimate for 𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑟𝑟 . Under this 
framework, we can proceed the iterative sampling in step (d) 
until all data points for a machine learning dataset have been 
collected.  

IV. CONCLUSION 
This article discussed the characteristics of small data 

problems with process uncertainties. A new approach 
towards an adapted DOE is proposed with the aim of 
sampling data more efficiently under such circumstances. 
This DOE approach is applied to the battery cell production 
for the project KIprobatt and we are looking forward to 
presenting our following results.  
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