
Seeking Higher Performance in Real-Time Data Processing through

Complex Event Processing

Guadalupe Ortiz, Adrián Bazan-Muñoz, Pablo Caballero-Torres, Jesús Rosa-Bilbao, Inmaculada Medina-Bulo,

Juan Boubeta-Puig

Department of Computer Science and Engineering

UCASE Software Engineering Group, University of Cadiz, Spain

{guadalupe.ortiz, adrian.bazan, pablo.caballero, jesus.rosa, inmaculada.medina, juan.boubeta}@uca.es

Alfonso Garcia-de-Prado

Computer Architecture and Technology Department

UCASE Software Engineering Group, University of Cadiz, Spain

e-mail: alfonso.garciadeprado@uca.es

Abstract—Today, data processing has become a key

functionality of multiple diverse applications. Large amounts of

data from disparate sources must be processed in streaming in

order to have real-time knowledge of the domain in question and

thus be able to make the most appropriate decisions at each

instant of time. This streaming processing has been successfully

achieved by introducing Complex Event Processing (CEP)

techniques into the solutions provided. Although these solutions

have proven their effectiveness in various software architectures

and application domains, there is still a need for further

research on how to achieve better performance depending on

the needs of the application. This paper attempts to shed some

light in this area by comparing various configurations of a CEP

engine, aiming for better performance in real-time data

processing.

Keywords-Complex Event Processing; Event-driven Service-

oriented Architecture; Internet of Things; Data Processing.

I. INTRODUCTION

Today, data processing has become a key functionality of
all applications in general and those related to the Internet of
Things (IoT) and smart cities, in particular. Large amounts of
data are generated from multiple sources at a high speed,
which must be processed promptly to have real-time
knowledge of the domain in question and thus be able to make
the most appropriate decisions at each instant of time. In this
context, multiple applications and architectures emerge that
address big, small and open data processing, for decision
making in various domains, with special emphasis on IoT and
smart cities [1].

According to Rahmani et al. [2], Complex Event
Processing (CEP) has become a key part of the IoT; indeed
multiple publications endorse CEP as a successful technology
for streaming data processing in the IoT [3]–[6], including a
wide variety of works, in diverse application domains. This
integration of CEP with the IoT not only takes place in the
cloud, but also at levels closer to the device, such as the fog or
the edge [7]. Although when we need to integrate multiple
communication protocols and application technologies the use
of an Enterprise Service Bus (ESB) in an event-driven service-

oriented application facilitates the implementation and
maintenance of the architecture [8][9]; in production
environments where integration needs are lower, lighter and
more efficient architectures can be achieved without using the
ESB [10][11]. An architecture that integrates the CEP engine
without the ESB can face with greater guarantee of success
scenarios that demand higher performance, especially in the
current situation where the amount and velocity of data is
growing at a vertiginous rate year after year.

For all the above, we need to analyze which configurations
of CEP engines can provide us with better performance in the
most common scenarios of big data processing in IoT and/or
smart cities; where many of the implementations are or could
be limited to the integration of data sources through an
inbound messaging broker with a data processing engine and
an output also channeled through an outbound messaging
broker. For performance analysis it is necessary to adjust to a
particular implementation and given the wide use of Esper,
this is going to be our CEP engine. On the other hand, given
the widespread use of RabbitMQ and the immediate
integration of AMQP 0.91; these are going to be the broker
and protocol for both inbound and outbound messaging used
in this research.

As discussed in Section III, in the past several studies on
performance for CEP engines were done, such as [14][15] and
[16], but we could not find particularly a comparison of 2
opposite mechanism of Esper engine to subscribe to complex
events: subscriber and listener, nor the comparison of
configuring CEP engines to execute with different number of
threads. In this sense, this paper focused on doing the tests
needed to analyze such options to check which can provide us
with better performance and therefore to complement other
existing research on CEP performance analysis.

The rest of the paper is organized as follows. Section II
introduces CEP technology. Then, Section III explains the
related work and motivates the need for further CEP testing
and evaluation. Afterwards, the evaluation scenario proposed
as well as the configurations of the test performed are
presented in Section IV. Consequently, Section V explains the

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-041-4

ALLDATA 2023 : The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

results obtained from the tests performed and, finally, Section
VI presents the conclusions.

II. BACKGROUND ON COMPLEX EVENT PROCESSING

CEP [12] is a technology by which we can capture,
analyze and correlate in real time huge amounts of data,
coming from different application domains and in different
formats, to detect relevant situations as they occur [13]. The
incoming data to be processed by the system are called simple
events, while the detected situations are called complex events.

To detect these complex events, it is necessary to have
previously defined an event pattern that will be responsible for
analyzing and correlating one or several simple events in a
given period of time. These patterns must be deployed in a
CEP engine, i.e., the software in charge of capturing the
simple events, analyzing in real time if some of the patterns
deployed on the simple input event stream are fulfilled, and
creating the complex events.

In this work, we have adopted the Esper CEP engine and
its EPL pattern language, because of its recognized prestige in
terms of performance and applicability.

III. RELATED WORK AND MOTIVATION

We have found several works which provide CEP
performance evaluation. For instance, Rosa et al. [14] present
a comparative study of several Esper engines for security
event management. Esper CEP engine is among the engines
evaluated; in their analysis we can see that Esper engine has a
very good performance with a high throughput and the authors
consider it to be the most suitable taking into account
performance and configuration flexibility. We have also
found a comparison of the Esper engine with the Sidhi CEP
engine [15], in both cases integrated with an ESB and the
Mosquito broker [16]. Ortiz et al. also evaluate the time it
takes to transfer events in a microservice-based architecture
and to process them in the Esper CEP engine [10]. Besides,
Corral et al. evaluate how the integration of Esper with Kafka
behaves with up to 32 partitions [17] demonstrating that the
system is highly scalable under these simple conditions, but
not evaluation on the CEP engine isolated, which is our main
objective in this paper. Also in [11] an evaluation and
comparison of Esper CEP engine in an event-driven
architecture with the use of an ESB compared to the use of
Data-Flows is provided, which might be complementary to the
research done in this paper.

Thus, we can conclude that, to our knowledge, there is no
work comparing some particular configurations of Esper CEP
engine, such as the use of subscriber and listener in the engine,
nor the use of several threads in its execution configuration.
Such gap motivated this work which can help us to better
understand Esper CEP performance and compliment other
existing related works. Particularly, we expect to deploy the
architecture evaluated in this paper in a water management
company and we need to check which is the most efficient
solution for this purpose beforehand.

IV. EVALUATION SCENARIO

This section explains the software architecture used for the
performance tests and the machines involved in it, the key
performance indicators selected to be measured from the tests
and the configuration prepared for the tests.

A. Architecture

The software architecture, as represented in Figure 1,
consists in a synthetic data simulator (nITROGEN [18]),
which submits data to a RabbitMQ broker; both deployed in
Machine 1. The CEP application in Machine 2 is then
subscribed to the queue in the RabbitMQ broker to receive the
simple events. After the simple events are processed by the
CEP engine, the detected complex events are sent to an output
RabbitMQ queue in Machine 3. The three are server machines
with an Intel Xeon Silver 4110 processor and 32 GB of RAM.

B. Key Performance Indicators

To analyze in detail the processing times in each
component of the architecture, we have added a series of
timestamps along the life of the processed message, from its
generation to the end of its processing, as explained in the
following lines and shown in Figure 1.

• Let t1 be the timestamp corresponding to when the
synthetic data is generated in the simulator; in this
case we have used nITROGEN simulator [18].

• Let t2 be the timestamp corresponding to when the
simple event (the generated synthetic data) is going to
enter the CEP engine; that is, it has already been sent
from the simulator to the broker and from the broker
to the CEP engine.

• Let t3 be the timestamp that adds Esper CEP to the
message when the complex event is detected.

• Let t4 be the timestamp corresponding to the time
when the complex event leaves the CEP engine and is
sent to the output queue.

Thus, the difference of t2-t1 indicates the time it takes for
the simple event to be sent from the simulator to the
messaging broker and from this to the CEP engine; that is, the
sum of the sending time and the processing time in the broker.
From now on we will call Tsubm as this time difference.

On the other hand, t3-t2 is the time difference from the
reception of the simple event in the CEP engine until the
detection of the complex event in the CEP engine, i.e., the
processing time of the event in the CEP engine, hereafter tproc.

Figure 1. Software Architecture and timestamps taken.

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-041-4

ALLDATA 2023 : The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

Finally, t4-t2 gives us the time difference from when the
simple event is going to enter the CEP engine until the
complex event leaves the CEP engine to be sent to the output
queue; that is, it includes not only the processing time in CEP
of the simple event, but also the management of the complex
event in the CEP engine. From now on this time will be called
Tman.

Such three times (Tsubm, Tproc, Tman) together with the CPU
usage and memory consumption will be the key performance
indicators in our evaluation tests.

C. Test Configuration

The objective of these tests is not to evaluate several
instructions of the EPL syntax to build patterns, as we did in
the past [11], but to evaluate several ways to handle the
complex event and configure the CEP engine to process a
simple pattern and check specifically if the use of the listener
and the subscriber clauses in a pattern, as well as the
configuration of the CEP engine execution using 1 or 10
threads in the processing, influence the performance of the
whole architecture.

Let us explain that a listener can subscribe to complex
events already posted by a pattern match. However, a
subscriber object receives statement results via method
invocation. A subscriber is expected to have performance
advantages, but we will have to see if this holds true in the
performance tests. We used a very simple event scheme and
event pattern for the evaluation with the aim of insolating the
behavior of the listener and the subscriber and make it
independent of any pattern clause.

The simple events reaching the CEP engine will consist on
a JSON element containing i) the timestamp of the instant of
creation of the event (t1); ii) the timestamp of when it reaches
the CEP engine (t2), which will be generated empty by default
and added when such data is known and iii) a boolean —
shouldTrigger—that will cause the pattern to be met randomly
or not for each incoming event; which is represented as
follows in the Esper CEP engine:

@public @buseventtype create json

schema Dummy as (t1 long, t2 long,

shouldTrigger boolean)

The pattern will simply add the timestamp of the instant in
which the complex event is detected (t3) and select the other
timestamps that were already in the simple event (t1 and t2).

insert into DummyComplexEvent SELECT

current_timestamp as t3, t2, t1 FROM

Dummy(shouldTrigger)

As previously mentioned, the reason for using such a
simple event pattern is because we want to focus on the
different behavior of the system using the subscriber and
listener, as well as executing with one or more threads. It is
not our aim to evaluate a wide range of Esper operators as this
was done by other works, but to complement such works with
this novel tests.

Every test was run for simple events incoming rates of
1 000, 10 000 and up to 50 000 incoming events per second,
and each test was run for 10 minutes. As previously said,
Tsubm, Tproc, Tman, CPU usage and memory usage were
measured for every performed test.

V. RESULTS AND DISCUSSION

In this section we show and analyze the results of the tests
performed both with subscriber and listener and for 1 and 10
threads for the CEP engine execution under the conditions
described in Section III.

As we can see in Table I and Table II, the use of one
thread, either with listener or with subscriber, seems to have
an average consumption of memory and CPU quite similar for
any of the tested incoming rates. Also, the submission times
from the message queue to the CEP engine are quite similar,
as they should be. We can also see that the processing time is
also almost the same in both cases, but we note some
differences in the management time: even though the
subscriber seems to be more efficient than the listener when
we have an input rate of 1 000 events per second (0.264 ms
the listener versus 0.02 ms of the subscriber) when we reach
the input rate of 50 000 events per second, the listener is the
one being more efficient (0.007 ms the listener versus 0.33 ms
of the subscriber). It is important to point out that the high
values reached for Tman with the input rate of 50 000 events
per second are due to the fact that the system collapses and
therefore does not process all the messages properly and may
give inconsistent values.

Again, as we can see in Table III and Table IV, average
consumption of memory and CPU are also quite similar when
using ten threads with any of the tested incoming rates and the
submission times from the message queue to the CEP engine
are quite similar, as well. In this occasion we can see that the
processing time is again similar for both the subscriber and
listener options. This time, the management time for the
listener behaves better (0.14 versus 0.69 ms) at a 10 000
events per second incoming rate, as well as the rate of 50 000
incoming events per second (0.78 ms of the listener versus
0.99 ms of the subscriber).

TABLE I. TEST RESULTS WITH LISTENER CONFIGURATION AND 1

THREAD.

TABLE II. TEST RESULTS WITH SUBSCRIBER CONFIGURATION AND 1

THREAD.

Incoming

Rate

(events/s)

Medium

Memory

Usage

(MB)

Medium

CPU

Usage

(%)

Tsubm (ms) Tproc (ms) Tman (ms)

1 000 466.5 0.37 10.77 0.007 0.264

10 000 518.2 1.35 58.05 0.005 0.58

50 000 520.3 3.38 4 853 0.0034 0.07

Incoming

Rate

(events/s)

Medium

Memory

Usage

(MB)

Medium

CPU

Usage

(%)

Tsubm (ms) Tproc (ms) Tman (ms)

1 000 463.3 0.34 10.78 0.007 0.02

10 000 535.8 1.35 63.70 0.005 0.86

50 000 524.4 3.53 4 387 0.0038 0.33

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-041-4

ALLDATA 2023 : The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

TABLE III. TEST RESULTS WITH LISTENER CONFIGURATION AND 10

THREADS.

TABLE IV. TEST RESULTS WITH SUBSCRIBER CONFIGURATION AND

10 THREADS.

Up to this point of the comparison we can say that for

simple events there are no big differences between using a
listener or a subscriber because although there are some
differences at some rates of incoming events per second, they
are not significant, not reaching the millisecond.

There are differences between the use of 1 or 10 threads in
the execution of the CEP engine, although perhaps not the
expected ones. To better observe these differences, we have
represented in Figure 2 three graphs with the values taken by
Tsubm, Tproc and Tman, respectively, for each input rate with the
listener and the subscriber and the execution in 1 thread; and
these same three graphs but using 10 threads for the execution
in Figure 3.

For the time of submission (tsubm) we do not appreciate big
differences (as expected). However, for the time of processing
in the CEP engine (tproc), when using a single thread, the
processing time increases as the input rate of simple events
increases; however, the processing time decreases when using
10 threads (until it collapses at 50 incoming events per
second). On the other hand, if we take as a reference the input
rate 10 000 events per second, in which the engine is not
collapsed but it is not as fluid as with 1 000 input events, we
see that we obtain better times with 1 thread than with 10;
possibly due to the greater management involved in the
distribution of tasks among the threads and the resolution of
the final results. Finally, the processing and management time
(tman) increases in both cases as we increase the input rate of
simple events, until it saturates at 50000 input events per
second; but it remains in any case lower for the execution with
1 thread compared to the one using 10 threads.

VI. THREADS TO VALIDITY

A limited number of tests have been performed in this
work. As previously mentioned, a single pattern has been
tested, but to better validate the results, perhaps a varied set of
operators or domain specific patterns could be tested. On the
other hand, generating a greater or lesser number of complex

events for each simple input event may yield other results. It
should also be noted that the use of 1 thread has been
compared with the use of 10 threads, but other intermediate
options such as 2, 3, 4, etc. threads have not been tested. Tests
with different numbers of threads could lead to other
conclusions in addition to those explained in this paper.

Incoming

Rate

(events/s)

Medium

Memory

Usage

(MB)

Medium

CPU

Usage

(%)

Tsubm

(ms)
Tproc (ms) Tman (ms)

1 000 485.8 0.67 9.30 0.89 0.86

10 000 517.3 3.62 58.26 0.14 7.66

50 000 7 884.8 20.51 257.18 0.78 85 114.69

Incoming

Rate

(events/s)

Medium

Memory

Usage

(MB)

Medium

CPU

Usage

(%)

Tsubm (ms) Tproc (ms) Tman (ms)

1 000 483.7 0.65 7.90 0.7 0.9

10 000 516.1 2.86 58.36 0.69 4.63

50 000 8 089.6 19.71 264.31 0.99 87 522

Figure 2. Tsubm, Tproc and Tman for each input rate with the listener and

the subscriber and the execution in 1 thread.

32Copyright (c) IARIA, 2023. ISBN: 978-1-68558-041-4

ALLDATA 2023 : The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

On the other hand, it is important to bear in mind that in
real systems, when measuring processing time, a lack of
synchronisation in the clocks of the systems involved may
imply a mismatch in the measurement of these times.
However, when implementing a real system, our main goal
will not be to measure performance time, but rather for the

patterns to detect the situations of interest in the domain in
question. In this case, clock times have no influence, since the
events are processed the instant they arrive, regardless of the
timestamp they may contain, and it is the CEP engine that
assigns the timestamps necessary for the internal management
of the times and time windows.

VII. CONCLUSION AND FUTURE WORK

In light of the results of the tests performed, we can
conclude that both the use of subscriber and listener to capture
the complex events detected by the CEP engine provide
similar behaviour at different rates of incoming events per
second. We can also conclude that configuring the CEP
engine to use more threads might not be useful when we have
large amounts of incoming events as it is more time
consuming to distribute and assign the tasks for the different
threads than the time required to do it in a single thread.

For future work, we expect to perform further performance
tests with the particular patterns developed for the water
management company where we will test the architecture
evaluated in this paper.

ACKNOWLEDGMENT

This work was partly supported by grant PDC2022-
133522-I00 (ASSENTER project) funded by MCIN/AEI
/10.13039/501100011033 and by the" European Union Next
GenerationEU/ PRTR" and partly by the grant program for
R&D&i projects, for universities and public research entities
qualified as agents of the Andalusian Knowledge System,
within the scope of the Andalusian Plan for Research,
Development and Innovation (PAIDI 2020). Project 80% co-
financed by the European Union, within the framework of the
Andalusia ERDF Operational Program 2014-2020 “Smart
growth: an economy based on knowledge and innovation”.
Project funded by the Ministry of Economic Transformation,
Industry, Knowledge and Universities of the Andalusian
Regional Government. DECISION project with reference
P20_00865. We are also grateful for the collaboration of the
water supply network management company GEN.

REFERENCES

[1] S. D. Liang, "Smart and Fast Data Processing for Deep

Learning in Internet of Things: Less is More", IEEE Internet

Things J., vol. 6, no. 4, pp. 5981–5989, Aug. 2019, doi:

10.1109/JIOT.2018.2864579.

[2] A. M. Rahmani, Z. Babaei, and A. Souri, "Event-driven IoT

architecture for data analysis of reliable healthcare application

using complex event processing", Clust. Comput., vol. 24, no.

2, pp. 1347–1360, Jun. 2021, doi: 10.1007/s10586-020-03189-

w.

[3] A. Akbar, A. Khan, F. Carrez, and K. Moessner, "Predictive

Analytics for Complex IoT Data Streams", IEEE Internet

Things J., vol. 4, no. 5, pp. 1571–1582, Oct. 2017, doi:

10.1109/JIOT.2017.2712672.

[4] R. Mayer, B. Koldehofe, and K. Rothermel, "Predictable Low-

Latency Event Detection With Parallel Complex Event

Processing", IEEE Internet Things J., vol. 2, no. 4, pp. 274–

286, Aug. 2015, doi: 10.1109/JIOT.2015.2397316. Figure 3. Tsubm, Tproc and Tman for each input rate with the listener

and the subscriber and the execution in 1 thread.

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-041-4

ALLDATA 2023 : The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

[5] A. Garcia-de-Prado, G. Ortiz, and J. Boubeta-Puig, "CARED-

SOA: A Context-Aware Event-Driven Service-Oriented

Architecture", IEEE Access, vol. 5, pp. 4646–4663, 2017, doi:

10.1109/ACCESS.2017.2679338.

[6] A. Garcia-de-Prado, G. Ortiz, and J. Boubeta-Puig,

"COLLECT: COLLaborativE ConText-aware service oriented

architecture for intelligent decision-making in the Internet of

Things", Expert Syst. Appl., vol. 85, pp. 231–248, Nov. 2017,

doi: 10.1016/j.eswa.2017.05.034.

[7] G. Mondragón-Ruiz, A. Tenorio-Trigoso, M. Castillo-Cara, B.

Caminero, and C. Carrión, "An experimental study of fog and

cloud computing in CEP-based Real-Time IoT applications",

J. Cloud Comput., vol. 10, no. 1, p. 32, Dec. 2021, doi:

10.1186/s13677-021-00245-7.

[8] H. Derhamy, J. Eliasson, and J. Delsing, "IoT

Interoperability—On-Demand and Low Latency Transparent

Multiprotocol Translator", IEEE Internet Things J., vol. 4, no.

5, pp. 1754–1763, Oct. 2017, doi:

10.1109/JIOT.2017.2697718.

[9] A. Massaro et al., "Production Optimization Monitoring

System Implementing Artificial Intelligence and Big Data", in

2020 IEEE International Workshop on Metrology for Industry

4.0 & IoT, Roma, Italy, Jun. 2020, pp. 570–575. doi:

10.1109/MetroInd4.0IoT48571.2020.9138198.

[10] G. Ortiz et al., ‘A microservice architecture for real-time IoT

data processing: A reusable Web of things approach for smart

ports’, Comput. Stand. Interfaces, vol. 81, p. 103604, Apr.

2022, doi: 10.1016/j.csi.2021.103604.

[11] G. Ortiz, I. Castillo, A. Garcia-de-Prado, and J. Boubeta-Puig,

"Evaluating a Flow-based Programming Approach as an

Alternative for Developing CEP Applications in the IoT",

IEEE Internet Things J., vol. 9, no. 13, pp. 11489–11499,

2021, doi: 10.1109/JIOT.2021.3130498.

[12] D. C. Luckham, Event processing for business: organizing the

real-time enterprise. Hoboken, N.J, USA: John Wiley & Sons,

2012.

[13] C. Inzinger, W. Hummer, B. Satzger, P. Leitner, and S.

Dustdar, "Generic event-based monitoring and adaptation

methodology for heterogeneous distributed systems: event-

based monitoring and adaptation for distributed systems",

Softw. Pract. Exp., vol. 44, no. 7, pp. 805–822, Jul. 2014, doi:

10.1002/spe.2254.

[14] L. Rosa, P. G. Alves, T. J. Cruz, and P. Simoes, "A

Comparative Study of Correlation Engines for Security Event

Management", presented at the Int. Conf. on Cyber Warfare

and Security, Kruger National Park, South Africa., 2015.

[15] WSO2, "Siddhi", 2022. http://siddhi.io/ (accessed Mar. 20,

2023).

[16] J. Roldán, J. Boubeta-Puig, J. Luis Martínez, and G. Ortiz,

"Integrating complex event processing and machine learning:

An intelligent architecture for detecting IoT security attacks",

Expert Syst. Appl., vol. 149, p. 113251, Jul. 2020, doi:

10.1016/j.eswa.2020.113251.

[17] D. Corral-Plaza, G. Ortiz, I. Medina-Bulo, and J. Boubeta-

Puig, "MEdit4CEP-SP: A model-driven solution to improve

decision-making through user-friendly management and real-

time processing of heterogeneous data streams", Knowl.-Based

Syst., vol. 213, p. 106682, Feb. 2021, doi:

10.1016/j.knosys.2020.106682.

[18] A. Garcia-de-Prado, "nITROGEN: Internet of Things RandOm

GENreator", 2020. https://ucase.uca.es/nITROGEN/ (accessed

Mar. 20, 2023).

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-041-4

ALLDATA 2023 : The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

