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Abstract—Digital Health Technology (DHT) utilizes a combina-
tion of computing platforms, connectivity, software, and sensors
for healthcare-related uses. Today, these technologies collect
complex digital data from participants in clinical investigations,
including wearable sensor signals and electronic Patient-Reported
Outcomes (ePRO)s. These collected data are used to develop
digital biomarkers (dBMs), which can act as health outcomes
indicators for diagnosing and monitoring disease state and life
quality. One essential step towards realizing the full potential of
these complex digital data is to define the fundamental principles
and methods to demonstrate sufficient data quality and fidelity
needed for the research. This paper aims to develop a digital data
quality assessment framework across the complete data life cycle
in dBM research, including data quality metrics and methods
to derive, visualize, and report digital data quality. Aggregating
and reporting digital data quality is often challenging and error-
prone. We developed a data quality assessment and reporting
tool that defines data compliance criteria and views automatically
generated quality reports at different levels in a consumable
fashion. Combining all these methods helps to establish our digital
data quality assessment framework to facilitate dBM research.

Keywords—digital health technology; connected clinical trial;
sensor data; data quality assessment; data visualization; digital
biomarker.

I. INTRODUCTION

Digital biomarkers (dBMs) are patient-generated physiologi-
cal and behavioral measures collected through connected digital
devices. The collected data are then used to explain, influence,
or predict an individual’s health-related outcomes (see [1]).
While the development of dMBs invests heavily in advanced
analytics, effective results depend on trusted and understood
data collected from digital devices. An established data quality
assessment framework is thus needed to define the expectation
of data, monitor the data for conformance to expectations
throughout the trials, and report various measures to assess
the data quality (see, e.g., [2]). Establishing a meaningful data
quality function will help reduce the risk throughout the dMB
research activities and ultimately ensures the success criteria
are met.

Today, we use DHT (see, e.g., [3]) to collect some of the most
complex digital data from patients for dBM research. There has

been an overall need for better data understanding and easier
access to quality and trusted digital data to support operational
and analytical activities in the research. Establishing a data
quality assessment framework and building tools to facilitate
the assessment is an emerging industry capability, and some
unique challenges for this class of data quality strategy include:

• Complexity of digital data — We collect some of the
most complex digital data in the dBM context, including
sensor signals from wearables, patient-reported outcomes
from hand-held devices, and labels and annotations pro-
cessed and used as ground truth information for algorithm
development and model building. Handling these data
could be a big data problem. For example, with a sampling
frequency of 50Hz, over 4 million 3-axial data points
are collected from an accelerometer sensor for a single
day to understand a patient’s daily activities. Similar
sensor data streams include, e.g., continuously collected
photoplethysmography (PPG) and electrocardiogram
(ECG) signals from trial participants.

• Full-spectrum quality expectations — Defining quality
expectations for digital data and monitoring their con-
formance to expectations are full-spectrum in the data
life cycle. For example, given that data can be collected
in a free living environment, scanning the invalid values
and noises in wearable sensor signals is often the first
profiling step. Identifying the wearable sensor signal’s
useable (wear-compliant) portions is also a leading data
quality function. The ultimate answer to the digital data
quality question is the extent our digital data satisfies the
specific dBM analysis requirement.

• Aggregation and reporting — Generating various mea-
sures to assess digital data quality is not trivial. For
example, aggregating compliance information from signal
level to the number of analyzable digital measures at the
visit and study levels can often be tedious and error-prone.
Equally challenging is to report data quality in an efficient
and effective means across the data life-cycle.

Our task in this paper is to present a data quality assessment
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framework and demonstrate a reporting platform to facilitate
dBM research. The paper starts with an overview of the typical
categories of digital data that our research is concerned with,
then focuses on the metrics we use to profile digital data
quality and later for aggregation at different levels. We also
demonstrate how we put together all functions into a data
quality reporting platform to support the work of all data
quality assessment functions. Then, we elaborate on how the
data quality reporting platform associates data stewards and
quality analysts with particular study data, allowing them to run
processes via interactive workflows and pull out consumable
data quality reports in a central location.

This paper is organized as follows. Section II presents the
related work. We present our digital data quality assessment
framework and platform in Section III and Section IV, respec-
tively. In Section V, we showcase digital endpoints and, finally,
we conclude the paper in Section VI.

II. RELATED WORK

Developing dBM requires conducting studies in a lab or
free-living settings to collect raw sensor data, often with
appropriate labels and annotations (e.g., reported patient
outcomes). Collection and analysis of wearable sensor data,
together with other digital data sets, has thus become an
emerging capability needed in dBM development. Industry
players have begun exploring cost-effective and purpose-built
solutions in the past few years. For example, the Medidata
sensor cloud [4] is used to manage wearable sensor and digital
health technology data for clinical trials. The Koneksa platform
[5] provides support to improve compliance monitoring and
patient engagement, and other representative efforts to store and
deliver raw or processed data from devices in trials, including
Evidation [6] and DHDP [7]. Furthermore, good data is more
important than big data in dBM development. Given that data
are collected in a free-living environment, noise in wearable
sensor signals is inherent. To make sensor data useful, we
need to monitor the quality and eventually standardize and
process them to support dBM discovery, as digital data quality
is of fundamental importance to developing algorithms for new
dBMs (see, e.g., [8] [9] [10]). In this paper, we are mainly
concerned with digital data sets that fall into four general
categories:

1) Raw Sensor Signals. A device typically collects data from
multiple sensor signals at varied pre-configured sampling
frequencies to minimize study participants’ burden under
free living conditions. In most cases, the sensor signals
are collected in a nonstop 24 ∗ 7 fashion throughout the
entire study, which generally runs between weeks to
months. Therefore, assessing potential issues, such as
sensor malfunctioning, or wear non-compliance due to
participants’ behaviors, is critical to ensure data quality
can satisfy the downstream analytics needs. Meanwhile,
the quality and coverage of sensor data directly correlate
to the dBM derivation, which will be discussed in the
later sections of this paper.

2) Scored Data, or Digital Biomarkers. In addition to
raw sensor signals, device companies usually have their
proprietary algorithms to analyze sensor data and derive
dBMs from it. For example, heart rate and blood volume
pulse can be derived from the raw photoplethysmography
(PPG) sensor signal. Derived dBMs are at a much lower
resolution than the sensor signal, often at the minute or
half-minute level.

3) Labels/Annotations. As algorithms and machine learning
models used in developing dBMs become more complex,
requirements for large annotated data sets grow. Annotat-
ing data for machine learning applications is especially
challenging in the biomedical domain as it requires the
domain expertise of highly trained specialists to perform
the annotations. Annotations can come as interval-based
events, with precise timestamps to label the onset and
offsets of disease events.

4) Clinical Records. Apart from raw sensor data and derived
dBMs, one yet important piece of data is clinical records
that provision key mappings, e.g., device ID to participant
ID, participant ID to the treatment cohort, visit dates to
treatment phases, etc.

Unique challenges arise from these digital data and have
made a case for us to develop a data quality assessment
framework to define the expectation of these digital data (e.g.,
completeness, uniqueness, validity, integrity), to monitor the
data for conformance to expectations throughout the dBM trials,
and, finally, a user interface to display the findings to support
operational and analytical activities.

III. DIGITAL DATA QUALITY ASSESSMENT FRAMEWORK

The key functions in our data quality assessment framework
should now be clear in Figure 1. The logical series of modeling
steps, the problems they induce, and the ultimate resolution of
the problems are in the rest of this section as follows.

A. Signal Data Quality Metrics

In the pre-study phase, we establish the Data Transfer
Agreement (DTA), to clearly define data quality metrics
regarding signal data, including raw sensor signals and dBMs.
Below we list the typical quality metrics, and Table I gives an
example of the data quality metrics table we find in a DTA
document, where accex, accely , accelz and ec are raw sensor
signals, st, po (categorical) are derived dBMs (or, scored data)
from accelerometry data, and hr and re are the scored ones
from ec.

• Sampling Frequency — For raw sensor signals, it is the
preconfigured average number of samples obtained in one
second. For derived dBMs, it is the resolution of resultant
features from analyzing raw sensor data.

• Valid Range — For numerical variables (i.e., sensor
signals and dBMs), a valid range is indicated by min-
imum and maximum values that can be measured. For
enumerated variables, it is a list of predefined categorical
values. One example is the rest classification biomarker
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Figure 1: The overall data quality assessment scenario — from establishing DTA in the pre-study phase, to compliance monitoring in the
live phase, and finally to the quality assessment and reporting in the post-Database Lock (DBL) phase.

TABLE I: EXAMPLE OF A SIGNAL DATA QUALITY METRICS
TABLE FOUND IN A TYPICAL DTA DOCUMENT.

Channel Description Units Min Max Invalid Sampling

Value Value Value Frequency (Hz)

accelx Accelerometer X Vector gravity/1024 -32768 32767 None 50

accely Accelerometer Y Vector gravity/1024 -32768 32767 None 50

accelz Accelerometer Z Vector gravity/1024 -32768 32767 None 50

ec ECG signal µV -10000 10000 32767 125

st Step count Steps 0 65535 None 1

hr Heart rate beats/min 30 200 0 0.25

re Respiration rate beats/min 4 42 0 0.25

po Posture Enum 0 11 5 1

• Laying Down = 0

• Standing = 2

• Walking = 3

• Running = 4

• Unknown = 5

• Leaning = 11

which has the following classes: “awake”, “sleep”, “toss
and turn” and “interrupted”.

• Invalid Value/Error Code — In addition to the valid
range, devices often provision specific invalid values or
error codes to indicate different statuses of malfunctioning,
which helps pinpoint the underlying issue.

B. Signal Data Quality Assessment

Connected clinical trials for dBM research often are con-
ducted under a free living condition, i.e., participants wear
sensor devices on a best effort basis using instructions com-
municated during study enrollment. Inevitably, the free living
conditions, device wearing compliance, potential device failure,
or device malfunction introduce data issues such as missing
data or invalid data collected when participants do not wear
or incorrectly wear the devices. Figure 2 illustrates how valid
signals (i.e., correctly worn signals) can mix with invalid signals

Figure 2: Illustration of sensor signal data issue. Visualized sensor
data show different patterns when correctly versus incorrectly worn.

(i.e., incorrectly or not worn signals) in the data collection and
how they differ when plotted. Therefore, a qualitative means
is needed to tell whether a device was operating normally and
worn correctly (i.e., data usefulness).

To fulfil this goal, the quality assessment is performed in
two stages, as discussed in the following.

• Validity Check. Data validity check leverages signal data
metrics, as discussed in Section III-A. We immediately
know how many valid data points we expect to receive for
a sensor signal or dBM using its pre-configured sampling
frequency. We can filter out invalid values with a valid
value range to get valid data coverage, i.e., coverage of
valid data points.
Since raw sensor signal directly correlates with derived
dBMs, we can perform a validity check against the two
independently and then align their valid data coverage
to check the consistency. We may further overlay device
incident events to understand the root cause of observed
issues better.

• Non-wear Detection. After dropping out invalid data
through the validity checking process, the subsequent task
is to detect moments when the devices were not correctly
worn. The non-wear detection can be challenging as data
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from such moments can be entirely valid in terms of falling
within its valid data range. Instead of reinventing the wheel,
we rely on Biobank [11] [12], an accelerometer data
processing pipeline whose non-wear detection module is
widely adopted as a standard. Below are two key concepts
in non-wear detection.

– Epoch — Although data points are collected initially
at a high resolution, e.g., 50Hz sampling frequency,
the processing is conducted on aggregated values
(e.g., 1 or 5 second short epochs or 15 minutes long
epochs) due to the following reasons: (1) collapsing
data to epoch summary measures helps to standardize
differences in sample frequency across studies; (2)
there is little evidence that raw data is an accurate
representation of body acceleration, and all scientific
evidence so far has been based on epoch averages;
(3) collapsing data to epoch summary measures also
helps to average out different noise levels making
results more comparable across sensor brands.

– Non-wear Detection — Accelerometer non-wear time
is estimated based on the standard deviation and the
value range of the raw data from each accelerometer
axis. Classification is done per 30-second epochs
based on the characteristics of a larger window cen-
tered at these 30-second epochs. Specifically, Biobank
identifies stationary periods in 10-second windows
where all three axes have a standard deviation of
less than 13.0mg (1mg = 0.0098m · s−2). These
stationary periods are then used to define whether a
window is stationary or not.

C. Signal Data Quality By Granularity

In addition to qualitative assessment as discussed in Sec-
tion III-B, quantitative measures that define how much usable
data is in a specific period (i.e., data quality at different levels)
are required before statisticians can begin analysis.

The Data Quality Model. Based on Biobank’s non-wear
classification on 30-second epoch level, we can further generate
data quality that can be used for analysis at different time
resolutions. Each phase in our data quality derivation flow is
illustrated in Table II to Table V and expanded upon below.
Column name “Cvge.” is the abbreviation for “Coverage in
Minutes”.

• Epoch Level — This table is generated from Biobank’s
30-second epoch classification. It serves as the working
basis for subsequent data quality tables. Note that we have
one additional column, “Subject,” to indicate participant
ownership of an epoch.

• Hourly Level — From the epoch quality table, we can
apply a filter to only keep correctly worn epochs and
in turn infer hourly data coverage in terms of compliant
minutes. This hourly data quality table is the source for
data quality reporting at the finest granularity.

• Daily and Intraday Window Level — From the hourly
data quality table we can summarize the total coverage
for each day and produce daily level data quality tables.

In addition, for analysis purposes, we are often interested
in specific intraday windows from which digital endpoints
are derived — for instance, walking time or step count
during the daytime (i.e., daily physical activity) and sleep
hours during the nighttime. Thanks to the “Hour” column
in the hourly quality table, intraday window coverage can
be easily derived by applying filters.

• Extended Quality with External Mappings — We
can further extend the data quality table with additional
mappings when they become available as the study
progresses, for instance, mapping between patients and
sites/visits, as reported from the clinical operation site.
These extra fields allow analysis-specific filtering and
aggregation, e.g., to find out which participants have
sufficient data and set up individual baselines. We use
this table to look for the patients with at least three valid
days (>= 20 hours of data for a day to be qualified as a
valid day) during a pre-treatment visit.

D. Representing Digital Data Quality

Fully understanding the quality of a large dataset, especially
one that contains data from wearable device sensors, is not
always a trivial undertaking. With numerous considerations to
be cognizant of, as discussed in Section III-C, the most logical
first step is to present the data with visualizations. Thoroughly
understanding the data coverage and quality requires more than
one visualization, simply because there is more than one aspect
to check. This section presents a family of commonly used
visualization examples in our data quality strategy.

• Identifying Outliers and Missing Data. Certain metrics
must fall between threshold ranges depending on the
study and associated data sources. One example is heart
rate, which falls within a specified range of 30 to 200
beats/minute for one study. This range is outlined in the
DTA for the study and must be applied to all heart rate
data points collected. By plotting these signals against the
specified thresholds, outliers can be immediately detected
by viewing a plot. If outliers exist, further investigation
will be completed for that participant’s data to see if
there are outliers for other metrics. Further, gaps in
data can be identified within the same visualization, as
demonstrated in Figure 3(a). Detailed data quality reports
are generated in conjunction with the visualizations created
for displaying outliers and missing data. For example, we
convert the signal data from 3(a) to a sequence of colored
blocks in Figure 3(b), with green blocks indicating valid
sensor signal value in the corresponding period and red
indicating missing or invalid signal value identified. In
Figure 3(c), we compute the valid data ratio, and therefore
can represent the data quality with a numeric value, or
with a color from the color palette keyed to the valid data
ratio (see e.g., Figure 3(d)).

• Data Quality Map with Levels of Detail. The quality
of sensor signal data must be examined on various levels,
each offering a specific level of detail. While certain levels
are more useful for identifying distinct patterns, we will
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TABLE II: EPOCH LEVEL
QUALITY.

Subj Timestamp Non-

wear

1002 2021-09-15 false

19:15:00

. . . . . . . . .

1005 2021-10-18 true

09:45:30

TABLE III: HOURLY LEVEL
QUALITY.

Subj Date Hr Cvge.

(min.)

1002 2021- 19 45

09-15

. . . . . . . . . . . .

1005 2021- 09 60

10-18

TABLE IV: DAILY AND INTRADAY
LEVEL QUALITY.

Subj Date Cvge. Window

(min.)

1002 2021- 1440 pa daily

09-15

. . . . . . . . . . . .

1005 2021- 720 sleep night

10-18

TABLE V: EXTENDED QUALITY WITH EXTERNAL MAPPINGS.

Site Subj. Date Trial Day Index Visit Cvge. Window

(min.)

101 1002 2021-09-15 1 0 1440 pa daily

(PreTreatment)

. . . . . . . . . . . . . . . . . . . . .

103 1005 2021-10-18 32 4 720 sleep night

(a)

(b) (c)

−−−−→
60.61%

(d)

Figure 3: Visualization for sensor data quality. (a) Heart rate data (beats/minute) observed for one participant between 2021-02-15 07:49:00.000
and 2021-02-15 08:11:00.000. Valid range between 30 - 200 beats/minute, as denoted by threshold lines. Invalid data was observed multiple
times. Missing data was observed between 2021-02-15 08:01:08.994 and 2021-02-15 08:06:09.000 with nearly 5 minutes of no data. (b)
Use colored blocks to represent sensor signal data quality. (c) Deriving numeric representation of the data quality, i.e., valid data ratio. (d)
Interpreting data quality with color.

focus on the hourly, daily, and study levels on both a
patient and population level:

– Minute-by-Minute Quality Map for a Day — Exam-
ining signals on a minute level can help to identify
the minutes where a device may have intermittent
connectivity, or more minor issues can be identified
and further inspected, as seen in Figure 4(a).

– Hour-by-Hour Quality Map for a Trial — Zooming
out, we can look at each hour across all days in
the study. The hourly level aggregation mentioned in
Section III-C is used to configure the day level plot,
shown in Figure 4(b). This figure shows minutes of
data coverage for each hour across all study days. This
type of visualization allows us to look at compliance
trends for a patient that may persist during certain
hours of each day. Figure 4(b) shows an interesting
device wearing pattern for the participant — taking
off the wearable device to charge the battery for a
couple of hours in the middle of each day of the trial
has resulted in missing data, visualized as a sequence
of red blocks in the center area of the map.

– Day-by-Day Population-level Quality Map for a Trial
— Plotting data quality for all hours, days, and
participants in a study yields the observation of data
quality patterns seen in Figure 4(c). This study-level
visualization can help us gain insights into the overall
data quality at the population level and the compliance
trends at the participant level throughout the trials.

– Compliant Days Throughout a Trial — In addition to
the number of hours per day, it is also useful to view
the number of compliant In addition to the number of
hours per day, it is also useful to view the number of
compliant days throughout the study, with a definition
of compliance dependent on a study’s protocol. One
can recognize device-wearing patterns by plotting the
number of patients compliant daily in a given study.
As seen in Figure 4(d), the number of compliant days
in a study decreased due to reduced device wearing
as the study progressed.

• Identifying and Aligning Data Issues. In many clin-
ical trials, it is a requirement that patients visit a site
periodically. Whether it be for receiving dosing of a
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(a)

(b)

(c)

(d) (e)

Figure 4: Plots showing (a) minute-level quality representation throughout a participant day, (b) hourly-level quality representation for a
participant throughout an entire trial, (c) daily-level quality for a population throughout the entire trial, (d) number of compliant days across
all days in a study and (e) data coverage and device wearing issues observed throughout a study.

drug, having their vitals checked, or obtaining a device,
information is collected by the sites and stored in various
reports. One type of report, device reports, are used during
data processing and can help understand the device’s
overall performance, specifically if any device issues exist.
Additionally, information derived from these reports can
be used to populate visualizations such as Figure 4(e). By
combining this visualization with the information received
in site reports, patterns specific to potential device issues
and wearing patterns can be derived.
From the aforementioned data visualizations, various
issues and patterns can be identified. When these are
paired with actionable recommendations and delivered to
the study team promptly, the study team can notify the
corresponding site and participant to ensure the issue is
rectified. This process leads to a quick turnaround time for
potential improvements to data collection and can resolve
the challenges that create low compliance in studies.

E. Generating Compliance Reports

Visualizing data is key to understanding data quality, as
discussed in Section III-D. However, it is equally important
to have a standardized reporting system for compliance to

distribute quality and compliance information. Such systems
generate reports that outline compliance on three levels: trial,
site, and patient. In addition, automated generation allows
systems to be configured at the start of a trial and run at
set cadences to produce consistent quality assessment reports
efficiently.

For each report, regardless of the level or contents, the
thresholds used to configure and derive data metrics and
visualizations are based on the expectations outlined in the
study protocol. Each report aims to give insights into the
population’s compliance behavior:

• Trial Summary: A single comprehensive trial report can
be generated and contains metadata regarding the number
of patients, sites, and overall compliance percentages.

• Study-Level Compliance: A study-level report, such
as Figure 5(a), will typically contain metrics displaying
overall enrollment and compliance on a site level. These
can allow a clinical trial team to gauge the progress of
a specific study easily, i.e., the number of patients who
have completed their time in the study and the number
of patients still in progress.

• Site-Level Compliance: Generating reports based on sites,
as seen in Figure 5(b), allows clinical teams to efficiently
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(a) (b) (c)

Figure 5: Putting together compliance reports for Intervention-Specific Appendices (ISAs) under Chronic Pain Master Protocol (CPMP). (a)
Generated compliance reports on the patient level. (b) Compliance by visit. (c) Customizable compliance report at patient level.

identify which sites may be experiencing issues regarding
low compliance across their assigned patients. Typically,
site reports contain information for overall performance,
with specifics for patients that may fall below a set
compliance threshold. The patients with low compliance
are labeled with a potential issue- such as low compliance
during the nighttime. The potential issues are derived from
the hourly compliance for that patient. From here, sites
can identify which of their patients contribute most to
low compliance and attempt to resolve the issues linked
to the low compliance.

• Patient-Level Compliance: Reports on a patient level
can give insight into their specific patterns of device
wearing. In these reports, as seen in Figure 5(c), the
number of visits, compliant days within each visit, and
compliance percentage per visit are displayed. In addition,
an hourly compliance heatmap is visible, allowing for
further understanding of when patients wear their devices
across the study duration.

F. Data Quality in Novel Digital Endpoint Development

For novel digital endpoint development, raw sensor signals
are collected along with annotations or labels, considered the
ground truth. Annotations describe events explaining the status
of the patient. As such, it is critical to assess the data quality
of annotations and sensor signals to identify and address as
many defects as possible.

Assessing Annotation Quality. Annotations are typically
collected through patient reporting via a survey system or are
labeled via software by trained clinicians who observe patient
behavior. We first check for defects in the annotations. Defects
may include improper data structure, invalid label categories,
incomplete annotations, duplicates, and impossibly overlapping

annotations. Defects could be caused by bugs in the annotation
software or improper training on how to label.

Assessing Annotation Quality with Sensor Signals. Eval-
uating annotation quality in isolation is insufficient because
digital endpoint development requires both annotations and
raw sensor signals. So, we must also assess the data quality of
annotations and raw sensor signals in conjunction. Therefore,
we plot annotated time segments along with raw sensor signals
(e.g., Figure 6) to facilitate the data quality assessment.

Discrepancies in the alignment of annotations and raw
sensor signals can vary considerably due to time tracking
configurations and device properties in each step of the
data collection process. Misalignment between annotation and
raw sensor signals can be caused by improper device time
configuration or the precision of the sensor device’s initial
time configuration. In addition, if the sensor device’s time
tracking is not periodically synced, the device’s internal Real-
time clock (RTC) will slowly drift over time. We measure
drift using the sensor signal overlaid with annotation plots.
Once the misalignment from the initial configuration time and
RTC drift are measured, we align the raw sensor signals to the
annotations.

After the annotations and sensor signals have been properly
aligned, we observe the plots to identify possible defects
in annotation quality. Defects could include improper labels,
annotated events that are not apparent in the sensor signals,
and time segments that appear to be missing annotations or
sensor signals. Specific time segments of concern are selected
and validated with the source to determine if further action is
needed.

Lastly, depending on study-specific requirements, we may
apply other methods to assess data quality. For example, output
from movement detection algorithms can be compared to
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Figure 6: A plot of sensor signals overlaid with annotation labels is used to assess the data quality of annotations in conjunction with sensor
signals.

(a)

(b) (c)

Figure 7: The platform features displaying (a) filters for customizable compliance reports, (b) compliance by visit, and (c) generated
compliance reports on the patient level.

annotated time segments that describe the movement to check
annotation validity and coverage. Using various methods to
assess data quality from different approaches is essential to
maintain the data quality needed for novel digital endpoint
development.

IV. THE DATA QUALITY ASSESSMENT PLATFORM

Throughout a clinical trial, accessing data quality metrics
is critical to upholding our outlined principles. Therefore, in
addition to the compliance reports generated, an interactive
data quality assessment platform is used to monitor data quality
throughout a trial continuously.

The platform design allows users to customize the plots and
view data quality through various lenses, utilizing filters and

user controls. For example, users may want to view compliance
on a day, visit, or patient level. As seen in Figure 7(a), they
can select the level and the metric for which the visualization
will show, as discussed below.

Let us take configuring and viewing compliance visualiza-
tions as an example. A user wants to view compliance for all
patients in a study on the visit level, as seen in Figure 7(b).
They define compliance as having at least 12 hours of data
daily, with 3 days each visit comprising a compliant visit. By
selecting the compliance type, which in this case is visit, and
inputting the number of hours and days for defining compliance,
the user can see the population’s compliance for these specific
thresholds, as seen in Figure 7(a). Additionally, they can easily
compare and contrast different levels and compliance thresholds
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Figure 8: Process of transforming raw steps into bouts.

within the data quality assessment platform.
In addition to the compliance assessment, data quality

visualizations, such as Figure 4, are created and customized
within the platform. For example, as seen in Figure 7, a user
can select a specific time range or time level to view the data.
This zoom in and out can be used to identify and trace patterns
of device wearing.

The data quality assessment platform allows for customizable,
real-time, informative visualizations that enable insights into
patient compliance and device-wearing data patterns. The study
team can process and act upon these key insights with these
visualizations housed in a centralized, consistent, and efficient
platform.

V. DIGITAL ENDPOINTS

With out data quality assessment platform, we are able to
derive digital endpoints from two categories: Physical Activity
(PA) [13] [14] and sleep [15] [16]. Typical PA features include
duration of daily light/moderate/vigorous activities, steps count
and gait features. For sleep features they are night sleep duration
and Wakeup After Sleep Onset (WASO).

Gait features are a unique set of physical activity endpoints
that unveil fine-grained walking characteristics, for which we
see a significant distinction between health and chronic pain
cohorts. Due to their importance, we detail our effort in deriving
gait features in this section.

Determining bouts is the most fundamental step since all
gait features are based upon bouts. Figure 8 illustrates this
process: (1) raw individual steps with their timestamps are
obtained from an open source step detection algorithm; (2)
derive step rate for every two consecutive steps; (3) since bout
by definition is a short period of intense walking activity with
less than 1.6 seconds of stop between two steps, we can apply
this gap threshold to detect individual gaps; and (4) depending
on specific settings of a study (e.g., profile of participating
cohorts), we apply a constraint on minimum bout duration (e.g.

Figure 9: Bout count.

filtering to keep >= 15s bouts) and optionally merge bouts
with small gaps in between into a single bout.

Once bouts are identified, we can derive bout and gait-related
features. Below we summarize the derivation process.

• Bout Count. We currently use the definition of actual
number of identified bouts. Another meaningful definition
is the count in terms of minimum duration bout , i.e.,∑N

i=1
Durationi

15 = 1, where 15s is used as minimum
bout duration. Figure 9 illustrates the two definitions.

• Bout Duration. Bout duration is the average duration
across all bouts, i.e.,

∑N
i=1 Durationi

N .
• Steps per Bout. Steps per bout is average of the count

of steps across all bouts, i.e.,
∑N

i=1 StepCounti
N .

• Cadence. A single bouti’s cadence is the number of steps
per its duration, i.e., StepCounti

Durationi
, we can then use the

averaged cadence across all bouts for the cadence feature,
i.e.,

∑N
i=1 Cadencei

N , as shown in Figure 10.
• Gait Rate. For a single bouti with M +1 steps, its mean

step rate is defined as
∑M

i=1 stepRatei
M , where stepRatei =

1
ti+1−ti

is the step rate between stepi+1 and stepi, whose
occurring timestamps are ti+1 and ti respectively. The
gait rate feature is then derived as the average of the
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Figure 10: Cadence.

mean step rate across all bouts, i.e.,
∑N

i=1 MeanStepRatei
N .

Figure 11 illustrates this process.

Figure 11: Gait rate.

• Gait Rate Standard Deviation. Similar to mean step
rate, for a single bouti with M + 1 steps, we can
calculate standard deviate over the M steps rates, i.e.,
σ(StepRatei), i = 1 · · ·M . The feature is then derived
as the mean of standard deviation in step rate from each
bout, i.e.,

∑N
i=1 StepRateStdi

N .
• Step Rate Change. As shown in Figure 12, a bout’s

step-to-step rate change is the difference of step rate from
the first set of steps (i.e., steps 6 to 8) to steps 23 to
25 on any period of walking with at least 25 steps long.
Therefore for bouti with 25 or more steps, its step to step
rate change can be calculated as µ(

∑25
i=23 StepRatei)−

µ(
∑8

i=6 StepRatei). In turn, the feature is the mean of
step rate change from each eligible bout (≥ 25 steps), i.e.,∑N

i=1 StepRateChangei
N .

Figure 12: Step rate change.

VI. CONCLUSION AND FUTURE WORK

As DHT continues to evolve and collect more complex
digital data in clinical trials, the need for a digital data quality
assessment platform is increasing. By defining and imple-
menting the fundamentals of data quality into the digital data
quality framework and platform, we can generate automated
compliance reports, customizable visualizations, and real-time
quality metrics. In addition, the methods for facilitating dBM
research have been simplified with the centralized digital data
quality assessment platform. As dBM research continues, so
will the use of the digital data quality assessment platform.
Future directions include the use of visual mining and data
mining technologies to help identify data quality in a novel
way to facilitate data quality assessment.
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