
Big Data for Monitoring Mobile Applications
Collection and Indexing Results for Analysis and Decision

Mourlin Fabrice
Algorithmic, Complexity and Logic

Laboratory

UPEC University

Cretéil, France

e-mail: fabrice.mourlin@u-pec.fr

Djiken Guy Lahlou

Applied Computer Science

Laboratory

Douala University

Douala, Cameroon

e-mail: gdjiken@fs-univ-douala.cm

Laurent Nel
Leuville Objects

Paris-Saclay University

Paris, France

e-mail: laurent.nel@universite-paris-

saclay.fr

Abstract—Behavior monitoring is an activity that cuts across all

software. It ensures that the application proceeds as expected.

Our Big Data workflow supports data streams of varying rates.

The collected data sometimes contains errors that we want to

explain. To this end, we seek to trace the important events of our

calculations in order to qualify the anomalies in our processing

and then easily trace the origin of the problem. We have

implemented a monitoring layer within mobile applications in

order to perform smart control over a set of mobile devices. We

have defined a Big Data workflow to collect, index and store the

log data in order to submit it to an Artificial Intelligence (AI)

model. We detect behavioural anomalies through the analysis of

software logs deployed on embedded devices. Based on the

patterns recognised in the logs, our AI model provides us with a

sequence of system operations. These operations are scheduled

to re-deploy a service, change a driver, perform a library

update, etc. The critical points concern the management of the

Android APIs with respect to the deployed software; we must

manage with precision the software updates with respect to the

firmware versions, among other things. In the end, management

reports are built every week and issued to the maintenance

team. These documents are the record of maintenance activities.

They provide an explanation for periods of non-availability of

equipment and for the withdrawal of obsolete equipment.

Keywords— Big Data; indexing; log analysis; distributed

application; AI model; storage server; anomaly detection.

I. INTRODUCTION

With multiple sources of information, the supervision of
mobile applications becomes essential and requires
administration of the different applications. Software
administration is an essential facet of any application these
days, from application servers to embedded applications. We
want to detect anomalies by information visualization,
borderline behavior or even fraudulent actions. In order to
have this information, developers use log Application
Programming Interfaces (APIs) to transmit all behavioral
data. To make the information usable, log messages generally
have a format as well as a level or hierarchy of severity. The
application administrator manages the level of expressiveness
per module in order not to suffer from too much information.

There are many areas of application for log messages,
from system and network aspects to business applications.
Database servers like Postgresql have log files containing the
history of activity, from the creation of databases and triggers
of application connections. Embedded applications share the
same need. An Android application has access to a log API
whether it is written in Java, Kotlin or C ++. An Android
logger corresponds to a variable in memory. It can be stored
in a file or sent to a socket.

Log messages play a key role in several phases, not only
at runtime but also in all the test phase: unit, integration,
system and functional. During the development phase, they
provide a view of the state of the application, in terms of
network, security, business, etc. In the case of an on-board
application, these data cannot be displayed because the
peripheral does not necessarily have a screen and it is useful
to redirect the information into a persistence unit (memory
card, memory stick, etc.). During the debugging phase, these
same messages have a tag that allows them to be filtered, or
even to specify a different level of severity from one package
to another to configure the feedback. As part of this study, this
effort is focused on the analysis of log messages in use.

The difficulties associated with log analysis relate first to
the volume of messages received. Indeed, it grows rapidly
with the number of sources. Thus, in the case of on-board
application monitoring, when the fleet of peripherals is
enriched with new equipment, it is no longer possible in
human terms to analyze the logs with serenity. The
automation of this process is required. A second difficulty
arises with the flow of these messages, which depends on the
use of the monitored applications. When the number of users
grows, then it is necessary to set up information sampling.
Finally, it is not uncommon for each embedded application to
have its own log format, even if it is generated by the same
API. In this case, it is necessary to consider a standardization
of formats during the collection in order to be able to extract
information from different sources and put them in causal
relation.

All the properties linked to the processing of log messages
naturally lead us to consider this work as a Big Data workflow
applied to a time scale. Indeed, it is essential to react to the

15Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

mailto:fabrice.mourlin@u-pec.fr

problems detected before they become even more serious. In
this document, we present the results of our work, which
began more than a year ago with the Big Data prototyping of
a solution to the anomaly prediction linked to Android
applications. These mobile applications are used for taking
pictures of experiments in biology. Users can annotate each
photo and rearrange the photos within a document linked to
an experiment. Users export their final document from the
mobile device to a Web server accessible from the WiFi
network at the place of the experiment.

The rest of this paper is structured as follows. Section II
describes the works close to our domain. Section III provides
a precise description of our use case. Section IV addresses the
software architecture of our distributed platform. Section V
goes into finer details on our streaming approach, which
includes an indexing step. Section VI focuses on our results
and the impact on the maintenance task. The
acknowledgement and conclusions close the article.

II. RELATED WORKS

Predictive log analysis is a widely studied topic. Part of
the work focuses on enhancing the information itself. A
second part concerns the use of this data to react, alert, and
more generally automates a process.

A. Log analysis methods

Adam Oliner et al. describe, through several use cases, the
information useful to report during execution for software
monitoring [1]. They stress, among other things, the
importance of adopting a consistent format throughout an
application. They make the analogy between the follow-up of
manufacturing on one meeting on a production line and the
follow-up of the software activity, which is the subject of this
work.

T. Yen et al. describe how to leverage distributed
application logs for the detection of suspicious activity on
corporate networks [2]. Their work highlights the use of the
beehive tool for extracting information and producing easily
exploitable messages. Analysis against a signature database is
then possible.

S. He et al. present six methods for log analysis of
distributed systems: three of them are supervised and three
others are unsupervised. The authors make a comparative
evaluation of these methods on a significant volume of log
messages. They emphasize the strengths of software
monitoring task automation [3].

In more constrained fields such as real time, log analysis
systems must be able to detect an anomaly in a limited time.
B. Debnath et al. present LogLens that automates the process
of anomaly detection from logs with minimal target system
knowledge [4]. LogLens presents an extensible index process
based on new metrics (term frequency and boost factors). The
use of temporal constraint also intervenes in the recognition
of behavior pattern. Therefore, abnormal events are defined as
visible in a time window while other events are not. This
allows semi-automatic real-time device monitoring.

B. Log analysis and machine learning

The development of machine learning has greatly
impacted the use of logs. Depending on the work, studies lead
to the detection of anomalies or the discovery of software
attacks.

Q. Cao et al. presented a work on web server log analysis
for intrusion detection and server load reduction. The use of
two-level AI model allowed them to increase the efficiency of
their detection system. In this approach, the use of decision
trees structures the log data [5].

W. Li considers that logs are a complement to the
software-testing phase. Since the time allocated to testing is
insufficient, he presents a failure diagnosis strategy based on
the use of an AI model [6]. He provides a comparative study
between several models.

There is a large body of work on network log analysis for
various protocols including HTTP [7] or data-centric
protocols such as Named Domain Networking (NDN) [8]. In
all cases, the strategy is based on formatted messages where
part of the information is filtered and then submitted to a
model for prediction.

C. Reporting of artificial intellgence prediction model

In order to obtain a set of guidelines for the use of
predictive machine learning models, it is essential to build
regular reports on the quality of predictions. In the context of
clinical experiments, W. Luo et al. published a rulebook for
AI model development [9].

P. Henderson et al. present a systematic reporting of the
energy and carbon footprints of machine learning. The
authors’ goal is to adapt an efficient reinforcement learning
strategy and explain the reinforcement learning events [10].

L.M. Stevens et al. present a recommendation for
transparent and structured reporting of Machine Learning
(ML) analysis results specifically directed at clinical
researchers [11]. Their goal is to convince many clinicians and
researchers who are not yet familiar with evaluating and
interpreting ML analyses.

D.P. Dos Santos et al. take a similar approach to the
analysis of radiological images. Their quality is uneven and it
becomes difficult to provide a reproducible analysis approach.
It then becomes essential to build reports to explain the state
of the AI model that led to certain predictions. The authors
explain how to structure to help build a post analysis
explanation [12].

III. USE CASE DESCRIPTION

A. Context Description

In biology trainings, many experiments are done where
students are asked to prepare, perform and follow up. In this
context, mobile devices are provided to take pictures, record
sounds, or even use the device's sensors to collect data. To
save different documents in the memory of the mobile device,
a software suite is installed. It allows the authentication of the
user, the dating of each collected information and the transfer
at the end of the experiment to a server for validation.

During an experiment, all the peripherals are connected to
the laboratory WiFi network. This connection authorizes data

16Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

exchange with the laboratory server, which will receive all the
students' data at the end of the experiment for validation by
the supervisor. This network connection is also used to send
log messages to monitor the activity of each mobile device.
This concerns the capture of information: taking a picture or
recording a single comment or a short video. This type of
recording is not often used during an experiment because
several students are monitoring the same experiment and this
leads to noise pollution for the other participants.

The analysis of an experiment by a group of twenty
students takes place over a period of one-day maximum in the
same experimentation room. This means that the connection
is made with the same access point for all devices. Even if the
batteries are initially charged, it is possible at any time to have
a recharging point in the room.

Laboratory observation sessions can be short in the early
grades, such as showing the release of gas bubbles by an
aquatic plant. Students construct a document to highlight the
conditions of this phenomenon and then make a video to
support their comments. Then, they observe the role of light
and measure its value with the light sensor of the Android
tablet. A second video will show the release of gas bubbles by
an aquatic plant in the presence of light. In the absence of
light, the students make a comparison with pictures.

In the lab room, a group of students follows an experiment
with one tablet per student. A typical scenario consists of one
WiFi access point per room, a set of mobile devices and a
remote storage server for document backups at the end of the
session. This scenario is to be multiplied by the number of
groups, possibly in parallel in different lab rooms. Two
properties are thus highlighted: on the one hand, a local
authentication phase on the mobile device, on the other hand
a centralized storage server (see Figure 1). In addition, the lab
room has a laptop for the teacher and a shared printer.

Figure 1. Network diagram of a laboratory room.

B. Scenario description

In order to describe a nominal scenario more precisely, let
us take the case of a student from the beginning of a lab
session to the submission of a document at the end of the
session.

Figure 2 describes the general flow of the scenario in the
Unified Modeling Language (UML) notation; it concerns an
observation session (Lab Session). The biology teacher

manages this session. Each student manages their own
documents locally on their local device. Thus, the student
takes notes, photos, videos and measurements via the
available sensors. When his work is finished or the teacher has
closed the session, a student prepares his final document, signs
it and deposits it on the storage server.

Figure 2. Nominal scenario during an experiment in a lab room.

IV. SOFTWARE ARCHITECTURE

If the software architecture of the business part is very
simple, it is only the entry point of the information collection,
which gathers the log data on the storage server. The analysis
of these logs is more complex because it takes into account
additional constraints: the arrival of log data continuously, the
need to impose a data schema to index the information, refine
the search for information and the detection of anomalies.

A. Client application

In order to collect information from the activity of the
actors in the scenario in Figure 2, the log system of the devices
is used by the students and the teacher. Our goal is to collect
and cross-reference information from the various sources.
Thus, it is essential to monitor the events related to the
management of the laboratory sessions. In addition, any event
related to an information capture or modification is useful.

1) Mobile application

The MobileApp instance in Figure 2 is an Android
component installed on each tablet. The set of class is written
in Java using the log API specific to this system. In the
business part, we have defined a message format in order to

17Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

easily extract the information. The creation of the log
messages is done by using the android.util.Log class, which
allows not only to prefix with a semantic tab, but also to add
a severity level. Thus, from a set of messages, a regular
expression filters the relevant results to focus on the essential
data.

In addition to the business events, in this effort, we have
traced the memory events provided by the garbage collector,
the transmissions and receptions of information from the http
network. Moreover, we used the Android Mobility
Management API to define usage profiles such as Student
profile. It allows business apps and data to be stored in a
separate, self-contained space within a device. The teacher has
full management control over the applications, data, and
Student profile settings on the device, but has no visibility or
access to the device's personal profile. This strong separation
allows teachers to control MobileApp data and security
without compromising student privacy if they are using
applications other than those intended for the biology course.

We have developed a Device Policy Controller (DPC),
which logs network activity. Network activity logging helps
us detect and track the spread of malware on tablets. Our DPC
uses network logging APIs to report the Transmission Control
Protocol (TCP) connections and Domain Name System
(DNS) lookups from system network calls.

To further process the logs on our Big Data cluster, we
have configured DNS deny lists to detect and alert for
suspicious behavior. We have enabled Android network
logging to record every event from the MobileApp
application. It uses the system's network libraries. Network
logging records two types of events: DNS lookups and
network connections. The logs capture every DNS query that
resolves a host name to an IP address. Other supporting DNS
queries, such as name server discovery are not logged. The
Network Activity Logging API presents each DNS lookup as
a DnsEvent instance. Network logging also records an event
for each connection attempt that is part of a system network
request. The logs capture successful and failed TCP
connections, but User Datagram Protocol (UDP) transfers are
not recorded. The Network Activity Logging API presents
each connection as a ConnectEvent instance. All this network
log configuration is complex, but grouped in a specific
concrete class named DevicePolicyManager. The
configuration is taken into account asynchronously and it is
important to validate it before distributing the tablets to
students at each software update.

2) Mobile component

The component deployed on the teacher's laptop is a
traditional Java component also configured with a message
format and a log level. This provides a trace of important
events that take place on this workstation. Log analysis is the
fastest way to detect what went wrong, which makes logging
in Java essential to ensure the performance and health of our
distributed application. The goal is to minimize and reduce
any downtime, to reduce the mean time to repair.

We used the slf4j library because it represents a simple and
highly configurable API. In particular, we have configured the
directory where the log messages are saved as well as the

expression to generate the file names with the date. The size
of the messages is voluntarily limited, so that the subsequent
collection is always done within a reasonable time. In
addition, the stack trace is provided for any anomaly. Finally,
the structure of all logging events follows a pattern consistent
with the MobileApp component. We have added a log
converter to hide some information such as student IDs. It is
important that sensitive information is not traced because this
data is then transmitted to our Big Data cluster for analysis.

B. Server application

The server application part is deployed on the storage
server. This component, also written in Java, contains the
implementation of Web service allowing on the one hand to
receive the documents of the students but also to acknowledge
the receptions. This part is developed with the Spring Boot
library. We use intensively the Spring configuration for the
logs, but also for the persistence aspects. The database is
Postgresql version 10. As in the previous section, the location
of the log files for our server component or for the Postgresql
server is imposed. As an example, we record the trace of any
http request received by our Web services. The headers are
kept as well as the response headers. The version of the http
protocol used is http/1.1. In the same way as for the Laptop
component, we have imposed a log message format.

C. Big Data architecture

This section focuses on describing our Big Data workflow
from collection to building our AI model. We wanted to
automate our approach as much as possible because any
human intervention leads to blockages or even loss of
information.

1) Data collection

This part deals with the collection of log files in order to
send them to a Kafka queue. These Kafka files are the entry
points of our Big Data cluster. Because there are 3 different
types of components, our best choice was to build an event-
based collection based on scenario actions. For the
MobileApp part, the logs are recorded locally on the device.
The sending of the information to a Kafka topic is done when
the student sends his final document to the storage server. This
approach reduces the number of accesses to the Kafka topic
server. Thus, the access point of the lab room has been used
to send an http request with an attachment part (the
document). This sending is also present in the logs so that the
next time only a request is sent, not the same data but only the
new ones.

The same approach is used for the laptop component.
When the lab session is closed, the logs on the laptop are sent
to a Kafka file of the same topic. The message volume is
lower, but the information is essential when associating with
the logs of the mobile devices.

For the storage server, a repetitive task was our best bid
because this central point does not reveal any particular
interaction but a continuous flow of data. A cron table was
used to collect logs from the Postgresql server and the server
component to a Kafka file of the concerned topic. Data are

18Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

automatically routed to the Kafka server where the topics are
managed.

2) Big Data analysis

A Big Data cluster that is built from Hortonworks Data
Platform (HDP) 3.0.1 virtual machines is used to perform log
analysis. This solution offers the advantage of deploying
software from the Hadoop ecosystem while remaining open to
other installations. Moreover, the Ambari console allows a
simple configuration of servers such as Kafka for topics or
Flume for routes. Our software architecture for Big Data is
based on two software routes from Kafka topics to the
persistence system.

Figure 3 shows the layer components of our project.
Deployed on the lab room platforms, we developed Kafka
producers for the peripherals, the teaching laptop and the
storage server. All these producers issue log messages in a
Kafka topic that is partitioned on the server. This improves the
access time to the information.

Figure 3. Big Data Software architecture.

The topic partition is the unit of parallelism in Kafka. On
both the producer and the broker side, writes to different
partitions are done fully in parallel. At the output of the Kafka
topics, two Flume routes have been defined within this
experiment, each managed by an agent. A first route (red on
Figure 3) consumes the messages in order to transform them
for some residual format differences and store them in a
column-oriented database, HBase, installed on the cluster. A
second route (green on figure 3) consumes the messages to
index them according to a Solr data schema. Each persistence
system has its own role: HBase keeps the log data and Solr
keeps the indexes on this data to enrich the searches. We
consider HBase and Solr as two data sources accessible from
Spark components. The Spark SQL API is easily used to write
to HBase column families on a Hadoop cluster. In contrast,
our Spark to Solr consumer does not have such an easily
accessible API and we used Solr Cloud REST services for our
updates.

The data indexed by Solr enables our system to classify
the messages in order to carry out maintenance operations on
the various materials. A relevant option here was a linear
classifier with margin calculation. In fact, in several
evaluations of AI models, it is established that in the category
of linear classifiers, the Support Vector Machine (SVM) are
those that obtain the best results. Another advantage of SVMs,
and one that is important to note, is that they are very efficient
when there is little training data: while other algorithms would

fail to generalize correctly, SVMs are observed to be much
more efficient. However, when there is too much data, the
SVM tends to decrease in performance.

In order to understand the HBase events and their
distribution on the cluster, we have defined a report template
to generate a pdf report. It summarizes the activities by table,
their events, in particular the use of locks. The use of a
template guarantees the scalability of these reports according
to the evolutions of the consumer SQL Spark. We added a
page header with a table name and the current edition date and
a page footer with the page number. The column header band
is printed at the beginning of each detail column with the
column names in a tabular report. This means the part name
of a log message.

3) Log Data storage
A first Spark consumer (named "Spark SQL consumer")

has an essential task to recognize and process the contents of
the file and load them into an SQL table in memory, perform
filter operations and put them in a common format. Then, the
route continues with a backup of these data in HBase tables.
The role of this Flume route is to store structured information
in a column-oriented database (the red route in Figure 3). In
this effort, we experimented keeping software routes with
Flume for event routing and defined Kafka topics to ensure
decorrelation between components. This makes it possible to
simplify the management of components, among other things
for software updates. In addition, the Kafka API allows more
controls on the management of messages associated with a
topic; for example time management. We have added rules to
ensure that a received message is processed within an hour
(from a configuration file). In that case, the system raises an
alert and the data saved in the local file system.

A Flume agent is an independent daemon process, which
manages the red route. The Flume agent ingests the streaming
data from the Kafka topic source to the Spark SQL sink. The
channel between the source and the sink is a temporary
storage. It receives the events from the Kafka source and
buffers them until they are consumed by Spark sinks. It acts
as a bridge between the source and the sinks. We have added
a Flume interceptor to decide what sort of data should pass
through to the channel. It plays first a filter role in case of
unsuitable data from the Kafka source and inserts the time in
nanosecond into the event header. If the event already contains
a timestamp, it will be overwritten with the current time.

We wrote the script for creating tables structured in
families of columns to keep the information from the log files.
The column families are logical and physical groups of
columns. The columns in one family are stored separately
from the columns in another family. We assign that data to
separate column family when they are not often queried.
Because the column families are stored in separate HFiles, we
keep the number of column families as small as possible. A
HFile is a specific map file implementation for HBase. It
contains key/value data. Moreover, one of our objectives was
to reduce the number of column families to reduce the
frequency of mem-store flushes, and the frequency of
compactions. Moreover, by using the smallest number of
column families possible, we improve the load time and
reduce disk consumption.

19Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

Our Spark SQL consumer uses the Spark SQL module to
store data in an HBase database whose schema is structured in
family of columns. The labels of these families of columns are
involved in the data schema of the second Spark consumer.
HBase is a database distributed on the nodes of our Hadoop
cluster, which allows having a persistence system where the
data are highly available because the replicated rate on
separate nodes is set to three.

4) Log Data indexing
In parallel, another route has the role of indexing the data

from the logs (green route in Figure 3). From the same Kafka
source, a second Spark consumer (named "Spark Solr
consumer") takes care of data indexing while respecting the
Solr schema. The index is updated for the query steps and then
the use of a model for the prediction of maintenance tasks.
Solr Cloud is the indexing and search engine. It is completely
open and allows us to personalize text analyzes. It allows a
close link with HBase, database so the schemas used by both
tools are designed in a closely related way. On our Big Data
cluster, the Solr installation is also distributed. In that context,
we have four shards with a replication rate equals to three.
This allows us to distribute operations by reducing blockages
due to frequent indexing. We have configured, not only the
schema, but also the data handlers (schema.xml and
solrconfig.xml files).

Our schema defines the structure of the documents that are
indexed into Solr. This means the set of fields that they
contain, and define the datatype of those fields. It configures
also how field types are processed during indexing and
querying. This allows us to introduce our own parsing strategy
via class programming.

The Spark Solr consumer uses the Spring Data and SolrJ
library to index the data read from the Kafka topic. It splits the
data next to the Solr schema where the description of each
type includes a "docValue" attribute, which is the link to the
HBase column family. For each Solr type, our configuration
provides a given analyzer. We have developed some of the
analyzers in order to keep richer data than simple raw data
from log files. Finally, the semantic additions that we add in
our analysis are essential for the evaluation of Solr query.
Likewise, we store the calculated metrics in HBase for
control. SolrCloud is deployed on the cluster through the same
Zookeeper agents. Thus, the index persistence system is also
replicated. We therefore separate the concepts of backup and
search via two distinct components. This reduces the
blockages related to frequent updates of our HBase database
[13].

At the beginning of our Solr design, we have built our
schema based on our data types. Some of them were already
defined, but some others are new. In addition, we have
implemented new data classes for the new field types. For
example, we used RankFieldType as a type of some fields in
our schema. It allows us to manage enumeration values from
the log message. Then, it becomes a sub class of FieldType in
our Solr plugin. We have redesigned Solr filters so that they
can be used in our previous setups. Our objective was to
standardize the values present in the logs coming from
different servers. Indeed, the messages provide information of
the form <attribute, value> where the values certainly have

units. However, the logs do not always provide the same units
for the same attribute calculation. The analysis phase is the
place to impose a measurement system in order to be able to
compare the results later. The development pattern proposed
by SolrJ is simple because it proposes abstract classes like
TokenFilter and TokenFilterFactory then to build inherited
classes. Then we have to build a plugin for Solr and drop it in
the technical directory agreed in the installation of the tool
[14].

5) Model factory
In Artificial Intelligence, Support Vector Machine (SVM)

models are a set of supervised learning techniques designed to
solve discrimination and regression problems. SVMs have
been applied to a large number of fields (bioinformatics,
information research, computer vision, finance, etc.) [15].
SVM models are classifiers, which are based on two key ideas,
which allow to deal with nonlinear discrimination problems,
and to reformulate the ranking problem as a quadratic
optimization problem. In our project, SVMs can be used to
decide to which class of problem a recognized sample
belongs. The weight of these classes if linked to the Solr
metrics on these names. This amounts to predicting the value
of a variable, which corresponds to an anomaly.

All filtered log entries are potentially useful input data if it
is possible that there are correlations between informational
messages, warnings, and errors. Sometimes the correlation is
strong and therefore critical to maximizing the learning rate.
We have built a specific component based on Spark MLlib. It
supports binary classification with linear SVM. Its linear
SVMs algorithm outputs an SVM model [16]. We applied
prior processing to the data from our HBase tables before
building our decision modeling. These processes are grouped
together in a pipeline, which leads to the creation of the SVM
model with the configuration of its hyper-parameters such as
weightCol. Part of the configuration of these parameters
comes from metrics calculated by our indexing engine (Figure
2). Once created and tested, the model goes into action to
participate in the prediction of incidents. We use a new
version of the SVM model builder based on distributed data
augmented. This comes from an article written Nguyen, Le
and Phung [17].

6) Report generation

Jasper Report library allows us to build weekly graphical
reports on indexing activity. HBase events are collected for
display. The goal is to correlate the volumes of data saved in
the database with the updates of the AI model. We would like
to refine this report template in order to have metrics to decide
on the model update. Currently, only HBase movements are
represented graphically. Based on an HBase handler, we
handle the change events at runtime and send data beans to the
Jasper Report Server.

V. DATA STREAMING PART

A. Filtered log strategy

Our component called Spark SQL Consumer contains a
Kafka receiver class, which runs an executor as a long-running
task. Each receiver is responsible for exactly one input
discretized stream (called DStream). In the context of the first

20Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

Flume route, this stream connects the Spark streaming to the
external Kafka data source for reading input log data.

Because the log data rate is high, our component reads
from Kafka in parallel. Kafka stores the data logs in topics,
with each topic consisting of a configurable number of
partitions. The number of partitions of a topic is an important
key for performance considerations as this number is an upper
bound on the consumer parallelism. If a topic has N partitions,
then our component can only consume this topic with a
maximum of N threads in parallel. In our experiment, the
Kafka partition number is set to four.

Since log data are collected from a variety of sources, data
sets often use different naming conventions for similar
informational elements. The Spark SQL Consumer
component aims to apply name conventions and a common
structure. The ability to correlate the data from different
sources is a crucial aspect of log analysis. Using normalization
to assign the same terminology to similar aspects can help
reduce confusion and error during analysis [17]. This case
occurs when log messages contain values with different units
or distinct scales. The log files are grouped under topics. We
apply transformations depending on the topic the data come
from. The filtered logs are cleaned and reorganized and then
are ready for an export into an HBase instance.

In the next step, the Spark SQL Consumer component
inserts the cleaned log data into memory data frames backed
to a schema. We have defined a mapping between HBase and
Spark tables, called Table Catalog. There are two main
difficulties of this catalog.

a) The row key definition implies the creation of a specific
key generator in our component.

b) The mapping between table column in Spark and the
column family and column qualifier in HBase needs a
declarative name convention.

The HBase sink exploits the parallelism on the set of
Region servers, which are under control of the HBase master.
The HBase sink treats both Put operation and Delete operation
in a similar way, and both actions are performed in the
executors. The driver Spark generates tasks per region. The
tasks are sent to the preferred executors collocated with the
region server, and are performed in parallel in the executors to
achieve better data locality and concurrency. By the end of an
exportation, a timed window a log data are stored into HBase
tables.

B. Index construction and query

The strategy of the Spark Solr Consumer component deals
with the ingestion of the log data into Apache Solr for search
and query. The pipeline is built with Apache Spark and
Apache Spark Solr connector. Spark framework is used for
distributed in memory compute, transform and ingest to build
the pipeline.

The Apache HBase role is the log storage and the Apache
Solr role is the log indexing. Both are configured in cloud
mode Multiple Solr servers are easily scaled up by increasing
server nodes. The Apache Solr collection, which plays the role
of a SQL table, is configured with shards. The definition of
shard is based on the number of partitions and the replicas rate
for fault tolerance ability. The Spark executors run a task,

which transforms and enriches each log message (format
detection). Then, the Solr client takes the control and send a
REST request to Solr Cloud Engine. Finally, depending on the
Solr leader, a shard is updated.

We use also Solr Cloud as a data source Spark when we
create our ML model. We send requests from Spark ML
classes and read results from Solr (with the use of Solr
Resilient Distributed Dataset (SolrRDD class). The pre
statement of the requests is different from the analysis of the
log document. Their configuration follows another analysis
process. With Spark SQL, we expose the results as SQL
tables in the Spark session. These data frames are the base of
our ML model construction. The metrics called Term Factor
(TF) and Inverse Document Frequency (IDF) are key features
for the ML model. We have also used boost factor for
customizing the weight of part of the log message.

VI. RESULTS AND TASK MAINTENANCE

We have several kinds of results. A part is about our
architecture and the capacity to treat log messages over time.
Another part is about the classification of log messages. The
concepts behind SVM algorithm are relatively simple. The
classifier separates data points using a hyperplane with the
largest amount of margin. In our working context, the margin
between log patterns is a suitable discriminant.

A. Data features

For our tests, we used previously saved log files from a
month of application server and database server operations.
We were interested in the performance of the two Spark
consumers: For Spark SQL Consumer, the volume of data to
analyze is 102.9 M rows in HBase. To exploit this data, we
used a cluster of eight nodes on which we deployed Spark and
HBase. The duration of the tests varies between 32 minutes
and 3 hours and 30 minutes.

Figure 4. Spark consumer runtime versus number of partitions.

For Spark Solr Consumer, the volume of data indexed is
100.5M rows indexed in about an hour. The number of
documents indexed per second is 34k. We only installed Solr
on four nodes with four shards and a replication rate of three.
We have seen improved results by increasing the number of
Spark partitions (RangePartitioner). At runtime for our data
set based on a unique log format, the cost of Spark SQL
consumer decreases when the partitioning of the dataset
increases, an illustrated in Figure 4. The X-axis represents the
partition number and the Y-axis represents the time

21Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

consuming. We have to oversize the partitions and the gains
are much less interesting.

SVM offers very high accuracy compared to other
classifiers such as logistic regression, and trees. There are
several modes of assessment. The first is technical; it is
obtained thanks to the framework used for the development
(Spark MLlib). The second is more empirical because it
relates to the use of this model and the anomaly detection rate
on a known dataset. The analytical expression of the features
precision, recall of retrieved log messages that are relevant to
the find: Precision (1) is the fraction of retrieved log messages
that are relevant to the find:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|
 ()

Recall (2) is the fraction of log messages that are relevant to
the query that are successfully retrieved:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|
 ()

𝐹𝛽 = (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
 ()

In Table 1, we have four classes and for each class we
compute three metrics: true positive (tp), false positive (fp)
and false negative (fn). For instance, for the third class, we
note these numbers tp3, fp3 and fn3. From these values, we
compute precision by label, recall by label and F-score by
label.

TABLE I. SVM MODEL MEASURES

Class

number

Metrics

Precision by label Recall by label F1 score by label

0.000000 0.815846 0.890100 0.896616

1.000000 0.911000 0.981000 0.991000

2.000000 0.854461 0.785714 0.851481

3.000000 0.852446 0.7589148 0.833129

Our prediction models are similar to a multiclass
classification. We have several possible anomaly classes or
labels, and the concept of label-based metrics is useful in our
case. Precision is the measure of accuracy on all labels. This
is the number of times a class of anomaly has been correctly
predicted (true positives) normalized by the number of data
points. Label precision takes into account only one class and
measures the number of times a specific label has been
predicted correctly normalized by the number of times that
label appears in the output. The last observations are:

• Weighted precision = 0.901742

• Weighted recall = 0.931803

• Weighted F1 score = 0.981731

• Weighted false positive rate = 0.040009
Our results for four classes are within acceptable ranges of

values for the use of the model to be accepted.

The test empirical phase on the SVM model was not
extensive enough to be conclusive. However, our results
suggest that increasing the number of log patterns deteriorates
the performance. In addition, we defined a finite set of log
patterns for a targeted anomaly detection approach.

B. Reporting

We have created a custom data source to connect to
Apache Solr, therefore we are able to retrieve data and provide
them back in following the JRDataSource interface of Jasper
Report. With this access point, we have extracted metrics
about the document cache and Query result cache. Both give
an overview of the Solr activities and is meaningful for the
analysts. We have deployed the CData JDBC Driver on Jasper
Reports to provide real-time HBase data access from reports.
We have found that running the underlying query and getting
the data to our report takes the most time. When we generate
many pages per report, there is overhead to send that to the
browser.

For the reporting phase, we have developed two report
templates based on the use of a JDBC adapter. With system
requests, we collect data about the last events (Get, Put, Scan,
and Delete). From these HBase view, we have designed the
report templates with cross tables. For the storage phase, we
compute and display the number of Put events per timed
window or grouped over a period. We periodically updated
the data across report runs. We export the PDF files to the
output repository where a web server manages them.

VII. CONCLUSION AND FUTURE WORK

We have presented our approach on log analysis and
maintenance task prediction. We showed how an index engine
is crucial for a suitable query engine. We have developed
specific plugin for customizing the field types of our
documents, but also for filtering the information from the log
message. Because indexing and storage are the two sides of
our study, we have separated the storage into a Hadoop
database. We have stressed the key role of our Spark
components, one per data source. The partition management
is the key concept for improving the performance of the Spark
SQL component. The data storage into data frames during the
micro batches is particularly suitable for the management of
flows originating from Kafka files. We observed that our
approach supported a large volume of logs.

From the filtered logs, we presented the construction of
our SVM model based on work from the Center for Pattern
Recognition and Data Analytics, Deakin University,
(Australia). We were thus able to classify the recognized log
patterns into classes of anomalies. This means that we can
identify the associated maintenance operations. Finally, to
measure the impact of our distributed analysis system, we
wanted to build automatically reports based on templates and
highlight indexing and storage activity.

Our study also shows the limits that we want to push back,
such as the management of log patterns. The use of an AI
model is not the guarantee of an optimal result. We want to
make more use of indexing metrics to give more weight to
some information in the analyzed logs. We are, therefore,
thinking of improving the classification model of log data.

22Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

A first perspective will be to improve the indexing process
based on a custom schema. We think that the use of DisMax
query parser could be more suitable in log requests where
messages are simple structured sentences. The similarity
detection makes DisMax the appropriate query parser for
short structured messages.

The log format has a deep impact on the Solr schema
definition and on the anomaly detection. We are going to
evolve our approach. In the future, we want to extract
dynamically the log format instead of the use of a static
definition. We think also about malicious messages, which
can perturb the indexing process and introduce bad requests in
our prediction step. The challenge is to manage a set of
malicious patterns and the quarantine of some message
sequences.

REFERENCES

[1] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges

in log analysis,” Communications of the ACM, 2012, 2nd ed.,
vol. 55, pp. 55-61.

[2] T. F. Yen et al., “Beehive: Large-scale log analysis for
detecting suspicious activity in enterprise networks,” In
Proceedings of the 29th Annual Computer Security
Applications Conference, pp. 199-208, December 2013.

[3] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” In 2016 IEEE 27th
International Symposium on Software Reliability Engineering
(ISSRE), pp. 207-218, October 2016.

[4] B. Debnath et al., “Loglens: A real-time log analysis system,”
In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 1052-1062, July 2018.

[5] Q. Cao, Y. Qiao, and Z. Lyu, “Machine learning to detect
anomalies in web log analysis,” In 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), pp.
519-523, December 2017.

[6] W. Li, “Automatic log analysis using machine learning:
awesome automatic log analysis version 2.0.,” 3 edition,
November 2013.

[7] A. Juvonen, T. Sipola, and T. Hämäläinen, “Online anomaly
detection using dimensionality reduction techniques for HTTP
log analysis,” Computer Networks 91, pp. 46-56, November
2015.

[8] J. Dongo, C. Mahmoudi, and F. Mourlin, “Ndn log analysis
using big data techniques: Nfd performance assessment,” In
2018 IEEE Fourth International Conference on Big Data
Computing Service and Applications (BigDataService), pp.
169-175, March 2018.

[9] W. Luo et al., “Guidelines for developing and reporting machine
learning predictive models in biomedical research: a
multidisciplinary view,” Journal of medical Internet research,
12 ed., vol.18, 2016.

[10] P. Henderson et al., “Towards the systematic reporting of the
energy and carbon footprints of machine learning,” Journal of
Machine Learning Research, 2020, 248 ed., vol. 21, pp. 1-43.

[11] L. M. Stevens, B. J. Mortazavi, R. C. Deo, L. Curtis, and D. P.
Kao, “Recommendations for reporting machine learning
analyses in clinical research. Circulation: Cardiovascular
Quality and Outcomes,” 2020, 10 ed., vol. 13.

[12] D. P. Dos Santos and B. Baeßler, “Big data, artificial
intelligence, and structured reporting,” European radiology
experimental, 2018, 1rd ed., vol. 2, pp. 1-5.

[13] K. Koitzsch, “Advanced Search Techniques with Hadoop,
Lucene, and Solr,” Pro Hadoop Data Analytics, Apress,
Berkeley, CA, 2017, pp. 91-136.

[14] J. Kumar, “Apache Solr search patterns,” Packt Publishing Ltd,
2015.

[15] M. F. Ghalwash, D. Ramljak, and Z. Obradović, “Early
classification of multivariate time series using a hybrid
HMM/SVM model,” 2012 IEEE International Conference on
Bioinformatics and Biomedicine, IEEE, pp. 1-6, 2012.

[16] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big data
machine learning using apache Spark MLlib,” 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp.
3492-3498.

[17] T. D. Nguyen, V. Nguyen, T. Le, and D. Phung, “Distributed
data augmented support vector machine on Spark,” 23rd
International Conference on Pattern Recognition (ICPR), 2016,
IEEE.

23Copyright (c) IARIA, 2022. ISBN: 978-1-61208-945-4

ALLDATA 2022 : The Eighth International Conference on Big Data, Small Data, Linked Data and Open Data

