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Abstract— The last decade witnessed plenty of Big Data
processing and applications including the utilisation of machine
learning algorithms and techniques. Such data need to be
analysed under specific Quality of Service (QoS) constraints
for certain critical applications. Many frameworks have been
proposed for QoS management and resource allocation for the
various Distributed Stream Management Systems (DSMS), but
lack the capability of dynamic adaptation to fluctuations in input
data rates. This paper presents a novel QoS-Aware, Self-Adaptive,
Resource Utilisation framework, which utilises instantaneous
reactions with proactive actions. This research focuses on the
load monitoring and analysis parts of the framework. By applying
real-time analytics on performance and QoS metrics, the predic-
tive models can assist in adjusting resource allocation strategies.
The experiments were conducted to collect the various metrics
and analyse them to reduce their dimensions and identify the
most influential ones regarding the QoS and resource allocation
schemes.

Keywords—Data stream management; Distributed stream process-
ing; quality of service; resource allocation; prediction; scheduling.

I. INTRODUCTION

During the last decade, a new category of data-intensive
systems and applications has emerged and has been recognised
by the researchers and industry professionals in the data sci-
ence field. A data stream is defined as a real-time, continuous,
ordered sequence of data items [1].

The systems deployed to manage data streams are called
Data Stream Management Systems (DSMS) [2]. A common
definition of such system is that it is the system especially
developed and assembled to process continuous queries on
dynamic and ever-changing data streams. DSMSs are totally
different from the traditional Database Management Systems
(DBMSs) in that traditional database management systems
expect the data to be persistent in the system and the queries to
be dynamic while within the DSMSs paradigm it is expected
to have dynamic unbounded data streams and the queries are
submitted on those streams as persistent queries.

Quality of Service (QoS) [3] is identified as an important
attribute of overall performance measure of any system. One
of the main challenges within the QoS management of DSMS
systems, is how to efficiently and effectively deliver pre-
defined QoS requirements. Within a system that has multiple

queries submitted over different data streams, different queries
would have totally different QoS requirements and constraints.

The DSMS should have the ability to distribute and allocate
physical computing resources between those queries and fulfil
the required QoS specification in a fair and square manner.
The DSMS utilises a mechanism called scheduling strategy to
allocate the available resources based on the various queries’
QoS requirements.

There are two main issues [4] that have to be dealt with
when managing resource allocation of distributed data stream
systems and they are:

• The ability of the system to allocate or release computing
resources to meet an application workload and specified
quality of service requirements; and

• Devising and performing the relevant optimisation actions
to alter the system configuration during the runtime
to utilise any additional capacity or release previously
allocated resources to guarantee the agreed-upon (or spec-
ified) end-to-end quality of service levels of the system
critical applications.

A framework for QoS-Aware Self-Adaptive Resource Util-
isation management of data stream management systems is
presented in this paper. QoS is tightly connected between all
system components, i.e., each component within the system
contributes to the overall quality of service perceived by the
system applications. A comprehensive usage model that com-
prises mixing instantaneous reactions with proactive actions
is incorporated within the proposed framework. Instantaneous
reactions include applying real-time analytics on collected
performance and QoS metrics of each component of the sys-
tem (worker profiling) before such data becomes obsolete and
loses its value. Proactive actions are the processes of applying
predictive models that further assist in decision making and
resource allocation planning and scheduling within the system
in a real-time streaming environment.

This paper is organised as follows. Section II gives a
background and a quick overview of the current research
activities and proposed QoS-aware, resource utilisation and
scheduling frameworks in the field. Section III introduces the
proposed framework and gives an overview of the architecture
and the different components within the framework. Section
IV explains the various performance metrics and QoS metrics
that will be utilised as part of the framework. Section V
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gives an overview of the Apache Storm, its terminologies and
techniques as a case study of the experimental verification of
the proposed framework. Section VI details the experiments
that have been conducted to collect the various metrics and
analyse them to reduce their dimensions and identify the most
influential ones. The paper is concluded in Section VII and
planned future work is also outlined.

II. BACKGROUND

Although there have been so many papers and projects that
have researched and discussed the various performance aspects
in DSMSs [5]–[8], many of those papers had concentrated their
attention on the study of the different individual components
within the DSMS. There has been an evident lack of studying
and investigating the QoS of the whole DSMS system.

A. Resource-Aware and Traffic-Aware Scheduling Schemes

A great deal of research [9]–[13] has been carried over the
last decade focusing on scheduling of streaming applications.
We present in this section a comparison between the most
related resource- and traffic-aware schedulers from different
perspectives. Some of the traditional schemes proposed for
resource allocation and scheduling [12] rely on measuring
a set of performance metrics and consequently make some
adjustment to the scheduling strategy or resource allocation
schemes based on a comparison with a pre-defined set of
constrains and measurements thresholds.

Those schemes suffer from the lack of dynamic adaptability
to the real-time and timely-constrained fluctuations in the
system workload and data input patterns. Schedulers within
DSMSs can be categorised into two classes:

• Static schedulers, such as the default scheduler in Storm
[13], where executers are assigned as evenly as possible
between all workers and tasks are assigned on a round
robin fashion to different task executers. Another type of
static schedulers is the resource-aware scheduler called
R-Storm [8], proposed by Peng et. al. and implemented
in the latest versions of Storm (v2.0 and beyond).

• Dynamic schedulers, where the scheduler plan or strategy
is adjusted during run-time and the system configuration
is changed to reflect the main scheduler goal or/and
quality of service requirements of the system. These
schedulers can be classified into the following three
categories:

– Throughput oriented schedulers, as being presented
in [15] and [16].

– Latency-oriented schedulers, as those presented in
[17] [18] and

– Communication reduction schedulers, as the three
schedulers presented in [14] [19] [20].

B. Scheduling Optimisation Approaches

The scheduling optimisation approaches within DSMS plat-
forms can be classified based on the main objectives of its
scheduling strategy. They are either built based on minimising
or maximising CPU utilisation, memory usage, throughput

or satisfy certain pre-defined quality-of-service levels. The
various data streaming scheduling strategies can be classified
based on their scheduling objectives.

1) Minimising Memory Consumption: The memory con-
sumption within a DSMS depends mainly on the size of
the operator’s buffer in addition to the current internal
state of each operator. The first approach is vital to the
process of transferring data tuples from each operator
to the next one. The second approach is governed by
the number of tuples that the operator needs to fulfil its
data grouping requirements(join, aggregation, duplicate
elimination, etc.). The scheduler prioritise its placement
of the operator based on the ability of the operator to
reduces the amount of data exchanged and processed
within the shortest period of time. This strategy has
been the core scheduling strategy in Aurora [21] and
STREAM [22] systems and is called Min-Memory and
Greedy approaches, respectively.

2) Minimising CPU Utilisation: Reduction in the number of
calls to an operator results in the reduction of CPU usage
and consequently reduce the overhead associated with
the scheduling activities. Examples of such approaches
are the Aurora’s super-boxes and tuple trains [21] as
implemented within the QStream’s micro period method
[23].

3) Maximising Quality of Service: Maximum QoS metrics
are mainly reflected within the DSMS system with
their ability to minimise the total output delay and
with maximising the system overall throughput. Both
methods are considered below:

• Minimising Delay: This strategy is corner stoned
with the well-known First In First-Out (FIFO)
allocation strategy. The optimisation objective is
fulfilled by pushing or pulling certain data tuples
through the network of operators as fast as possible.
As a result of such optimisation, the delay time
(complete tuple latency) is shortened so it fells
within the acceptable range specified by the query
submitter or the system application.

• Maximising Throughput: Whenever a scheduling
strategy aims at minimising the overall system CPU
utilisation, it automatically enables the system to
attain a higher output throughput under a given
resource availability.

4) Scheduling for Specified Level of Quality-of-Service:
In order to guarantee certain levels of quality of ser-
vice for critical applications such as health monitor-
ing system, critical infrastructure applications, military
command/control applications, it is vital to the proper
operation of the system to ensure that such strict QoS
levels are always met and provided to such application
under various operation conditions. A minimum level
of throughput can be guaranteed by certain DSMS
platforms so it has to ensure the system will not cross
a maximum output delay limits.

2Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data



C. QoS and Resource-Aware DSMS Frameworks

There are many DSMS that have emerged during the last
decade. Apache Storm [13] is one of the most popular systems
in this area. It had attracted both industries and researchers’
attention from early stages of its development. Aurora [21]
and QStream [23] are amongst the main DSMS frameworks
that incorporate some levels of QoS assurance from within. A
limitation in those systems is that the QoS specifications are
provided only for the output streams. Other approaches, such
as Borealis [23] and the one proposed by Klein and Lehner
[24], manage QoS specifications at the operator level.

D. Self-Adapting Approaches

The approach presented in [25] is a self-adaptive, resource
management framework for software services in the Cloud.
This approach utilises historical data to build a prediction
model to predict the QoS value of a certain management
operation. Serhani et. al. [26] proposed a layered-architecture,
self-adapting framework that supports end-to-end workflow
management with the ability to adapt its configuration and
quality specifications and enforcement mechanisms. It uses a
declarative, rule-based cloud services orchestration approach
to detect event patterns and utilise machine learning algorithms
to build a meta-model for monitoring and adaptation of
workflow within cloud services. The approach differs from our
proposal by focusing into application-based and content-based
end-to-end QoS attributes. Cardellinin et. al. [27] proposed a
framework that aimed at extending Apache Storm to operate
within FOG computing environment. This approach mainly
focuses on QoS attributes related to the geographically dis-
tributed network environment.

Our approach differs substantially from those approaches by
looking deeply into individual component’s time-based QoS
and performance metrics, analysing those metrics to reduce
their dimensions in order to use them to build a dynamic pre-
diction model through incremental learning algorithms along
with ensemble learning and abnormality detection.

III. THE PROPOSED FRAMEWORK

Throughout this paper, a QoS-Aware self-adapting resource
allocation framework is proposed. It enables the collection of
dynamic performance and QoS metrics for each component
within the DSMS submitted query plan or topology. This
work contributes to the growing interest in introducing QoS
considerations in the data streams domain and helps in sup-
porting further classes of QoS-sensitive streaming applications
at scale.

A. Framework Architecture

Figure 1 shows the system architecture of our proposed
framework. The framework is composed of four main compo-
nents: QoS Management, Performance Metrics Management,
Incremental Learning Prediction with Abnormality Detection,
and the Dynamic Tuning/Scheduler Adapter Module. The
following subsections elaborate on the structure, functionality
and overall processes involved in each component

Figure 1. Framework Architectural design.

1) QoS Manager: The QoS Manager stores the various
reports that it receives from its reporters located within
the various components within the DSMS. For a given
QoS constraint, the manager will keep all measurement
data concerning the monitored topology component el-
ement during the current measurement window span (t)
time units and consequently will discard the older data
measurements. The QoS management is composed of
the following two elements:

• User QoS Specifications: Each application user
should specify the QoS constraints that are needed
to be fulfilled during the queries execution or com-
putations over the input streams. This can be pro-
vided, through a high-level abstracted QoS interface,
as QoS graphs or QoS tables regarding any of the
main QoS metrics.

• System QoS Metrics Collector: The master node
within the cluster has global knowledge about each
one of the pre-defined QoS requirements. It will
inform each worker about where and when QoS
metrics measurements should be collected. This
will minimise the needed resources to collect such
metrics and the computing power needed to analyse
them on the fly so the computing overhead of
this component is minimised. For every query data
operator with user-specified QoS constraints, QoS
metrics will be measured once during the configured
time window called the measurement interval.

2) Performance Metrics Management: All performance
metrics are measured and associated calculation are
done over the specified window of time and then the
aggregate results will be reported through a metrics
collection pipeline to the Metrics Management Module.
The module runs certain metrics normalisation, factor
and correlation analysis to reduce the data dimensions
and identify the most relevant set of metrics that can
be fed to the next component which is the Incremental
Learning module.

3) Incremental Learning Prediction with Abnormality De-
tection: The DSMS cluster nodes are affected by fluc-
tuations that may be caused by the abnormal data rates,
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network transmission and other factors, or the fact that
some of the measured metrics and QoS observations
don’t fit into the prediction model.

4) Dynamic Tuning and Scheduler Adapter Module: The
Scheduler Adapter is the component entrusted in making
those decisions. The Scheduler adapter initiates nec-
essary countermeasures in the form of modifications
to the run-time scheduling strategy and system global
configuration of the deployed cluster and worker node
settings, until the specified QoS constraint has been met
or there is no additional measures can be made in order
to meet such constraint. In this case the result will be
reported to the user to decide on the best action to be
done (either by adding additional physical resources or
relax the QoS specifications for this particular query).

B. Implementation Tools and Techniques

In order to validate the proposed framework and evaluate its
performance, the following tools are being used to facilitate
the development of a prototype that proves the concept and
validate the effectiveness of the proposed framework. This
includes the following in-house developed systems, open-
source tools and related techniques:

1) Apache STORM.
2) QoS Management Module.
3) Performance Metrics Management Module.
4) WEKA [28] and MOA [29] ML Toolkits.
5) Performance Dynamic Tuning Module.

IV. DATA STREAMS METRICS

The reporting of the metrics can be in the form of gauges,
histograms and numeric values. Often these result in multiple
metrics being uploaded to the reporting system, such as
percentiles for a histogram, or rates for a meter.

A. Performance Metrics:

Throughout our experiments, the Metrics Management mod-
ule collects the following metrics:

1) Data-Level Metrics: Two main metrics related to the
stream data input are:

• Data Input Rate: The rate of input data stream
can be controlled by using the Data-Rate metric,
by changing the spout parallelism with the Apache
Storm cluster. The data rate of a data stream de-
scribes how many stream tuples per second occur
in this stream.

• Data Delay: Along with the Data Rate, a delay
metric is defined as the time interval from a certain
tuple arrives at the first input component of the
topology and the time it leaves the time it is inserted
to the next stream within the system.

2) Query-Plan/Topology Metrics: These metrics are related
to the queuing behaviour of the system specially those
related to how much time a tuple is setting waiting to be
processes by the next component. Sample of the metrics
within this category are:

• Window-Size and Sliding-Step metrics: Those met-
rics denote the total number of input and output tu-
ples within a sepecified time measurement window.

• Op-Selectivity: This metric is defined as the total
number of data tuples that are emitted relative
to the number of data tuples consumed by the
topology/query plan operator. For example, if an
operator emits 2 tuples as a result of consuming one
input tuple, then the Op-Selectivity of that particular
operator is 2.

3) Scheduler-Level Metrics: The objectives of a dis-
tributed stream management scheduling algorithms is
to maximise throughput and system resource utilisation
and minimising the latency while trying to meet the
user/application requirements and quality of service con-
straints. The Uptime metric measures the total compu-
tation time that is consumed by a running Java Virtual
Machine process within the worker node.

4) Cluster Level Metrics: Apache storm version 2.2 pro-
vides an extensive set of cluster metrics which include
the following categories:

• Cluster Metrics: These are metrics that are reported
through the nimbus daemon with metrics that report
the state of the cluster and its various components.

• Supervisor Metrics: Metrics associated with the su-
pervisor, which launches the workers for a topology.

• UI Topology Metrics: Metrics associated with a
topology running in the cluster and reported through
a single UI daemon. The metrics can be collected
through the extensive REST UI API interface within
the DSMS.

B. Quality of Service Metrics:

Within the context of this research, there are several pa-
rameters that are able to represent both the query submitter’s
performance satisfaction, as well as the system’s throughput in
a variety of scenarios. The experiments are designed in a way
that takes into consideration the following most relevant QoS
metrics. Those metrics give clear picture and understanding
about the effective factors that are taken into consideration
in regard to QoS and scheduling optimisation approaches as
shown in Table I.

V. APACHE STORM

Apache Storm is an open-source, real-time, scalable dis-
tributed and fault-tolerant Data Stream Processing System
maintained by the Apache Software Foundation. On a physical
Storm cluster deployment, there are several types of entities
used to execute a topology as shown in Figure 2 and they are:

1) Task: It denotes an instance of a certain topology com-
ponent (Spout or Bolt) or query plan operator.

2) Executor: which is used to execute one or more tasks
related to the same operator.

3) Worker or Work Process: which runs one or more
executers on the same topology.
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TABLE I
QUALITY-OF-SERVICE (QOS) METRICS

Metric How to Measure It
Total
Through-
put

This metric can be measured by calculating the total
number of tuples processed within the specified amount
of time called measurement window.

Memory
Consump-
tion

It is measured by the amount of memory in MB that
is consumed by a certain component to execute its
functions of the query plan as part of the whole memory
consumption of the system.

CPU Util-
isation

This metric is defined as the amount of CPU resources
consumed by a certain query plan component where it is
available on a certain task/executor and is represented by
a point system.

Complete
Latency

This denotes the average time for a tuple tree to be
completely processed from end to end by the topology
compoennets.

System
Latency

It is measured by the amount of time the system takes
to process each tuple or it denotes the time difference
between the tuple input and its output from the system.

Processing
Latency

This metric is measured by the time the system or any
component within the system to process the tuple it
receives and output it to the upstream for output or further
processing.

Execution
Latency

It can be measured by calculating the delay in time
experienced by the system when it completely execute
the tuple or tuple tree.

Figure 2. The various componenets and daemons within the Apache Storm
Cluster Setup.

4) Worker node: It denotes a physical computational re-
source or simply a computer instance.

5) Zookeeper: a server application (Daemon) that is respon-
sible for managing the cluster configuration parameters
and enable distributed coordination between the different
cluster nodes and processes.

6) Nimbus: which is the centralised management “brain”
of the cluster and charged with the overall topology
execution.

7) Supervisor: It is responsible for starting or terminating
worker processes based on the Nimbus assignment and
keep coordination with Nimbus for any fault-tolerance
mechanisms to implement in case of node-failure

The processing of data streams within Storm is delegated
to several types of components within the platform. Each
component is responsible for executing simple tasks. The
component within the Storm cluster that handles incoming
streams of data is called Spout. The Spout function is to pass

streams to another component called Bolt. Bolts are usually
used to transform streaming data in different ways. The Bolt
may store the data in certain form of storage or process it and
pass it to another Bolt. The Storm cluster can be viewed as
a chain of spouts and bolts arranged in a certain connections
layout to form a Direct Acyclic Graph (DAG) called Topology.

Figure 3. Mapping the logical layout of the WordCountTopology into physical
worker nodes, worker tasks and executors within the Storm Cluster.

The illustration in Figure 3 shows how a simple topology
would look like in operation within the Apache Storm Data
Stream Processing System. One of the widely-used benchmark
topologies within Storm is the WordCountTopology shown in
Figure 4. This topology has been used to measure the various
performance metrics and speed of messaging between spouts
and bolts. The topology is composed of the following three
simple components:

Figure 4. The logical layout of the WordCountTopology.

1) Spout: The SPOUT component within a topology will
simply emit a stream of data tuples under the name
“sentence” as a sequence of string value. To simplify
the implementation of the experiment, the input data
tuples are retrieved from a static list of sentences that
is accessed repeatedly based on the input rate settings
of the spout. The spout will repeat a loop of generating
and then emitting one tuple for every sentence. In the
real-world scenarios, such process is replaced by a
data producing mechanism and sentences are received
through certain APIs such as Twitter API or through
topics producers as used in Apache Kafka or similar
data ingestion platforms.

2) Split Bolt: The SPLIT bolt subscribes to the “default”
stream of sentences emitted by the SPOUT. For each
tuple received from the spout in the form of a sentence
(stream of strings), it splits the sentence into words, and
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emit a tuple for each word to the upward stream of
the next connected component of the topology. It uses
different stream grouping mechanisms available within
Storm to deal with streaming to multiple components or
join multiple streams into one main stream.

3) Count Bolt: The COUNT bolt subscribes to the output
stream (also called default stream) coming from the split
bolt. Its main function is to count how many times it has
seen a particular word. Every time this bolt receives a
tuple from the input stream, it will increment its counters
accordingly.

VI. EXPERIMENTS

In order to establish a solid baseline for our research,
several experiments have been conducted using a complete
apache storm installation in local mode where all services
and daemons are installed in one machine as outlined above.
Throughout the set of phase-I experiments, the goal is to mea-
sure the performance and QoS Metrics through the deployment
of the Metrics Collector Module over the various components
of the Apache Storm cluster and individual worker nodes.

Figure 5. Total Latency of the WordCountTopology running on multiple
workers within the same worker node.

1) Storm (In-process) Test Bed: To establish a baseline and
investigate the extent of resource utilisation of the experiment
test-bed, several throughput tests have been conducted to check
how much data the test-bed can consume. Memory-Intensive
and CPU-Intensive topologies are being used to generate a
rich metrics dataset to be used in the next phase of our
project. The experiments were run in local-mode to establish
a base line with the setup and configuration of the various
components of the Storm platform. The main machine used
is a MacBook Pro laptop running Mac OS Catalina version
10.15.7. It is a 2.6 GHz Quad-Core Intel Core-i7 with 16
GB 2133 MHz LPDDR3 memory. The machine run the main
Storm daemons (Nimbus, Supervisor and UI) in addition to a
zookeeper daemon for coordination and instance management.

A. Preliminary Results and Analysis

1) Metrics Collection: A new metrics system has been in-
troduced in Apache Storm version 2.2. The new system
reports the different internal statistics (e.g., acknowl-
edged, failed, emitted, transferred, queue metrics, etc.)

TABLE II
COMPLETE LATENCY FOR NORMAL INPUT

Batch Number of Workers
Size 1 2 3 4 5
100 1.67 6.87 22.19 21.72 18.22
200 1.40 8.59 25.70 32.07 54.00
500 3.30 21.54 29.47 38.45 89.62
1000 4.16 16.95 39.85 59.79 98.21
2000 5.20 39.01 89.62 88.45 111.5
5000 5.53 59.79 93.65 121.08 120.9
10000 7.08 89.52 96.36 129.08 133.7
15000 16.2 110.98 98.21 133.72 140.6
20000 19.2 131.27 114.7 159.85 146.0
21000 19.7 131.94 120.9 152.71 159.3
22000 17.8 153.23 129.4 194.67 180.5
23000 16.7 162.24 157.2 196.06 200.1
24000 21.3 166.43 152.1 198.76 227.8
25000 17.6 175 171.6 200.79 242.0

Figure 6. Spout maximum complete latency as reported by the Storm UI.

as well as a new API for user defined metrics. Metrics
related to the network-intensive topology are being used
in the cluster setup as part of phase II experiments and
will be integrated within the main metrics dataset.
During this experiment, the metrics collection process
has focused on two levels:

a) Topology Level metrics including the number of
worker nodes, workers, memory allocation, cpu
allocation, executors, tasks, input data rate, in-
put throughput, emitted tuples, complete latency,
maximum overall latency, acknowledged and failed
tuples.

b) Component level including the type (Spout/Bolt),
executors, tasks, user cpu, system cpu, completed
latency, executed tuples, acknowledged and failed
tuples, execute latency, operator capacity, process
latency, parallelism and congested component.

2) Metrics Measurement: In this set of experiments, topolo-
gies that measure the performance of the Apache Storm
platform and collect its performance metrics based on
the above descriptions and metrics definitions have been
utilised. The topologies range from memory-intensive,
cpu-intensive and network-intensive topologies.

During the normal operational activities where the available
resources are able to handle the fluctuations in the data input
rate and the delay/throughput levels are within acceptable
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levels of the topology submitter (user). Figures 5, 6 and 7
show the results of running the topology using normal working
conditions and high data rates and how such fluctuations affect
the system’s QoS.

Running the topology using several workers will introduce
traffic between inter-workers and intra-workers which affects
the performance and latency of the tuples considerably. Such
behaviour is evident when comparing the latency using 1
worker and 2 workers. The latency also has a direct relation-
ship with the way the Storm Scheduler places the physical
executors and tasks within the same worker. For example,
due to the fact that our topology has only three components,
placing the executors and tasks of each component of the
topology within the same worker will result in lower latency
under high input rates with just 3 workers since the inter-
executors traffic will be reduced considerably.

When the data input rate exceeds the computing capacities
of the allocated resources where the QoS levels degrade
dramatically specially the various latency parameters. This is
evident in Figures 8 and 9 where the component execution
capacity (defined as the number of executed tuples multiplied
by the execution latency/(Observation Window Time)) reaches
high levels and the buffers start to be full and tuples are
dropped or other mechanisms like back-pressure signals are
generated to limit the input rates to the topology data ingestion
ports (spouts).

Figure 7. Maximum Input Throughput for the WordCountTopology running
on multiple workers within the same worker node.

Maximum Input Throughput for the WordCountTopology
running on multiple workers within the same worker node is
presented in Table II. During the various runs of our testing
topologies, it was observed that the processing power and
output rates as well as the various latencies are performing
reasonably well when executed in a single worker process
within the same worker node. The data input rate to the topol-
ogy’s spout and corresponding worker process was somewhat
constrained within a range (under 120k tuples/second).

When the input rate increases, more of the processing
power would be used to either (1) drop the tuples instead
of processing them or (2) enable the back-pressure techniques
recently implemented in the latest versions of Storm to limit
the input rate of the incoming data. This can affect the
processing rate of the worker and may not be tolerated by
certain applications or guaranteed QoS requirements of the

Figure 8. Complete Latency of the Topology as a function of Input Data
Rate.

application (such as critical infrastructure, military and vital
health monitoring systems). A more detailed analysis of the
individual worker processes and its components (spouts and
bolts) surely will help create better mathematical models and
identify bottlenecks and resource starvation or under-use to
pinpoint the areas of modifications needed to improve the
overall performance of the system.

Figure 9. Congestion caused by high input data rates and its effects on the
processing capacities of the various topology components.

B. Component Profiling

An improvement to the process is to profile the worker
components automatically at runtime. Profiling each individual
component (operator) with a topology is time consuming and
generally a tedious job that will consume extra “precious”
resources from the system and degrade its performance. If the
characteristics of the individual component (spout and bolt)
changes over time, then it is difficult to depend on the existing
processing power, latencies and output throughput to produce
suitable resource allocations.

Components can be profiled to monitor the amount of
memory, cpu and network bandwidth and then correlate it with
the number of tuples being processed in unit time. This will
be used to estimate the maximum processing rate the worker
can sustain over a time unit so prediction models can be built
to anticipate for changes in input rate ahead of time and adjust
the resources accordingly.

Figure 9 shows the visualisation of the topology components
behaviour when components are congested. Storm deploys a
mechanism of back-pressure techniques to limit the input rate
in these cases instead of just dropping some of the input tuples.
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Figure 10. Correlation Table of partial Metrics based on the Spearmans
Correlation Coefficients with %95 confidence intervals.

C. Correlation Analysis

In this section, a statistical techniques called correlation
analysis was deployed in order to evaluate the strength of
relationship between the various metrics collected from the
different components of the topologies and under variable
operational environments. High correlation coefficients mean
that two or more variables have a strong relationship with each
other. Figure 10 shows the correlations based on Pearson’s
Coefficient with confidence interval of 95.0%. The significant
correlations are flagged with (*).

Figure 11. Heatmap representation of the correlation between the metrics.

A heat map presentation of the correlation relationships is
presented in Figure 11 and highlights the most relevant metrics
that will be used in the future experiments.

VII. CONCLUSIONS AND FUTURE WORK

Throughout this paper, a QoS-aware self-adapting resource
utilisation framework has been presented with the aim of
achieving the following main two goals:

• well-utilisation of system resources (Memory, CPU and
network) by continuously predicting resource usage by
online machine learning techniques, and dynamically
tuning the related parameter configurations of the DSMS,

• reducing tuple response times and maximising system
throughput, and satisfying user-specified QoS demand
levels of each stream query application.

The rest of the experiments of this research will be carried
out using computing instances from Google Cloud Computing
Platform. We utilise this platform to simulate the real environ-
ment that Apache Storm and other DSMS operates on in order
to fully validate the applicability and performance gains of the
proposed framework.
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