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Abstract—In the era of learning healthcare systems and big data,
observational studies play a vital role to discover hidden (causal)
associations in the dataset. To control bias, a matching step is
usually employed to match case subjects to control candidates in
observational studies randomly. The matching ratio refers to the
number of control candidates matched with one case subject, and
the successful matching rate is the percentage a matching is found
given a matching ratio. A good matching algorithm should be not
only efficient but also have high successful matching rate and high
quality of randomness which means that a control candidate
has a roughly equal chance of being matched with any of the
matchable study cases. In this paper, we propose a matching al-
gorithm, which is efficient with above mentioned good properties,
RandFlow, a high-quality matching algorithm, is proposed and
compared with commonly used ones – Simple Match, Matchit,
and Optmatch. The benchmark testing shows the effectiveness
of the new algorithm. In our experimental studies, we noticed
that the variation of the estimated Relative Risk (RR) value is
minimized at the maximum matching ratio. Thus, we propose a
two-phase matching method to obtain more reliable study results.
The first phase is to identify the maximum matching ratio, and
followed by matching multiple times and then take an average.

Keywords–matching; observational study; relative entropy

I. INTRODUCTION

Observational studies are often used for investigating causal
relationships. Given two events, α and β, researchers can
analyze whether the occurrence probability of the event β
is affected by the event α happening previously. In the medical
field, an event can be a diagnosis, prescription or treatment.
To control bias, several approaches have been applied, and
one of them is matching [1]. Hence, the observational study
process starts from identifying the study group Gα (those
individuals with α), matching to the control candidates G6=α
(those individuals without α), and then performing statistical
analysis to draw a conclusion. For example, Relative Risk (RR)
is used to estimate the relative risk of having β with and without
the occurrence of α before. For example, in Table I, there are
a + b individuals with the event α, and a of them also with
the event β. The conditional probability, R1, which denotes
the probability of having β under the condition of with the

TABLE I. EXAMPLE OF STUDY GROUP AND ITS MATCHED
CONTROL GROUP

α ¬α
β a c
¬β b d

Sum a+ b c+ d

event α is therefore a/(a+ b). Also, there are c+d individuals
without the event α, and c of them with the event β. The
conditional probability, R2, which denotes the probability of
having β under the condition of without α is therefore c/(c+d).
The RR value is defined as RR = R1/R2. RR values greater
than, less than, or equal to 1 indicate positive, negative or
no relationships, respectively. Other statistics, such as Odds
Ratio (OR), may be used instead of RR depending on the study
design.

Matching is a critical step in the analysis of the observational
study. Generally, a matching algorithm randomly permutes the
order of the input of study case s, and control candidate c, and
then checks whether the input s-c pair can be matched, and
finally matches s with K-fold eligible controls one by one.
The constant K is called the matching ratio. Some matching
methods assign a propensity score to each pair [2] and return a
matching with the best total score. However, if the distribution
of cases is skewed, the study case may not be able to match
with the required amount of controls successfully and would
be dropped to avoid incurring further bias. Therefore, the
output matching needs to satisfy some quality criteria, such as
randomness and successful matching rate. In a good quality
matching algorithm, a control candidate has a roughly equal
chance of being matched with any of the matchable study
cases. Keeping as many successful matchings as possible is
also desired.

There are some commonly used matching methods, like
Simple Match [3], MatchIt [4][5], and Optmatch [6]. The
former is based on a simple randomized greedy approach
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using SAS and the randomized algorithm has no proof of
being able to deliver a matching in reasonable time in [3],
and the latter two are variations of the well-known max flow
algorithm [7] though with a performance guarantee, but does
not consider any randomness. If the matching is only performed
once with a small matching ratio, the result may not be stable
in the sense that it is possible that different matchings may
yield fluctuating statistics, such as RR or OR. To obtain a
reliable result, it is better to match multiple times and take
an average of all the outcomes. However, it is not practical
to do repeated matching due to its heavy time consumption.
Moreover, determining the matching ratio is also a cloudy
issue in practice. In the past few decades, the case-control
study has been suggested to match with four or five times of
controls [8]. It was reported that ”beyond a ratio of about 4/1,
little power improvement results from increasing the number
of controls” [9]. However, a matching ratio of 10 or even 15 is
also seen in some studies [10][11]. In Hennessy’s study [12],
they indicated a higher matching ratio might be needed while
the disease prevalence is low and hence, the implied matching
ratio should be data dependent [13]. Up to date, few studies
are investigating the issue of finding a good matching ratio.

Previous researches have focused on the impact of the
matching ratio [13], and whether to use a matching or not [14].
But how to determine the matching ratio is less discussed.
To resolve the above problems, we proposed a high-quality
matching algorithm called RandFlow, which adopts the idea
from maximum flow in graph theory. In RandFlow, we added
some vital functions to raise the randomness and matching
efficiency. Furthermore, we leveraged the high efficiency of
RandFlow to determine the optimal matching ratio. By using
RandFlow, the maximum matching ratio of each data set is
calculated, and the range of the suitable matching ratio is also
determined. The researcher can choose a preferred matching
ratio according to the suggested range.

The remainders of this paper is organized as follows. In
Section II, we describe our matching algorithm, the data source
used in this study and the factors compared between different
matching methods. In Section III, we show the experiment
results of RandFlow and the comparison between RandFlow and
the original methods. In Section IV, we discuss the comparison
results and summarized our conclusions.

II. METHODS

The approach of our method is to formulate our problem in
the well-known framework of flows in networks [7]. Hence, our
methods come with performance and correctness guarantees.
In this study, we used Taiwan’s National Health Insurance
Research Database (NHIRD) [15] as a data source and
examined the validity of RandFlow by three causal relations
reported in the published papers. We then compared RandFlow
with the above matching methods with regard to successful
matching rates, RR values and quality of randomness.

A. RandFlow Algorithm
We transform the matching problem in Figure 1(a) to the

well-known max flow problem [7] in Figure 1(b). In a max flow
problem, we assign maximum integer weights, not exceeding
the pre-assigned capacity, to the edges so that for each vertex
other than the source and sink, the sum of weights on its
incoming edges equals the sum of weights on its outgoing edges.

A study case Si is matched with those control candidates Cj
so that the weight of the edge from Si to Cj is 1. The outcome
is called a max flow. We further require that each study case
has the same sum of incoming edge weights, which is called
the maximum matching ratio, denoted by r. Thus, each study
is matched with exactly r candidates, and each candidate is
matched at most once. Since a max flow is found, r is as large
as possible. Note that the value of r is data dependent. Each
data set has its own maximum matching ratio. Naturally, it is
unreasonable to ask for a matching whose ratio is more than r.
In addition to whether a matching of a specified size can be
found efficiently or not, we also concern whether the resulting
matching is random or not, i.e., whether each candidate has an
equal chance of being selected by any case subject. Without
considering constraints incurred from competitions between
case subjects, we use the well-known entropy [16] E of the
ideal distribution among all possible candidates that can be
matched to a case subject. Then we measure the entropy E′ of
the actual distribution of candidates being found by applying
the matching repeatedly says 1000 times. We define the relative
entropy to be E′

E to quantify the quality of randomness in the
matching obtained.

There are known algorithms to find such a max flow in
O(|E||F |) time, where E is the set of edges and F , called
flow, is set of edges with weight 1 between the study cases and
candidates. The value of |F | is the number of edges inside. The
algorithm finds a maximum flow by finding successively what
is called an augmenting flow F

′
so that each time F

′
increases

the current flow value by 1 after canceling edges from Si to
Cj and from Cj to Si at the same time. We extend the original
algorithm by finding a random augmenting flow, instead of a
fixed one using a Randomized version of Depth First Search
(RDFS). We also use a merging technique so that given two
candidates Ci and Cj are merged if they have incoming edges
from the same set of study cases. We also randomly shuffle
the ordering of study cases from the input to obtain better
randomness quality. Our revised algorithm runs faster and uses
less memory than the original one in practice. The technical
details can refer to our technique report [17].

B. Data source
The NHIRD is a nationwide database extracted from the

claim data of the National Health Insurance (NHI) program in
Taiwan for research purposes. In recent years, NHIRD has been
widely used to identify potential causal relationships. This study
also used NHIRD as the data source and which was reviewed
by the Institutional Review Board of Academia Sinica, Taiwan
(approval number: AS-IRB-BM-16043). As a benchmark, we
selected three distinct causal relations from two published
papers. One paper investigated the bidirectional relationship
between Obstructive Sleep Apnea (OSA) and depression [18].
The study showed a positive relationship that patients with
OSA have increased the risk of occurring depression, and vice
versa. The other paper examined whether previous Statin use in
patients with stroke affects the subsequent risk of dementia [19].
The study found a negative relationship in such a way that
Statin use in patients with stroke decreases the risk of dementia.
In this study, we define an event pair as the former event affects
the occurrence of the following event. Hence, the relationship
between depression and subsequent OSA is denoted as Event
Pair I, and the reverse is Event Pair II. The relationship between
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Figure 1. An example of transforming the matching problem into a flow
problem.

Statin use in patients with stroke and following dementia is
Event Pair III.

C. Comparisons between matching methods
In the original studies, event pair I and II were performed

by exact match. Among these two event pairs, each study case
was matched with five controls. Regarding event pair III, each
study case was matched with one control by propensity score
match [20] instead. In our study, all experiments were done by
exact match. We used the ratio of control candidates to study
cases to conjecture the maximum matching ratio.

We then compared the matching methods with regard to
successful matching rates, RR values and quality of randomness.
Successful matching rate is defined as the percentage of
matched study cases that are not dropped. We assessed the
average execution time, the corresponding successful matching
rates and RR values with matching ratios from 1 to 30 (to 90 in
the case of Event Pair II). To further understand the variation of
RR values, we also examined the standard deviation of RR, R1,
and R2. R1 and R2 represents the risk of having in the study
group (Gα) and control group (G6=α), respectively. The ratio
of R1/R2 is RR. For the quality of randomness, we calculated
the relative entropy of the matched control candidates with
three different matching ratios: 70%, 100% and 110% of the
maximum matching ratio. RR value and relative entropy were
run 100 times and took the average. Because the programs
implemented in C are more efficient and memory saving,
we only compare C implementations in terms of successful
matching rates, RR value and quality of randomness. All the
experiments were performed on a Ubuntu 14.04 system with
an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz, and 16 Gbytes
RAM.

III. RESULTS

A. General result of the randomly sampled data
Figure 2 shows the result of the randomly generated data.

The x-axis denotes the real RR value, and the y-axis denotes
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Figure 2. The distribution of real RR value and the estimated RR value of
RandFlow.

TABLE II. THE STATISTIC RESULTS OF REAL RR VALUE AND THE
ESTIMATED RR VALUE OF RANDFLOW.

Real RR Estimated RR ∆ Variance STD
0.50 (1/2) 0.462 0.038 0.021 0.144
0.66 (2/3) 0.658 0.002 0.033 0.182
0.80 (4/5) 0.854 0.054 0.041 0.202
1.00 (1/1) 1.016 0.016 0.029 0.169
1.25 (5/4) 1.259 0.009 0.049 0.209
1.50 (3/2) 1.542 0.042 0.056 0.236
2.00 (2/1) 2.049 0.049 0.105 0.325

the estimated RR value which is calculated by RandFlow. Each
point in the figure represents one data set. The results show
RandFlow can get an estimated RR value very close to the
real RR value. The statistic results are summarized in Table II.
The first and second column denotes the real RR value and
the estimated RR value. The third to fifth column denotes
the absolute error between the real and the estimated RR
value, the variance of the estimated RR value and the standard
deviation of the estimated RR value. The experiment results
show the absolute error RandFlow Algorithm is less than 0.06
and the variance and standard deviation is only 0.10 and 0.33,
respectively.

B. General information of the selected event pairs

Table III shows the general information of the selected
event pairs from the original papers and our results, including
the number of controls/control candidates, the ratio of control
candidates to study cases, and maximum matching ratio.

TABLE III. GENERAL INFORMATION OF THE SELECTED EVENT
PAIRS.

Event Pair I Event Pair II Event Pair III
Original results

No. study cases 27,073 6,427 5,527
No. control cases 135,365 32,135 5,527
Matching ratio 5 5 1

Our results
No. control candidates 562,707 619,904 9,102
Control candidates/Study cases ≈21 ≈97 ≈2
Maximum matching ratio 11 51 0
Total edge 149,676,628 38,629,676 404,835
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Among these event pairs, the greatest number of study
cases was found in Event Pair I. With such a great amount
of study cases, there were a total of more than 149 million
edges generated while matching by RandFlow. We speculated
the maximum matching ratio would be different among the
event pairs as it turned out to be the ratio of 11, 51 and zero
for Event Pair I, II and III, respectively. Additionally, these
event pairs covered both positive and negative relationships.
As a result, we believed that they could be representatives for
testing matching quality.

C. RR values and Successful matching rates
Flow-based matching methods keep on matching until they

use up all the matchable control candidates. They are expected
to have the same traits in terms of RR value variation and
successful matching rate. Hence, we only show the comparisons
between Simple Match and RandFlow in this section.

Overall, the average RR values of Simple Match are higher
than the values of RandFlow. In both methods, the average
RR values are fairly stable while the matching ratio is small
and gradually decrease when the matching ratio exceeds a
certain value. In RandFlow, the decline occurs at the maximum
matching ratio. By contrast, the decline of Simple Match
happens earlier than that (Figure 3(a) and 3(b)). In the case of
a negative relationship in Event Pair III, the average RR values
increase instead of decrease (Figure 3(c)).

Generally speaking, the variation of RR values of Sim-
ple Match are more unstable than that of RandFlow. In both
methods, the variation of RR values steadily decrease and then
turn up at a certain matching ratio. The least variation of RR
values of RandFlow occurs right at the maximum matching
ratio. That of Simple Match happens before the maximum
matching ratio (Figure 3(d)-3(f)).

Since RR is calculated as R1 divided by R2, we examined
the variation of R1 and R2 in RandFlow to further survey where
the RR variation comes from. When the matching ratio is less
than the maximum matching ratio, no study cases are dropped;
thus, the standard deviation of R1 remains zero. On the other
hand, the standard deviation of R2 decreases with matching
ratio until it reaches the maximum. When the size of the control
group increases to a certain number, the standard deviation of
R2 becomes relatively small and steady. Beyond the maximum,
the standard deviation of R1 surges because study cases are
dropped rapidly (Figure 3(g)-3(i)).

Figure 4 shows the comparison of successful matching rates
between Simple Match and RandFlow. Because Simple Match
is based on a simple greedy algorithm, the matching results
from it may vary. We used both the minimal (Simple min)
and the maximal (Simple max) results from the 100 trials for
comparison. Whether the minimal or the maximal result from
Simple Match, the successful matching rates drop before the
maximum matching ratio, whereas that of RandFlow remains
100%. At any fixed matching ratio, RandFlow has the highest
successful matching rates. Although Simple Match runs faster
than RandFlow, when the execution time is fixed, it cannot
achieve the successful matching rate of RandFlow.

D. Quality of randomness
Optmatch and Matchit are both flow-based matching meth-

ods without randomly shuffling the input graph. In other words,

their matched results remain unchangeable and no randomness
at all. By contrast, we implemented RandFlow with inputting
random graph and RDFS to enhance the quality of randomness.
In this section, we show the comparison of the quality of
randomness between RandFlow and Simple Match.

Figure 5 shows that Randflow has a better quality of
randomness than Simple Match. Relative entropies of Event
Pair I and II were tested at 70%, 100% and 110% of the
maximum matching ratio in 100 trials. The relative entropy
of RandFlow was estimated to be around 1 and generally
higher than that of Simple Match. Additionally, RandFlow has
consistently stable entropy at any matching ratio and study case.
Even if the ratio was set at 110% of the maximum matching
ratio, the relative entropy of Randflow slightly decrease. For
those study cases having small sets of control candidates, that
of Randflow remains high. By contrast, the relative entropy of
Simple Match fluctuates widely as the matching ratio increases.
For those study cases having less matchable control candidates,
that of Simple Match plunges.

IV. DISCUSSION

In this study, we adopted maximum flow theory to develop a
highly efficient and good-quality matching method, RandFlow,
for matching subjects with multiple controls. This method
can accomplish difficult matching tasks, like matching 20
thousand study cases to 30 times controls within a few seconds.
Comparing with the most popular matching method, RandFlow
has a good quality of randomness and finds a matching rather
than drops study cases as long as such a matching exists.
Matching is used to make the study cases and controls to have
similar distributions across confounding variables. During the
matching process, the controls are expected to be randomly
selected from the control candidates. Anything that may affect
the sampling design like dropping cases should be avoided.
Our study used relative entropy to quantify randomness and
then verified that RandFlow has a good quality of randomness.
The randomness of RandFlow does not vary with the chosen
matching ratios as it is no more than the maximum ratio. With
regards to successful matching rate, RandFlow outperforms
simple greedy algorithms due to the nature of algorithms.
Overall, RandFlow surpasses those commonly used matching
methods.

Matching ratio is data dependent and should be differentially
set at the maximum matching ratio to obtain consistent
results. In the past few decades, the case-control study has
been suggested to match with four or five times of controls.
Previous studies had indicated a higher matching ratio may
be desired [9][12][13]. Beyond the previous studies, we tested
three distinct data sets and performed matching multiple times
at a range of matching ratios. In our experiments, we found
that the maximum matching ratio varies with the input data
set and the least variation of RR values always happens when
we set the matching ratio to be the maximum. This can be
explained from the perspective of graph theory. If the matching
ratio requested h is no more than the maximum matching ratio
w, then we have many possible different matchings. From
the law of large number, the RR value calculated from many
instances is stable and close to the real average case. If h is
more than w, then we do not have many choices in selecting
the pairings. The deviation of RR computed tends to be higher
than the formal case. Therefore, rather than using an empirical
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Figure 3. RR values and standard deviation of RR, R1 and R2 of Simple Match and RandFlow.

fixed matching ratio, we suggest matching each study at its
maximum matching ratio multiple times and taking an average
for consistent results.

RandFlow being an exact matching has an inherent lim-
itation. Of being unable to match some study cases with
the required amount of controls while the distribution of the
confounding variable is skewed. In the extreme case, even 1:1
match cannot be reached; thus, the RR values will be unstable
at any matching ratios. In these circumstances, other matching
methods should be considered in order to obtain reliable results.

In this study, we developed a highly efficient matching
method and demonstrated its good quality of randomness. From
our experiments, we further conclude that the matching ratio is
data dependent and should be differentially set at the maximum
matching ratio. For future study, we suggest that matching
should be done in two phases. The first phase is to identify the
maximum matching ratio. Then, the second phase is to carry
out matching using the maximum matching ratio several times
and take an average statistics. Using a two-phase matching,
researchers can obtain stable results and draw unbiased study
conclusions accordingly.
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Figure 4. Successful matching rate of Simple Match and RandFlow. Simple min and Simple max represent the minimal and maximal matching rate from the
100 trials run by Simple Match.
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