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Abstract—Current satellite images provide us with detailed 

information about the state of our planet, as well as about our 

technical infrastructure and human activities. A range of 

already existing commercial and scientific applications try to 

analyze the physical content and meaning of satellite images by 

exploiting the data of individual, multiple or temporal 

sequences of images. However, what we still need today are 

advanced tools to automatically analyze the image data in 

order to extract and understand their full content. In this 

paper, we propose a highly automated approach for 

application-adapted image content exploration, targeting 

coastal environmental monitoring. For the selected coastal 

areas, different use cases can be considered such as: detection 

of wind turbines vs. boats, differences between beaches, tidal 

flats, and dams, and identification of fish cages/aquaculture. 

The average accuracy is ranging from 80% to 95% depending 

on the satellite images. 

Keywords- coastal monitring; data mining; Sentinel-1; 

Sentinel-2; TerraSAR-X. 

I.  INTRODUCTION 

In Earth observation, a very popular satellite image 
analysis system is the one from Digital Globe, named 
Tomnod, or Google Earth together with its related tools, 
which are targeting general user topics. In the Earth 
observation (EO) domain, there are systems such as LandEX 
[1], which is a land cover analysis system, while GeoIRIS 
[2] is a system that allows the user to refine a given query by 
iteratively specifying a set of relevant, and a set of non-
relevant images. A similar information retrieval system is 
IKONA [3], which is using relevance feedback in order to 
exploit very high resolution EO images. Further, the 
Knowledge-driven Information Mining (KIM) system [4] is 
an example of an active learning system providing semantic 
interpretation of image content. The KIM concept evolved 
into the TELEIOS prototype [5], complementing the scope 
of searching for EO images with additional geo-information 
and in-situ data integrated into an operational EO system [6] 
to interpret TerraSAR-X images. Similar concept with KIM 
concept is presented in [29] while in [30] a data mining 
approach for Big Data is described. 

The proposed system is very fast compared with the 
existing systems and with only few examples can retrieve the 
desired category with higher accuracy. The diversity of 
applications that can be considered for such systems are 
rather broad and include, for instance, coastal environmental 
monitoring (sea level, tides and wave direction), land 

cover/use changes, disaster monitoring, forest management, 
ice monitoring, monitoring of active volcanoes, waste 
deposit site management, traffic monitoring, vegetation 
monitoring, urban sprawl, soil moisture dynamics, etc. 

The paper is organized as follows. Section II describes 
the selected test areas. Section III presents our datasets. 
Section IV details the data mining methodology applied in 
this paper. Section V shows the results and we conclude the 
paper in Section VI. The acknowledgements close the paper. 

II. SELECTION OF TEST AREAS, USE CASES, AND 

APPLICATIONS 

We emphasize here three use cases for monitoring 
coastal environments. For these use cases, we selected for 
our investigation the Wadden Sea with the Dutch Delta (in 
the Netherlands), the Danube Delta (in Romania), and the 
Curonian Lagoon (in Lithuania and Russia) which are 
internationally recognized protected areas as UNESCO 
(United Nations Educational, Scientific and Cultural 
Organization) Natural Heritage sites. 

A. The Wadden Sea, Netherlands 

Site description: The Wadden Sea (Dutch: Waddenzee, 
German: Wattenmeer, Danish: Vadehavet) is an intertidal 
zone in the south-eastern part of the North Sea. It lies 
between the coast of N-W continental Europe and the range 
of Frisian Islands, forming a shallow body of water with tidal 
flats and wetlands [7], protected by a 450 km long chain of 
barrier islands, the Wadden Islands. The Wadden Sea region 
measures about 22,000 km

2
, divided between land and sea. 

About 63% of the region lies in Germany, with about 30% in 
the Netherlands, and 7% in Denmark [8]. In 2009, the Dutch-
German Wadden Sea was inscribed on the UNESCO World 
Heritage List and the Danish part was added later in 2014. 

The landforms in the Wadden Sea region have essentially 
been created from a marine or tidal environment [9]. 

Typical for the Wadden Sea are large tidal flats, which 
are characterized by very high benthic biomass and 
productivity, dominated by molluscs and polychaetes.  

State-of-the-art publications: In the research literature 
there are several studies treating the Wadden Sea area along 
the years. In order to understand the Wadden Sea dynamics, 
a number of recent publications [10]-[13] already used 
remote sensing images and addressed the issue of Synthetic 
Aperture Radar (SAR) satellite image classification and 
interpretation in these areas. At present, the option of data 
fusion from different sensor has not yet been fully exploited. 
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Figure 1.  Sentinel-1A quick-look view (left) and classification map (right) for an image of the Wadden Sea, Lake IJssel, and Marker Lake, and the 

surrounding areas. 

Image interpretation goal: The Wadden Sea area faces a 
strong economic impact due to recreation, fisheries and 
maritime traffic. The last impact is due to, e.g. the ports of 
Bremerhaven, Hamburg, and Rotterdam whereby the traffic 
runs through or nearby this area, which makes that 
monitoring of sand banks and any decrease of the water 
depth and the tide levels in this area is a critical topic for 
maritime security. A second important topic is the 
monitoring of biodiversity as described by [14]. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Wadden Sea and its surrounding areas are shown in Figures 
1 and 2. 

 

Figure 2.  Diversity of categories identified from a single image of the 

Wadden Sea, the Netherlands. 

B. The Danube Delta, Romania 

Site description: The Danube Delta is the second largest 
river delta in Europe and is the best preserved one on the 
continent [15]. 

Formed over a period of more than 10,000 years, the 
Danube Delta continues to grow due to the 67 million tons of 
alluvia deposited every year by the Danube River [16]. The 
delta is an ideal test and validation area for vegetation 
monitoring as it is characterized by high biodiversity and 
various crops. 

The Delta is formed around the three main channels of 
the Danube, named after their respective ports Chilia (in the 

north), Sulina (in the middle), and Sfantu Gheorghe (in the 
south). 

The greater part of the Danube Delta lies in Romania 
(Tulcea County), while its northern part, on the left bank of 
the Chilia arm, is situated in Ukraine (Odessa Oblast). Its 
total surface is 4,152 km

2
 of which 3,446 km

2
 are in 

Romania. The waters of the Danube, which flow into the 
Black Sea, form the largest and best preserved delta in 
Europe. In 1991, the Danube Delta was inscribed on the 
UNESCO World Heritage List due do its biological 
uniqueness. 

State-of-the-art publications: In the image processing 
literature there are not many studies treating the Danube 
Delta especially for SAR data [17]-[19]. However, the 
monitoring of biodiversity from in-situ measurements has 
attracted more interest [20]. 

Image interpretation goal: At the mouth of the Danube, 
the alluvial discharge decreases every year from 81 million 
tons in 1894, to 70 million tons in 7939, 58 million tons in 
1982, and about 22 million tons in 2015. This makes it 
interesting to monitor the evolution of the alluvial discharge 
and to investigate its impact on the Danube Delta and the 
three channels together with their ports (Chilia, Sulina, and 
Sfantu Gheorghe) through the years. 

The data can be combined with other types of 
information, such as the volume of water of each channel in 
order to prepare risk flood maps needed for the safety of the 

 

Figure 3.  Diversity of categories identified from a single image of the 

Danube Delta.
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Figure 4.  Sentinel-1A quick-look view (left) and classification map (right) for an image of the Danube Delta and the surrounding areas. 

shipping traffic and also for the local authorities to protect 
the human settlements. Another image interpretation goal is 
vegetation monitoring, in particular, biodiversity issues and 
crop type analyses. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Danube Delta and its surrounding areas are shown in 
Figures 3 and 4. 

C. The Curonian Lagoon, Lithuania and Russia 

Site description: The Curonian Lagoon is the largest 
European lagoon. Situated in the southern part of the Baltic 
Sea with a total area of 1584 km

2
, the lagoon receives water 

from the River Nemunas. The salinity of the water is higher 
and fluctuates between the northern and southern part of the 
lagoon [14]. The entire Lithuanian part of the Curonian 
Lagoon has been designated as a NATURA 2000 area and in 
2000 the Curonian Spit cultural landscape was as well 
inscribed on the UNESCO World Heritage List. 

State-of-the-art publications: In the remote sensing 
literature, there are not many studies treating the Curonian 
Lagoon especially for SAR data. However, the monitoring of 
biodiversity has attracted greater interest [21]-[23]. 

Image interpretation goal: We analyzed the effect of 
socio-economic activities of the area regarding: the ceasing 
commercial fisheries, the prohibition of the extraction of 
mineral resources, the agricultural sector, the hunting sector, 

the restriction of recreational use of the aquatic areas, and the 
oil drilling/pollution of the area. 

Typical examples: The diversity of categories identified 
from a single image and a typical classification map of the 
Curonian Lagoon and its surrounding areas are shown in 
Figures 5 and 6. 

III. DATASETS 

An important aspect to be addressed is the creation of a 
reference dataset for test and validation of the different 
systems. We already possess an initial synthetic aperture 
radar dataset composed of 1000 TerraSAR-X images and 
100 Sentinel-1 images covering target areas from around the 
world. 

 

Figure 5.  Diversity of categories identified from a single image of the 

Curonian Lagoon. 

 
Figure 6.  Sentinel-1A quick-look view (left) and classification map (right) for an image of the Curonian Lagoon and the surrounding areas. 
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From this database, about 295 TerraSAR-X and 25 Sentinel-
1A images have already been annotated by a remote sensing 
expert using a semi-automatic semantic annotation system 
resulting in a semantic catalogue of hundreds of semantic 
labels grouped in a 3-level hierarchical scheme [24]. This 
annotated database mainly covers urban and industrial areas 
together with their infrastructure predominantly from 
Europe, and can be considered as our initial ground truth 
dataset [25]. 

Our latest dataset also contains optical satellite data with 
multi-spectral images (e.g., Sentinel-2A), and synthetic 
aperture radar images (e.g., TerraSAR-X and Sentinel-1A / 
1B). These data cover 10 protected areas from Europe 
(national parks, mountains, arid and semi-arid areas, and 
coastal and marine ecosystems) [14]. 

IV. METHODOLOGY 

The data mining system [6] (used in this paper) is 
composed of four main modules: Data Model Generation 
(DMG), Database Management System (DBMS), 
Knowledge Discovery in Databases (KDD), and Statistical 
Analytics (SA). 

The DMG module transforms the original format of 
original Earth observation products into smaller and more 
compact product representations that include image 
descriptors, metadata, image patches, etc. The DBMS 
module is used for storing all the generated information and 
allows querying and retrieval of the available image data. 
The KDD module is in charge of finding patterns of interest 
from the processed data and presenting them to the user. 
Moreover, the KDD module allows annotating the image 
content by using machine learning algorithms and human 
interaction resulting in physical categories. The SA module 
provides classification maps of each dataset and distribution 
results of the retrieved categories in an image. These four 
modules are operated automatically and interactively with 
and without user interaction. 

We summarize our data mining methodology as a 
pseudo-code segment in Table 1. 

TABLE 1: THE PROPOSED METHODOLOGY.  
 

Step 1: EO Dataset  

             Select and download typical EO images. 

Step 2: Data Model Generation (DMG) 

 for each EOi image (i=1…N) do 

        tile EOi into pi,j patches (j=1…M), where the  

                     size of the patches depends on the image  

                     resolution 

       store all pi,j into the DBMS 

       for each pi,j patch do 

             extract an fi,j primitive feature vector  

            from optical / SAR algorithms 

            //e.g., Gabor filters with 5 scales and 6 

            orientations and compute the means and 

            standard deviations of the coefficients // 

 store all fi,j vectors into the DBMS 

       end 

 end 

Step 3: Knowledge Discovery in Databases (KDD) 

 if rk  (k=1…K) ∄ do //if the patch reference label 
                                                     has not yet been generated// 
        for all fi,j primitive feature vectors do 

              group the fi,j into gk clusters and group  

              them into ck categories using an SVM 

                           (Support Vector Machine) 

              for each ck category do 

      select an rk semantic annotation label

      //visual support via Google Earth // 

      store reference rk labels into the DBMS 

  end 

         end 

 else // routine processing after label generation// 

        for all fi,j primitive feature vectors do 

               group the fi,j into gl clusters (l=1…L) and 

               group them into cl categories using an  

                            SVM 

  store all gl into the DBMS 

  for each cl category do 

        select an al semantic annotation 

       //visual support via Google Earth// 

       store  al labels into the DBMS 

  end 

          end 

 end 

 

Step 4: Statistical Analytics (SA) 

 for selected EOi and its al do 

       generate classification maps  

       compare obtained al annotations with rk        

                     //reference annotations (generated previously)//

       and generate change maps 

       compute characteristic metrics    

                    //e.g., precision/recall by comparing the results 

                    with the rk // 

 end 

V. RESULTS AND DISCUSSIONS 

For the selected areas of interest, different use cases can 
be considered such as: detection of wind turbines vs. boats; 
differences between beaches, tidal flats, and dams; fish 
cages/aquaculture; etc.  

For example, we selected the Wadden Sea area and we 
show the results for the detection of wind turbines vs. 
detection of boats. The images were acquired in order to 
cover, as much as possible, the same area on the ground 
and/or the same acquisition date or a date closer between the 
acquisitions. The data set consists of different images 
acquired by three different satellites: a TerraSAR-X image 
acquired on May 13, 2015 with a resolution of 2.9 meters, a 
Sentinel-1A image acquired on May 15, 2015 with a 
resolution of 20 meters, and a Sentinel-2A single quadrant-
image acquired on April 21, 2016 with a resolution of 10 
meters (considering only the RGB bands). In Figure 7, we 
show the available data for the Wadden Sea protected area. 
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All these images were tiled into patches and from each 
patch a feature vector was extracted. We classified the 
images considering only two categories of interest, namely 
Wind turbines and Boats (see Figure 8). Based on the 
extracted features and the specific patterns of these 
categories we were able to separate them during 
classification. Figures 9, 10, and 11 illustrate the retrieved 
categories after the classification projected on the quick-look 
of each image product. For each image product the locations 
of Wind turbines and Boats are marked in green and blue, 
respectively. 

The complete processing chain from ingestion to 
annotation was run on a desktop PC with software coded in 
Java 8 and Matlab R2105a. The PC used for our experiments 
had a processor clock rate of 2.40 GHz, and a RAM capacity 
of 8 GB. Typically, we obtain a CPU usage of less than 25% 
as we store all image files onto a disk and have to wait for 
the completion of all data transfers. The actual memory 
consumption of our PC configuration is less than 50 MByte 
per image. The classification and display of a new set of 
retrieved patches needs about 4 to 6 ms when we have a 
collection volume of 2 GByte of image data. 

The accuracy of the results was computed for each sensor 
and for each retrieved category. For each image (EOi) we 
compared the category al with its corresponding reference 
category rk and we computed its classification accuracy. The 
attained average accuracy is 93%, ranging from 80% to 95% 
depending on the image type (e.g., TerraSAR-X, Sentinel-1A 
or Sentinel-2A). When we compare the different SAR 
sensors, we notice that the overall classification accuracy is 
higher for the high resolution instruments, for example for 
TerraSAR-X. 

 
Figure 7.  Locations of the Wadden Sea shown on OpenStreetMap; the 

TerraSAR-X footprints are in green, the Sentinel-1A footprint is in orange, 

and the Sentinel-2A footprint (all quadrants) is in blue. 

 
Figure 8.  In-situ data: wind turbines vs. boats. 

 

Figure 9.  TerraSAR-X “patch-based” classification results projected on a 

SAR image of Flevoland, the Netherlands. 

 

Figure 10.  Sentinel-1A “patch-based” classification results projected on a 

SAR image of the Wadden Sea, Lake IJssel, and Marker Lake, and the 
surrounding areas in the Netherlands. 

 

Figure 11.  Sentinel-2A “patch-based” classification results projected on a 

(gray level) image of the German and Dutch Wadden Sea. 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we analyzed several protected areas all over 
Europe by a high- and a medium-resolution space-borne 
instrument (SAR and multi-spectral images).  

By exploiting the specific imaging details and the 
retrievable semantic categories of these three image types 
(TerraSAR-X, Sentinel-1, and Sentinel-2), we can 
semantically fuse the image classification maps. In order to 
verify the classification results, we need to compare them 
with in-situ data.   
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Another example would be the difference within beaches, 
tidal flats, and dams that we can find from the images 
available in our dataset (e.g., the Danube Delta, the Curonian 
Lagoon, or the Wadden Sea). In this case, we obtained 
similar accuracy results with the case described in Section V. 

For future evaluation, we plan to compare the 
classification accuracy of the wind turbines considering more 
parameters such as: the size of the pylon, the blade angles of 
the wind turbines, the rotation rate of the propeller, and the 
viewing direction and the resolution of the satellite image.  

At this moment, there exist some studies about wind 
turbines [26]-[28] using SAR images but none of the existing 
papers analyzes all these parameters simultaneously. We will 
also compare the results from the point of view of accuracy 
between high-resolution vs. medium-resolution and between 
SAR sensors vs. multi-spectral sensors. 
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