
AScale: Simple and fast ETL+Q scaling for small and big data

Pedro Martins, Maryam Abbasi, Pedro Furtado
University of Coimbra

Department of Informatics
Coimbra, Portugal

email: {pmom, maryam, pnf}@dei.uc.pt

Abstract—In this paper, we investigate the problem of
providing scalability (out and in) to Extraction, Transfor-
mation, Load (ETL) and Querying (Q) (ETL+Q) process of
data warehouses. In general, data loading, transformation,
and integration are heavy tasks that are performed only
periodically, instead of row by row. Parallel architectures and
mechanisms are able to optimize the ETL process by speeding
up each part of the pipeline process as more performance is
needed. We propose parallelization solutions for each part of
the ETL+Q, which we integrate into a framework, that is, an
approach that enables the automatic scalability and freshness
of any data warehouse and ETL+Q process. Our results show
that the proposed system algorithms can handle scalability to
provide the desired processing speed in big-data and small-data
scenarios.

Keywords-Algorithms; architecture; Scalability; ETL; fresh-
ness; high-rate; performance; scale; parallel processing.

I. INTRODUCTION

ETL tools are special purpose software used to populate
a data warehouse with up-to-date, clean records from one or
more sources. The majority of current ETL tools organize
such operations as a workflow. At the logical level, the E
(extraction) can be considered as a capture of data flow
from the sources, normally more than one with high-rate
throughput. Then, we have T representing transformation
and cleansing of data. This corresponds to modifying data
so that it will conform to an analysis schema. The L
(load) represents loading the data into the data warehouse,
where the data is stored to be queried and analyzed. When
implementing these types of systems, besides the necessity
to create all these steps, the user is required to be aware of
scalability requirements that the ETL+Q (ETL and queries)
might raise for this specific scenario.

When defining the ETL+Q the user must have in mind
the existence of data sources, where and how the data
is extracted to be transformed (e.g., completed, cleaned,
validated), the loading into the data warehouse, and finally
the data warehouse schema, each of these steps requires dif-
ferent processing capacities, resources, and data treatment.
However, in some applications scenarios, (e.g., near-real-
time monitoring of telecom, energy distribution or stock
market) ETL can be demanding in terms of performance.
Most of the time because the data volume is too large and
one single, extraction, transform, loading or querying node

is not sufficient. Thus, more nodes must be added to extract
the data and extraction policies from the sources must be
created (e.g., round-robin OR on-demand). The other phases,
transformation, and load must also be scaled.

After extraction, data must be re-directed and distributed
across the available transformation nodes. Again since trans-
formation involves heavy duty tasks (heavier than extrac-
tion), more than one node should be necessary to assure
acceptable execution/transformation times.

After the data is transformed and ready to be loaded, the
load period must be scheduled (e.g., every night, every hour,
every minute) and load time controlled (e.g., maximum load
time = 5 hours). This means that, between the transformation
and load process, the data must be held somewhere.

Regarding the data warehouse, in some application scenar-
ios the entire data will not fit into a single node, and if it fits,
it will not be possible to execute queries within acceptable
time ranges. Thus, more than one data warehouse node is
necessary with a specific schema which allows distributing,
replicate, and finally query the data within an acceptable
time frame.

In this paper, we study how to provide ETL+Q scalability
with ingress high-data-rate in big and small data warehouses.
We propose a set of mechanisms and algorithms, to par-
allelize and scale each part of the entire ETL+Q process,
which is included in an auto-scale (in and out) ETL+Q
framework. This framework is based on time bounds for
the parts of the ETL+Q and/or the global ETL process,
automatically scaling, to assure the desired time bounds.

The presented results prove that the proposed monitoring
mechanisms and detection algorithms are able to scale-out
when necessary.

In Section II, we present relevant related work in the field.
Section III, we describe the architecture of the proposed sys-
tem. Section IV explains the main algorithms which allow to
scale-out when necessary. Section V shows the experimental
results obtained when testing the proposed system. Finally,
Section VI concludes the paper and discusses future work.

II. RELATED WORK

Works in the area of ETL scheduling include efforts
towards the optimization of the entire ETL workflow [6] and
of individual operators in terms of algebraic optimization

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

Figure 1. Total automatic ETL+Q scalability

(e.g., joins or data sort operations). The work [3] deals
with the problem of scheduling ETL workflow at the data
level and in particular scheduling protocols and software
architecture for an ETL engine in order to minimize the
execution time and the allocated memory needed for a given
ETL workflow. The second aspect in ETL execution that
the authors address is how to schedule flow execution at
the operations level (blocking, non-parallelizable operations
may exist in the flow) and how we can improve this with
pipeline parallelization [2].

The work [4] focuses on finding approaches for the auto-
matic code generation of ETL processes which is aligning
the modeling of ETL processes in the data warehouse with
Model Driven Architecture (MDA) by formally defining a
set of QVT (Query, View, Transformation) transformations.

Related problems studied in the past include the schedul-
ing of concurrent updates and queries in real-time ware-
housing and the scheduling of operators in data streams
management systems. However, we argue that a fresher look
is needed in the context of ETL technology. The issue is no
longer the scalability cost/price, but rather the complexity
it adds to the system. Previews presented recent works in
the field do not address in detail how to scale each part
of the ETL+Q and do not regard the automatic scalability
to make ETL scalability easy and automatic. The authors
focus on mechanisms to improve scheduling algorithms and
optimizing workflow and memory usage. In our work, we
assume that scalability in a number of machines and quantity
of memory is not the issue. We focus on offering scalability
for each part of the ETL pipeline process, without the night-
mare of operators relocation and complex execution plans.
Thus, in our work, we focus on scalability based on generic
ETL process to provide the users desired performance with
minimum complexity and implementations. In addition, we
also support queries execution.

III. ARCHITECTURE

In this section, we describe the main components of the
proposed architecture for ETL+Q scalability.

Figure 1 depicts the main processes needed to support
total ETL+Q scalability with specific time bounds.

(1) Represents the data sources from where data is ex-
tracted from the system.

(2) The data distributor(s) is responsible for forwarding
or replicating the raw data to the transformer nodes.
The distribution algorithm to be used is configured and
enforced at this stage. The data distributors (2) should
also be parallelizable if needed, for scalability reasons.

(3) In the transformation nodes the data is cleaned and
transformed to be loaded into the data warehouse.
This might involve data look-ups to in-memory or
disk tables and further computation tasks. In Figure
1 the transformation (3) is parallelized for scalability
reasons.

(4) The data buffer can be in memory, disk file
(batch files) or both. In periodically configured time
frames/periods, data is distributed across the data
warehouse nodes.

(5) The data switches are responsible for distributing
(pop/extract) data from the ”Data Buffers” and set
it for load into the data warehouse, which can be a
single-node or a parallel data warehouse depending
on configured parameters (e.g., load time, query per-
formance).

(6) The data warehouse can be in a single node, or
parallelized by many nodes. If parallelized, the ”Data
Switch” nodes will manage data placement according
to configurations (e.g., replication and distribution).
Each node of the data warehouse loads the data
independently from batch files.

(7) Queries (7) are rewritten and submitted to the data
warehouse nodes for computation. The results are then
merged, computed and returned.

The main concepts, we propose are the individual ETL+Q
scalability mechanisms of each part of the ETL+Q pipeline.
By offering the solution to scale each part independently,
we provide a solution to obtain configurable performance.
Then, in future work based on user configuration parameters,
a framework using these components, scales automatically
the ETL+Q when necessary.

IV. SCALING ALGORITHMS

In this section, we describe the algorithms which allow
the framework to scale-in and scale-out each part of the ETL
and Query process. For each part that we design for later,
automatic scale in and out we explain the scaling algorithms.

A. Extraction & data distributors - Scale out

Depending on the number of existing sources and data
generation rate and size, the nodes that process the extraction
of the data from the sources might need to scale. The
addition of more ”extraction & data distributors” (2) depends
on if the current number of nodes is being able to extract
and process the data with the correct period and inside the
maximum extraction time (without delays). For instance, if

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

the extraction period is specified as every 5 minutes and
the extraction duration is 10 seconds, every 5 minutes the
”Extraction & Data distributor” nodes cannot spend more
than 10 seconds extracting data, if so, a scale-out is needed.
By scaling out the extraction, nodes will have fewer data to
extract/process and more concurrent extraction, leading to a
performance improvement. Listing 1 pseudo-code describes
the algorithm used to scale, independently of the used
extraction method.

Listing 1. Extraction scalability
s t a r t T i m e = g e t C u r r e n t T i m e () ;
s o u r c e = r e q u e s t S o u r c e T o E x t r a c t D a t a () ;
s i z e = r e q u e s t S i z e T o E x t r a c t () ;
d a t a = r e q u e s t S o u r c e E x t r a c t i o n (sou rce , s i z e) ;
e n d E x t r a c t i o n T i m e = g e t C u r r e n t T i m e () ;
e x t r a c t i o n T i m e . add (e n d E x t r a c t i o n T i m e−s t a r t T i m e) ;
f o r (a l l i n e x t r a c t i o n T i m e ()){

i f (e x t r a c t i o n T i m e > g e t M a x E x t r a c t i o n T i m e ()){
p r o c e s s S c a l e O u t () ;
break ;

}
}
f o r (a l l i n e x t r a c t i o n T i m e ()){

i f (e x t r a c t i o n T i m e > g e t E x t r a c t i o n P e r i o d ()){
p r o c e s s S c a l e O u t () ;
break ;

}
}

B. Extraction & data distributors - Scale in

To save resources when possible, the nodes that perform
the data extraction from the sources can be set in standby or
removed. This decision is made based on the last execution
times. If previous execution times of at least two or more
nodes are less than half of the configured maximum, one
of the nodes is set on standby or removed, and the other
one takes over. Listing 2 pseudo code describes the used
algorithm.

Listing 2. Extraction and data distribution
lowLoadNodes = 0 ;
nodesID = n u l l ;
f o r (a l l nodes){

i f (p r o c e s s i n g T i m e () < g e t E x t r a c t i o n F r e q u e n c y () / 2){
lowLoadNodes ++;
nodesID . add (nod eID) ;

}
i f (e x t r a c t i o n T i m e () < g e t M a x E x t r a c t i o n T i m e () / 2){

lowLoadNodes ++;
nodesID . add (nodeID) ;

}
}
i f (lowLoadNodes >= 2){

setNodeToSandBy (nodesID . g e t F i r s t ()) ;
}

C. Transform - Scale-out

The transformation process is critical. If the transforma-
tion is running slow, data extraction at the refereed rate may
not be possible, and information will not be available for
loading and querying when necessary. The transformation
step has an important queue, used to determine when to
scale the transformation phase. If this queue reaches a

limit size (by default 50%) then it is necessary to scale,
because the actual transformer is not being able to process
all data that is arriving. Another mechanism used to scale
the transformation process is the user-configured maximum
transformation execution time. If this time is exceeded then,
the transformation must be scaled-out. Listing 3 pseudo code
describes the used algorithm.

Listing 3. Transformation scale-out
l i m i t S i z e = g e t L i m i t S i z e () ; / / by d e f a u l t 50%;
f o r (a l l nodes){

c u r r e n t Q u e u e S i z e = queue . g e t S i z e () ;
i f (c u r r e n t Q u e u e S i z e > l i m i t S i z e){

addTrasnformerNode () ;
break ;

}
i f (t r a n s f o r m a t i o n T i m e > getMaxTransformTime ()){

addTrasnformerNode () ;
break ;

}
}

D. Transform - Scale in

The size of all queues is analyzed periodically. If this size
at a specific moment is less than half of the limit size for
at least two nodes and the average transformation time of at
least two nodes is half of the specified then, one of those
nodes is set on standby or removed, and another one of the
low load nodes takes over. Listing 4 pseudo code describes
the used algorithm.

Listing 4. Transformation scale-in
l i m i t S i z e = g e t L i m i t S i z e () / 2 ; / / by d e f a u l t 25%;
maxTransformTime = getMaxTransformTime () ;
c o u n t = 0 ;
f o r (a l l nodes){

c u r r e n t Q u e u e S i z e = node . queue . g e t S i z e () ;
c u r r e n t T r a n s f o r m T i m e = node . getAvgTransformTime () ;
i f (c u r r e n t Q u e u e S i z e <= l i m i t S i z e &&

c u r r e n t T r a n s f o r m T i m e <= maxTransformTime / 2){
c o u n t ++;
i f (c o u n t >= 2){

setNodeToSandBy (nodeID) ;
break ;

}
}

}

E. Data buffer - Scale

The data buffer nodes scale-out based on the incoming
memory queue size and the storage space available to hold
data. Low data warehouse load frequency will require data
buffers with storage space to hold the data until the sched-
uled load time. Thus, the data buffers scale dynamically as
more storage space is necessary. Another scale-out situation
is when the available incoming memory queue becomes
above a certain threshold (by default 50%). This means that
the data ingress rate is higher than the data swap speed,
thus, nodes must scale-out in order to not lose data. By user
request, the data buffers can also scale-in. In this case, the
system will allow it if the data from any data buffer can be
fitted inside other data buffer.

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

F. Data switch - Scale

These nodes scale based on configured data rate limits. If
after a data load process occurs the average limit extraction
data rate is equal or above a certain limit, then these nodes
are set to scale. The data switches can also scale-in. In this
case, the system will allow it if the average data rate from
the previews load period is less than the maximum supported
by each data switch.

G. Data Warehouse - Scale

The data warehouse scalability is detected after each load
process. The loading process might include among other
operations: destroy indexes, load data, update materialized
view, and rebuild indexes. The data warehouse load process
has a limit time to be executed every time it starts. If that
limit time is exceeded then, the data warehouse must scale.
Listing 5 pseudo code describes the used to scale the data
warehouse when the load process occurs.

Listing 5. Data warehouse scale
s t a r t T i m e = g e t C u r r e n t T i m e () ;
d a t a = g e t D a t a (s i z e) ;
preLoadTask () ;
p r o c e s s (d a t a) ;
posLoadTask () ;
s t a r t L o a d () ;
endTime = g e t C u r r e n t T i m e () ;
i f (endTime − s t a r t T i m e > getMaxLoadTime (){

d a t a W ar e h o u s e S c a l eO u t () ;
}

The data warehouse scalability is not only based on the
load & integration speed requirements, but also on the
queries desired maximum execution time. The faster queries
need to execute, more nodes will be necessary. Listing 6
pseudo code describes the used algorithm:

Listing 6. Data warehouse scale, integration speed
e x e c u t e (q u e r i e s) ;
avgTime = ge tQueryAverageExecu t ionT ime () ;
d e s i r e d E x e c u t i o n T i m e = g e t D e s i r e d E x e c u t i o n T i m e () ;
i f (avgTime < d e i s r e d E x e c u t i o n T i m e){

d a t a W ar e h o u s e S c a l eO u t () ;
}

Because it is a computationally expensive operation, when
an alarm is raised (the data warehouse needs to scale) the
data warehouse nodes scale-in and scales-out, can only be
triggered by user request and iff the average query execution
time and the average load time respect the conditions 1 and
2 (where n represents the number of nodes):

(n− 1)× avgQueryT ime

n
≤ desiredQueryT ime (1)

and
(n− 1)× avgLoadT ime

n
≤ maxLoadT ime (2)

Every time the data warehouse scales-out or scales in the
data inside the nodes needs to be re-balanced. The default
re-balance process to scale-out is based on the phases:
• Replicate dimension tables;
• Extract information from nodes;
• Load the extracted information into the new nodes.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we test the ability of the proposed auto-
scale framework to automatic scale-out the ETL process
when more performance is necessary to provide the desired
results. For the purpose of these tests, we simulated the
launch of an ETL system only concerning a single server
machine. In this setup the considered ETL process consists
on converting the TPC-H [1] benchmark data generator into
the Star Schema Benchmark (SSB) [5], and execute the SSB
queries. For all tests, we used equal nodes, with intel i5
3.00GHz, 16 GB of RAM and 1TB of disk. By applying
the described algorithms, we observed how it scales to
provide the desired performance. In the next sections, we
demonstrate how each part of the ETL and Query execution
scales-out.

A. Data extraction nodes scalability

Considering that, we have data sources and extraction
nodes to extract data. When the data flow is too high
a single data node can not handle all ingress data. In
this section, we study how the extraction nodes scale to
handle different data rates. The extraction process uses an
on-demand approach to extract data, where an ”automatic
scaler” process orders the nodes to extract data from sources.
There is a configured maximum allowed extraction time and
a extraction frequency, represented by the Equations 3 and 4.
If any of them is not respected the system is set to scale-out.

max
extractionTime

< max
desiredExtractionTime

(3)

max
extractionTime

< ExtractionFrequency (4)

Figure 2 shows: In the left Y axis is the average extraction
time in seconds; In the right Y axis is the number of
nodes; The X axis is the data-rate; Black line represents
the extraction time; Grey line represents the number of
nodes; The maximum allowed extraction time was set to 1
second maximum extraction time, with periodic extraction
of 5 seconds.

As we can conclude from Figure 2 experimental results,
every time the maximum allowed extraction time has ex-
ceeded the system requested an additional extraction node
to improve the extraction performance.

B. Transformation scalability

During the ETL process after data extraction, it is set for
the transformation. In our tests the transformation consists

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

Figure 2. Extraction scalability

Figure 3. Automatic transformation scalability. For different data rates,
for 60 minutes processing per data rate. Transformation threshold set to
50MB, approximately 380.000 rows

on converting the TPC-H dataset into SSB format. Because
this process is computationally heavy it is often required
to scale the transformation nodes. Each transformation node
has an entrance queue for ingress data and an automatic scale
monitors all queues. Once it detects that a queue is full above
a certain (configured) threshold it starts the scaling process,
this means that Rateextract ≥ Ratetransform.

Figure 3 shows: Y axis, average queue size in number of
rows; X axis, the data rate in rows per second; Each plotted
bar represents a node queue size, up to 4 nodes; The limit
queue size to trigger the scale mechanisms was set at 50MB,
approximately 380.000 rows; The maximum transformation
time for each row was set to 1 second. Each measure is the
average queue size of 60 seconds run.

During the experimental tests, as depicted in Figure 3, the
maximum allowed transformation time was never exceeded.
However, the queues size increased while increasing the data
rate, allowing to show that the proposed approach is efficient
to scale the transformation nodes.

Figure 4. Data warehouse load scalability

C. Data Buffer nodes

These nodes hold the transformed data until it is loaded
into the data warehouse. During all our tests, we used
a single machine with 16GB memory and 1TB disk, all
available to be used. If the available storage space becomes
full then, the automatic scale sets the system to scale the
Data Buffer node (add one more node). However, during
our tests, we never had the necessity to do so since all
transformed data could fit into memory until the next load
(into the data warehouse) period.

D. Data warehouse scalability

In this section, we test the data warehouse scalability,
which can be triggered or by the load process (because it
is taking too long), or because of the queries time (they
are taking more time than the desired execution time). If
the maximum configured load time is exceeded, the data
warehouse is set to scale.

Experimental results from Figure 4 show: Left Y axis,
average load time in seconds; Right Y-axis, number of
data warehouse nodes; X axis, data batch size in MB; The
maximum allowed load time, set to 60 seconds; Each time
a data warehouse (scales) node is added, we show the data
size that was moved into the new node and the required time
in seconds (re-balance time).

Based on our experimental results, we conclude that the
proposed method to scale the data warehouse when the
bottleneck is related to the load time is efficient, improving
the overall load performance. Note that, every time a new
node was added the data warehouse required to be re-
balanced (data distributed by the nodes evenly). This process
requires 3 steps, first extract (in parallel) the data from the
existent nodes, second load the data into the new node, third
load the new data (distributed and parallel) in batch and
check if the load time is lower than the maximum allowed
load time.

E. Query scalability

When running queries, if the maximum desired query
execution time (i.e. configured parameter) is exceeded then,

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

Figure 5. Data warehouse scalability, workload 1

the data warehouse is set to scale in order to offer more
query execution performance. The following workloads were
considered to test the proposed system:
• Workload 1;

– 50GB total size;
– Execute Q1.1, Q2.1, Q3.1, Q4.1 randomly chosen;
– Desired execution time per query: 5 minutes (300

seconds).
• Workload 2 (as workload 1 but with more sessions);

– 1 to 8 sessions;
Workload 1 studies how the proposed mechanisms scale

the data warehouse when running queries. Workload 2
studies the scalability of the system when running queries
and the number of simultaneous sessions (e.g., the number
of simultaneous users) increases. Both workloads with the
objective to deliver the configured execution time per query
(300 seconds).

F. Query scalability - Workload 1

Figure 5 shows: The experimental results for workload 1;
Y axis, average execution time in seconds using a logarith-
mic scale; X axis the data size per node and the current
number of nodes; The horizontal line over 300 seconds
represents the desired query execution time;

The results from Figure 5, show that the proposed system
can detect and scale the data warehouse nodes until the
average query execution time is the desired.

G. Query scalability - Workload 2

Figure 6 shows: The experimental results for workload 2;
Y axis, average execution time in seconds using a logarith-
mic scale; X axis the number of sessions, the data size per
node and the number of nodes; The horizontal line over 300
seconds represents the desired query execution time; The last
result does not respect the desired execution time because
of the limited resources for our tests, 12 nodes.

In Figure 6, we show that while the number of simul-
taneous sessions increases the system scales the number of

Figure 6. Data warehouse scalability, workload 2

nodes in order to provide more performance, thus, the query
average execution time follows the configured parameters.
As our experimental results show the proposed system scales
efficiently to provide the desired performance.

VI. CONCLUSIONS & FUTURE WORK

In this work, we propose mechanisms and algorithms to
achieve automatic scalability for complex ETL+Q, offering
the possibility to the users to think solely in the conceptual
ETL+Q models and implementations for a single server.
The tests demonstrate that the proposed techniques are
able to scale-out. Future work will investigate an auto-scale
framework for scale-out and scale in any ETL+Q and, at the
same time, providing data freshness and support for near-
real-time data stream processing.

REFERENCES

[1] T. P. P. Council. Tpc-h benchmark specification. Published at
http://www. tcp. org/hspec. html, 2008.

[2] R. Halasipuram, P. M. Deshpande, and S. Padmanabhan.
Determining essential statistics for cost based optimization of
an etl workflow. In EDBT, pages 307–318, 2014.

[3] A. Karagiannis, P. Vassiliadis, and A. Simitsis. Scheduling
strategies for efficient etl execution. Information Systems,
38(6):927–945, 2013.

[4] L. Muñoz, J.-N. Mazón, and J. Trujillo. Automatic generation
of etl processes from conceptual models. In Proceedings of
the ACM twelfth international workshop on Data warehousing
and OLAP, pages 33–40. ACM, 2009.

[5] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The star schema
benchmark and augmented fact table indexing. In Performance
Evaluation and Benchmarking, pages 237–252. Springer, 2009.

[6] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos. Opti-
mizing etl workflows for fault-tolerance. In Data Engineering
(ICDE), 2010 IEEE 26th International Conference on, pages
385–396. IEEE, 2010.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

