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Abstract—Navigating indoor environments brings significant
challenges for individuals with mobility impairments, such as
wheelchair users, older adults, those with temporary injuries,
and others requiring accessible pathways. A key barrier is
the absence of reliable, real-time information about indoor
layouts, accessibility features, and temporary obstacles. Existing
navigation solutions often rely on static maps and outdated data,
limiting their ability to address the dynamic and specific needs of
users seeking accessible routes. To overcome these limitations, this
study introduces an Artificial Intelligence (AI)-assisted drone-
based navigation system that provides real-time guidance and
adaptive support for individuals with mobility restrictions. We
developed and integrated a custom object detection model into
the aerial platform to identify accessibility features and environ-
mental obstacles. In addition, a dynamic path-planning algorithm
enables the drone to autonomously guide users through accessible
routes, adjusting in real-time to environmental changes. The sys-
tem reroutes users when unexpected obstructions arise, ensuring
uninterrupted and reliable navigation to the targeted destination.
We evaluated the system’s performance through experiments in
a controlled environment, demonstrating its effectiveness and
potential for real-world applications.

Keywords-Unmanned Aerial Vehicles; Drone-as-a-Service; Arti-
ficial Intelligence; Accessibility; Mobility Impairment.

I. INTRODUCTION

Navigating indoor environments poses challenges for many
individuals; however, these difficulties are significantly in-
tensified for those with mobility impairments, including
wheelchair users, the elderly, and others requiring accessible
pathways. Unlike outdoor environments, which might benefit
from widely adopted GPS-based navigation systems, indoor
spaces, such as office buildings, shopping malls, hospitals, and
airports, are often complex, dynamic, and poorly documented.
People with mobility limitations face barriers such as stairs,
narrow corridors, inconveniently placed ramps, surface defects,
and obstacles that change frequently due to construction,
furniture rearrangements, or crowded conditions. They often
have to rely on pre-researched maps, verbal directions, or
external assistance. In emergencies, timely access to accessible
paths can be critical, yet existing systems rarely provide the
real-time guidance needed to navigate these spaces safely.

Although considerable progress has been made in
accessibility-aware tools and standards for outdoor navigation,
indoor environments remain largely unsupported in terms of
real-time navigational assistance. People with disabilities often

encounter inaccurate, outdated, or difficult-to-access informa-
tion about accessible paths, ramps, elevators, and temporary
obstructions. The cognitive load required to process such infor-
mation adds to the stress of independent navigation, creating
a substantial barrier to mobility, autonomy, and inclusion.

Tools like Google Maps’ Accessible Places feature provide
high-level accessibility data, but lack support for dynamic re-
routing or detection of temporary obstacles. These gaps inten-
sify the urgent need for solutions that can provide adaptive,
real-time indoor navigation responsive to users’ accessibility
requirements.

Recent advances in robotics and Artificial Intelligence (AI)
offer promising paths for addressing aforementioned chal-
lenges. Unmanned Aerial Vehicles (UAVs), commonly known
as drones, have demonstrated broad utility in domains, such
as agriculture, surveillance, emergency response, and deliv-
ery services. Integrating drones with computer vision and
deep learning can enable real-time detection of environmental
features and obstacles, while also supporting dynamic path
planning. This capability is particularly relevant for indoor
environments, where static maps are insufficient, and routes
may need continuous updating in response to environmental
changes.

Despite these advances, most existing drone-based or AI-
assisted navigation systems focus on outdoor applications or
visually impaired users, leaving a critical gap for mobility-
impaired populations in indoor spaces. There is a need for
systems that combine accessibility-aware planning, real-time
perception, and reliable guidance to ensure users can navigate
complex indoor environments independently or with minimum
of help.

In this study, we present a novel AI-assisted drone-based
navigation system designed specifically for real-time operation
in dynamic indoor environments. Our platform combines a
custom object detection model, capable of recognizing acces-
sibility features and obstacles, with a real-time path planning
algorithm that prioritizes accessible and safe routing. Unlike
previous approaches that rely on pre-recorded routes or static
maps, our system continuously adapts its path in response
to environmental changes, offering an adaptive navigation
experience. The contributions of this paper is as follows:

1. A practical architecture for drone-assisted indoor
navigation that supports real-time accessibility-aware
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guidance.
2. Integration of AI-based object detection with dynamic

path planning to identify and respond to temporary
obstacles, changing layouts, and accessibility features.

3. Experimental evaluation in controlled indoor environ-
ments demonstrating feasibility and potential to improve
independent mobility.

4. A roadmap for future enhancements, including dataset
and training improvements, integration of crowdsourced
annotations, and broader validation across varied indoor
environments.

By advancing the convergence of AI, robotics, and acces-
sibility, our system introduces a novel and adaptable solution
to a longstanding problem in inclusive navigation. It demon-
strates the potential of drones to serve as mobile, intelligent
guides, ensuring safe, accessible, and efficient indoor mobility
for individuals with physical disabilities.

This paper is structured as follows: Section II reviews
related work on accessibilty systems, path navigation, and
drone-assisted guidance. Section III introduces the overall
system architecture. Section IV, describes the object detection
process, including the algorithm, the steps used to identify
accessibility features and obstacles, and the corresponding
performance results. Section V presents our dynamic path
navigation algorithm, which guides users along accessible
routes by using real-time environmental data, followed by an
anlysis of its complexity and completeness. Finally, Section VI
summarizes the contributions and outlines directions for future
work.

II. RELATED WORK

A wide body of research emphasizes the limitations of
current systems in addressing the needs of people with dis-
abilities indoors. Studies have documented the challenges
faced by blind users, including poor signage and misaligned
digital-physical information [1], as well as the cognitive load
involved in navigating unfamiliar spaces [2]. Other work has
examined mobile applications and assistive technologies for
people with visual or cognitive impairments [3][4]. However,
relatively little attention has been given to real-time, assistive
indoor navigation for those with mobility-related impairments.
The work [5] on mobile indoor navigation assistance for
mobility impaired people proposes a smartphone-based system
using Wi-Fi localization and pre-mapped accessibility data to
guide users indoors, focusing on using accessible maps and
wireless sensor positioning to guide users through complex
indoor spaces. While effective for static environments, it lacks
dynamic perception and real-time path adaptation. Rafful et
al. [6] describes the role of simulation frameworks in assessing
indoor accessibility for people with disabilities. While such
tools are valuable for design-time evaluation, they do not
provide in-the-moment guidance for users moving through
an indoor environment. As a result, People With Mobility
Disabilities (PWMD) are often left without timely information
when routes become blocked or when layouts change.

Issues, such as misalignment between maps and real-world
landmarks, uneven terrain, inaccessible detours, and poorly
placed signage make independent travel difficult. These ob-
stacles are further worsened by the mental effort required
to process complex way-finding information, often turning
navigation into a stressful and unreliable task. In emergencies,
the situation becomes even more critical, as the absence of
real-time navigation support can lead to dangerous delays and
confusion. Studies like [7][8] demonstrate the limitations of
static maps or pre-fed navigation systems, which often fail
to provide the real-time updates needed to address dynamic
changes in the environment, such as construction work, tem-
porary obstacles, or crowded areas. Moreover, people with
disabilities may hesitate to disclose their conditions or seek
assistance, further emphasizing the need for inclusive and
adaptive technological solutions.

Some researchers have explored computer vision and deep
learning for assistive navigation. For example, Nasralla et
al. [9] recommend that researchers use deep learning and
machine vision for hazard detection, offering audio or tac-
tile feedback to assist visually impaired users. Khemmar et
al. [10] emphasize the potential of deep learning algorithms
for robust pedestrian detection and target tracking in dynamic
settings. While promising, these solutions focus primarily
on outdoor environments or visually impaired users, leaving
gaps in addressing indoor navigation for people with mobility
impairments.

One promising but underexplored path is the use of drones
for indoor navigation. Their proven effectiveness in infras-
tructure inspection, environmental monitoring, and emergency
response indicates their potential to support accessibility-
focused applications. The introduction of commercial services
like Amazon’s drone delivery [11] has fueled public interest
and innovation in the field. With the global drone market
projected to grow from $15.9 billion in 2023 to $53.4 bil-
lion by 2030 [12], the supporting technologies for real-time
indoor drone navigation, such as object detection and obstacle
avoidance, are increasingly accessible.

Recent studies have explored drones as guides or assistive
agents for people with disabilities. For instance, Avila et.
al. [13] explore the use of drones to assist visually impaired
individuals in navigating public spaces, relying on auditory
cues and airflow produced by the drones. The drones follow
pre-recorded paths mapped by a sighted individual. Iuga et
al. [14] combine wearable fall detectors with drone-based
response systems for emergency scenarios. Their system fea-
tures a fall detection device, worn on the upper arm, which
monitors heart rate and detects falls. Upon detecting a fall,
the system autonomously dispatches a UAV carrying a first
aid package to the patient’s location, with the UAV’s route
planned through a smartphone-based application at an emer-
gency call center. In [15], the authors propose a system that
integrates Virtual Reality (VR) with drones to deliver engaging
visual experiences for individuals with limited mobility. By
streaming live video from the drone’s onboard camera to the
VR headset, users can experience remote environments in real-
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time, effectively bringing the outside world to those unable to
physically explore it. While these applications are innovative,
they do not directly address real-time indoor navigation for
individuals with mobility impairments.

Our work introduces a novel drone-based navigation system
designed to assist people with mobility impairments in real-
time, dynamic indoor environments. Unlike approaches that
rely on pre-recorded routes or fixed maps, our system suggests
active detection of key features of the environment, including
ramps, stairs, elevators, and obstacles, and continuously up-
dates its planned route as conditions change. The platform
integrates an object detection model to identify accessibility
features and obstacles in real time, with a real-time path
planning algorithm that selects accessible and safe routes
for the user. This combination enables the drone to act
as a dynamic guide, leading users through the environment
while responding to layout changes, temporary obstructions,
or changing accessibility conditions.

Effective path planning is critical for any navigation system,
particularly for assistive technologies utilizing drones. Re-
search on safety-focused path planning and genetic algorithm-
based approaches provide insights into optimal route selection
and efficiency [16][17]. In [16], Castelli et al. concentrate
on the importance of incorporating safety metrics to enhance
reliability during UAV missions. Their method prioritizes
minimizing risk by accounting for potential hazards in the
operating area, particularly suited for outdoor environments,
such as urban areas or disaster zones, where UAVs face
dynamic, unpredictable conditions. The study discusses the
importance of incorporating safety metrics to enhance relia-
bility during UAV missions. Wang et al. introduced a path-
planning method based on genetic algorithms, focusing on
outdoor UAV applications [17]. The study is tailored for
scenarios requiring efficient and adaptive route selection, such
as search and rescue operations, environmental monitoring,
and agricultural surveying. This method uses evolutionary
computation to optimize UAV paths with multiple objectives,
including minimizing energy consumption, avoiding obstacles,
and reducing flight time. Genetic algorithms iteratively refine
candidate paths, balancing trade-offs between efficiency and
safety. Although these approaches demonstrate robust path
planning in general settings, they are not designed with
accessibility in mind. Our contribution lies in designing a path
planning algorithm while prioritizing accessible features and
user needs, enabling drones to serve as mobile assistive agents
within real-world indoor spaces.

In this article, we address a critical and underexplored
gap at the intersection of artificial intelligence, accessibility,
and robotics. By integrating real-time object detection and
accessibility-aware path planning into a Drone-as-a-Service
(DaaS) platform, we aim to support independent mobility
of people with physical disabilities in indoor environments
that are often inaccessible, unpredictable, or hazardous. Our
system offers an adaptable, intelligent, and practical solution
to a longstanding problem in inclusive navigation technology.
Although the primary focus of this work is not on drone safety

concerns, such as the risk of drones falling onto individuals,
we acknowledge this as an important practical consideration.
One straightforward mitigation strategy involves installing a
transparent, glass-like barrier or protective netting below the
ceiling, allowing drones to operate above it. This architectural
modification effectively eliminates the risk of falling objects
and can be readily implemented in public buildings. Further-
more, drone charging and docking stations can be integrated
above this barrier to support reliable and safe operations.

III. SYSTEM ARCHITECTURE

To support accessibility-focused indoor navigation, the pro-
posed system utilizes an AI-enabled drone that guides users
along safe and accessible paths while dynamically adapting to
changing environmental conditions. The overall architecture is
illustrated in Figure 1. At the core of the system is the educa-
tional RoboMaster Tello Talent drone, developed by DJI [18].
This compact, lightweight platform (∼90 g) is equipped with
a built-in camera and supports programmable control through
a Software Development Kit (SDK). The drone communicates
wirelessly with a Ground Control System (GCS) over a Wi-Fi
network using the User Datagram Protocol (UDP). Live video
streams captured by the drone are transmitted to the GCS,
where they are processed by the object detection algorithm.
Based on this analysis, the GCS issues navigation commands
to the drone, enabling it to guide users reliably toward their
intended destinations.

Figure 1. System architecture of the proposed drone-based navigation
system, illustrating the drone, wireless communication with the GCS,

real-time object detection, and navigation command feedback for guiding
users along accessible routes.

While the long-term objective is to achieve fully onboard
processing for autonomous navigation on capable drones, the
current implementation strategically uses edge computing to
support real-time decision-making in controlled environments.
This approach allows us to utilize educational drones while
still performing computationally intensive tasks, such as object
detection and path planning, with accuracy and efficiency.
By offloading these processes to a GCS, we demonstrate
the feasibility and effectiveness of our method, establishing
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Figure 2. Workflow of the YOLO object detection pipeline used in the
proposed drone-based navigation system. The GCS receives live video
streams from the drone and processes each frame using the pre-trained

YOLO model [20].

a strong foundation for future deployment on more advanced
platforms.

IV. ACCESSIBILITY-ORIENTED OBJECT DETECTION USING
DRONES

In this section, we focus on the object detection procedure.
A key component in developing a real-time Drone Accessibil-
ity Assistant for individuals with mobility impairments is the
implementation of an efficient object detection algorithm. For
this purpose, You Only Look Once (YOLO) [19] was selected
due to its high speed and accuracy. YOLO formulates object
detection as a single-stage regression problem, eliminating the
complexity and latency of traditional multi-stage pipelines.

Figure 2 illustrates the YOLO workflow, beginning with
live video capture from the drone and continuing through
frame preprocessing, dataset preparation, model training, and
export. The trained model is then deployed for YOLOv8-based
object detection, which generates bounding boxes, labels, and
confidence scores. The ground control station receives the live
video streams and processes each frame using the pre-trained
YOLO model [20]. To enable rapid prototyping and efficient
training, we used Google Colab as the development platform,
utilizing its cloud-based resources to accelerate model training
and improve inference performance.

A dataset consisting of over 4,500 images was collected
from various sources, including [21][22][23]. The distribution
of image categories is illustrated in Figure 3. The top-left bar
chart shows the number of instances for each class: acces-
sibility symbol, person, potholes, ramps, and stairs. The top-
right plot overlays all bounding boxes to visualize their spatial
coverage. The bottom heatmaps represent the distribution of
bounding box center coordinates (x, y) and their width–height
dimensions across the dataset. Each image was manually
annotated to identify regions of interest corresponding to target
objects relevant to accessibility, such as stairs, ramps, and
potholes.

The YOLOv8-medium model from the Ultralytics li-
brary [24] was trained for 60 epochs with an input size of 640
pixels in a Google Colab environment. Model performance

Figure 3. Dataset visualization for accessibility object detection. Top-left:
class distribution; top-right: bounding box overlay; bottom-left: bounding

box centers; bottom-right: bounding box dimensions.

was evaluated using precision, recall, and mean average pre-
cision (mAP) on a validation set. Final predictions on the test
set were generated with a confidence threshold of 0.5.

The object detection model demonstrated good perfor-
mance, achieving a mean average precision (mAP) of 80%
at an Intersection over Union (IoU) threshold of 0.5. As
illustrated in the confusion matrix (Figure 4), the model
indicates robust capability in acurately identifying instances
of accessibility symbols (93%) and stairs (90%), with mod-
erate performance on ramps (85%), potholes (73%), and
persons (70%). An important area requiring improvement is
the model’s handling of the background class. As illustrated
in the confusion matrix, multiple true instances from other
object classes, such as person and potholes, were misclassified
as background. These false negatives suggest that the model
occasionally fails to detect the presence of an object, instead
attributing it to the background class, thus inflating background
predictions. Conversely, there are cases where true background
pixels were incorrectly classified as object classes, resulting in
false positives. These misclassifications reflect a limitation in
the model’s ability to reliably differentiate between objects of
interest and true background. To address this, we prioritize im-
proving the quality of background annotations and increasing
the representation of frequently confused background regions
during training. These enhancements are crucial for boosting
the model’s overall precision and recall across all classes.

Figure 5 presents a series of plots illustrating the model’s
performance evolution over approximately 60 training epochs.
These graphs provide critical insights into the learning process,
convergence, and generalization capabilities of the model.
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Figure 4. Confusion matrix illustrating the performance of the trained model
across all classes. The diagonal values represent correctly classified

instances, while the off-diagonal values indicate misclassifications between
classes.

The top row of plots displays the training loss metrics. All
three curves exhibit a consistent and continuous downward
trend throughout the training epochs. This steady decrease in
training loss indicates that the model is effectively learning
from the training data and improving its ability to accurately
localize objects (box loss), classify them correctly (classifica-
tion loss), and refine its distribution focal loss.The smoothness
of these curves suggests a stable training process, free from
significant oscillations or divergence, which is indicative of
appropriate hyperparameter selection and model architecture.

The bottom row of plots details the validation loss met-
rics and key performance indicators. Similar to the training
losses, the validation loss curves demonstrate a steady decline,
eventually stabilizing towards the latter epochs. This crucial
observation indicates that the model is generalizing well to
unseen data, effectively avoiding overfitting to the training
set. The continuous improvement in validation performance
reinforces the model’s robustness and its capacity for real-
world application.

Furthermore, the performance metrics showcase signifi-
cant progress over time. Both metrics/precision(B) and met-
rics/recall(B) exhibit a strong upward trajectory, stabilizing
at high values by the end of training. This suggests that the
model is becoming both more selective, making fewer false
positive predictions, and more comprehensive in identifying
true positives. The mean average precision metrics offer a
more comprehensive assessment of detection performance. In
particular, metrics/mAP50(B), evaluated at an IoU threshold of
0.50, shows rapid and sustained improvement, achieving a high
score confirming the model’s effectiveness in identifying ob-
jects with moderate overlap. More critically, metrics/mAP50-
95(B), which averages performance across IoU thresholds
from 0.50 to 0.95, also exhibits steady gain. Although this
metric naturally yields lower values due to stricter localization
requirements, its continuous upward trend signifies the model’s

Figure 5. Training and validation performance of the YOLOv8 model across
epochs, showing convergence through reduced loss and improved accuracy,

demonstrating effective generalization to unseen data.

increasing accuracy in both object detection and localization.
The continued rise of this metric suggests that additional
training epochs could further refine bounding box precision
and overall model performance.

In summary, the combined analysis of the confusion matrix
and the training/validation metrics demonstrates the strong
performance of the developed model. The confusion matrix
reveals high true positive rates across key target object classes,
while also identifying the background class as a primary
source of misclassifications. This presents an area for tar-
geted refinement, specifically, improving the model’s ability
to distinguish between actual objects and true background.
Concurrently, the training and validation curves demonstrate
the model’s effective learning and successful generalization,
with consistent improvement in all key performance indicators,
including precision, recall, and mean average precision.

While publicly available data sources provided a practical
basis for developing and evaluating our models, we acknowl-
edge potential domain inconsistencies and inherent dataset
biases. Future work will focus on improving dataset relevance
and reducing biases, for example by collecting additional
domain-specific images or incorporating crowdsourced anno-
tations. We also plan to address class imbalance through data
augmentation and sampling strategies. Beyond data consider-
ations, we aim to to enhance detection performance through
hyperparameter tuning and advanced training strategies, par-
ticularly for underperforming classes. Addressing background-
related confusion through methods, such as data augmentation,
improved annotation quality, hard negative mining, or context-
aware object detection offers a promising direction for improv-
ing the model’s accuracy and real-world robustness.

V. DYNAMIC PATH NAVIGATION ALGORITHM

In alignment with our system design objectives, we de-
veloped a Dynamic Path Navigation Algorithm to enhance
drone’s autonomous navigation capabilities through real-time
environmental perception and adaptive decision-making in
dynamic indoor environments. Central to the system is the
drone’s ability to autonomously scan its surroundings, detect
obstacles, and dynamically determine an alternative route,
thereby ensuring efficient and safe path navigation.
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Algorithm 1 Dynamic Path Navigation Algorithm for Au-
tonomous Drone Guidance

1: procedure GRAPHCONSTRUCTION
2: Construct accessibility-compliant graph G = (V,E)
3: return G
4: procedure HANDLEOBSTACLE(G, current_node, next_node,

destination)
5: RemoveEdge(G, current_node, next_node)
6: P ← Dijkstra(current_node, destination)
7: return P
8: procedure NAVIGATE(source, destination)
9: G ← GraphConstruction()

10: current_node ← source
11: P ← Dijkstra(current_node, destination)
12: while current_node 6= destination do
13: next_node ← NextNode(P )
14: if ObstacleDetected(current_node, next_node) then
15: P ← HandleObstacle(G, current_node, next_node,

destination)
16: else
17: current_node ← next_node
18: Display “Arrived at Destination”

We assume the availability of prior information about the
premises, such as an initial floor map of the building, to
construct a graph-based representation of the navigable envi-
ronment. Specifically, the environment is modeled as a directed
graph G = (V,E), where vertices V represent key decision
points from which the drone can move in various directions
(e.g., intersections, turns, or locations of interest), and edges
E denote traversable connections between them. Each edge
carries a weight reflecting the cost or distance of traversal.

This graph serves as the operational blueprint for path
planning. Given a source node and a destination node, the
algorithm computes an optimal route using Dijkstra’s algo-
rithm. As the drone follows the computed path, it continuously
monitors the environment to detec and respond to unexpected
obstacles in real time. If an obstruction is detected along the
next segment of the planned path, the algorithm dynamically
updates the graph by removing the blocked edge and recalcu-
lating an alternative shortest path from the current node to the
destination. The process iterates until the drone reaches the
destination node, at which point it signals successful arrival.

Algorithm 1 provides a detailed step-by-step description
of this adaptive path-planning framework, which integrates
classical graph-based planning with real-time environmental
perception to enable reliable, obstacle-aware navigation in
dynamic indoor settings.

In the following, we first analyze the algorithm’s worst-
case time complexity, providing insight into its computational
efficiency. We then present a discussion on its completeness,
demonstrating that the algorithm is guaranteed to find a path
if one exists in the graph.

Theorem 1. The worst-case runtime of our Dynamic Path
Navigation algorithm is O(E · (|V |+ |E|)log|V |) in the worst
case.

Proof. The overall time complexity of the Dynamic Path

Navigation algorithm is driven by two primary operations: the
computation of the shortest path using Dijkstra’s algorithm
and the real-time obstacle detection mechanism during path
execution.

Initially, the algorithm computes the shortest path from the
source to the destination node on a pre-constructed graph
G = (V,E), where V represents decision points and E
denotes traversable edges. In the event of encountering unex-
pected obstacles during navigation, the algorithm dynamically
removes the affected edge from the graph and recomputes the
shortest path from the current node to the destination. Let E
denote the total number of such path recalculations triggered
by obstacle detections.

Using a priority queue implementation (e.g., binary heap),
the time complexity of Dijkstra’s algorithm for a single
invocation is

O ((|V |+ |E|) log |V |) .

Therefore, across all E ≤ |E| recomputations, the total cost
of path planning becomes:

O (E · (|V |+ |E|) log |V |) .

In addition, the drone performs a constant-time obstacle
check while traversing each edge along the path. In the worst-
case scenario, every edge in the graph may be evaluated at
least once for obstacle presence, contributing an additional
linear cost of O(|E|) for real-time sensing and reaction.

Thus, the total worst-case time complexity of the navigation
algorithm is:

O (E · (|V |+ |E|) log |V |+ |E|) .

This complexity reflects the integration of classical graph-
based planning with adaptive, sensor-driven updates, enabling
robust and responsive indoor navigation in dynamic environ-
ments.

We now present the completeness guarantee of the proposed
path navigation algorithm in Theorem 2. We assume that the
drone initiates the algorithm at the source node s, with the
objective of reaching the destination node d.

Theorem 2. If there exists at least one unblocked path from
the source node s to the destination d at any time during
execution, then the Dynamic Path Navigation Algorithm will
reach d in finite time.

Proof. The algorithm begins by computing the shortest path
from the current node to the destination node using Dijkstra’s
algorithm. Dijkstra’s algorithm is complete and optimal for
graphs with non-negative edge weights, and thus will return a
valid path if one exists in the initial graph.

As the drone follows this path, it continuously monitors the
immediate next edge for obstacles. If an obstacle is detected
on edge (u, v), the edge is removed from the graph, and the
algorithm recomputes the shortest path from the current node
u to the destination d using Dijkstra’s algorithm on the updated
graph.
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At each iteration, the graph becomes a subgraph of the
original, with potentially fewer edges due to obstacle-induced
removals. If a valid path exists from the current node to the
destination in the updated graph, Dijkstra’s algorithm will find
it. The algorithm terminates either when the destination is
reached or when no path exists in the current subgraph.

Consequently, as long as at least one unblocked path exists
from the current node to the destination, the algorithm will
eventually find and traverse it. Upon reaching d, the algo-
rithm halts successfully, establishing completeness under this
assumption.

VI. CONCLUSIONS AND FUTURE WORK

This study introduces an innovative AI-assisted drone-based
navigation system aimed at supporting individuals with mo-
bility impairments as they navigate complex indoor environ-
ments. By integrating a customized object detection model
with dynamic path planning, the system enables real-time
identification of accessibility features and obstacles, allow-
ing autonomous aerial robots to guide users along safe and
accessible routes. Experimental evaluations conducted in a
controlled setting demonstrate the system’s feasibility and
potential to address critical gaps left by traditional, static
navigation tools. The findings showcase the critical role that
aerial robotics can play in improving independent mobility,
reducing navigational barriers, and advancing inclusion within
built environments. The ability of the system to adaptively
re-route users in response to environmental changes further
reflects its applicability to real-world settings where acces-
sibility needs are both pressing and variable. Future work
may focus on improving the accuracy and adaptability of the
object detection model to perform reliably across a variety of
architectural settings. Refinements to the overall system de-
sign, encompassing both software and hardware components,
combined with evaluations beyond controlled environments
to account for real-world factors, such as lighting variability,
human presence, ceiling obstructions, and operational safety,
will strengthen scalability and reliability. Pilot deployments
or simulation-based validations can further increase credibility
and readiness for broader adoption.
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