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Abstract – Artificial Neural Networks (ANNs or NNs) are used 
in Deep Learning (DL), a subset of Machine Learning (ML). 
And yet, especially to novices or infrequent users, ANNs can 
seem abstract and mathematical, and not readily accessible and 
understandable. Furthermore, a model’s configuration and 
output results may not be comprehensible and obvious. To make 
ANN models more accessible and support comprehension and 
analysis even for large models, this paper contributes our VR-
ANN solution concept for immersive ANN visualization in 
Virtual Reality (VR). Its feasibility is demonstrated with a 
prototype, while a case-based evaluation provides insights into 
its capabilities and potential for supporting ANN model 
building, comprehension, analysis, and collaboration. 

Keywords – artificial neural networks; visualization; virtual 
reality; deep learning; machine learning. 

I.  INTRODUCTION 
Machine Learning (ML) is a subset of Artificial 

Intelligence (AI) that focuses on having machines learn from 
data, improving their performance over time without 
reprogramming [1]. A learning algorithm can optimize its 
model’s parameters to improve its performance, which can 
improve pattern detection, predictions, decisions, etc. Various 
models can be applied in the area of ML. Artificial NNs 
(ANNs), referred to as just Neural Networks (NNs) in this 
paper, are inspired by biological NNs and consist of nodes 
(referred to as artificial neurons) connected via weighted links 
or edges (i.e., synapses), with other nodes and are aggregated 
into layers. Numbers are used to represent signals, while a 
node’s activation function determines a neuron’s output based 
on its inputs and their associated link weights. Between the 
input and output layer are intermediate (hidden) layers. Dense 
layers are fully-connected to the preceding layer. Dropout 
layers address overfitting by randomly setting a fraction of the 
input units to that layer to 0 during training. Hidden layers are 
any that are neither input nor output layers. Deep Learning 
(DL) is a branch of ML utilizing deep NNs having multiple 
hidden layers. Convolutional Neural Networks (CNNs) are a 
type of DL network especially relevant for image processing. 
Feedforward NNs (FNNs) are a type of NN where all neurons 
are fully connected to the next layer with unidirectional 
information flow. Recurrent NNs (RNNs) are a type of NN for 
processing sequential data where its order matters.  

Visualization of NN models can support comprehension, 
analysis, and learning, and while various tools support 2D, 
there has been relatively little investigation into the potential 
offered by Virtual Reality (VR). To address a comprehensive 

visualization of NN models, this paper proposes and 
investigates an immersive VR experience. In prior work, we 
investigated the application of VR to various other areas. A 
selection of our prior VR-related contributions include: in the 
Software Engineering (SE) space, VR-SDLC [2] models 
development lifecycles, VR-Git [3] models Git repositories, 
VR-DevOps [4] models Continuous Development pipelines, 
VR-SBOM [5] models Software Bill of Materials (SBOM) 
and software supply chains, and VR-EA+TCK [6] and VR-
EvoEA+BP [7] exemplify enterprise modeling and business 
processes. This paper contributes a solution concept towards 
immersive visualization of ANNs in VR. A prototype 
demonstrates its feasibility, while a case-based evaluation 
provides insights into its capabilities and potential for 
supporting ANN model building, comprehension, analysis, 
and collaboration. 

The structure of this paper is as follows: the next section 
discusses related work. Section 3 describes our solution. 
Section 4 presents our realization and is followed by our 
evaluation in Section 5. And finally, a conclusion is provided. 

II. RELATED WORK 
In their survey of the application of XR to AI, Hirzle et al. 

[8] screened 2619 publications (2017-2021) and reviewed 311 
in depth. They found only seven papers that applied XR to AI 
problems (2.3%), five of which visualize AI methods for 
immersive analytics, or to improve the understanding of 
neural networks for non-expert users by visualizing them in 
VR (the rest are discussed below). The authors state XR 
“methods are promising to facilitate the interaction with 
neural networks for novices.” The 2025 survey by Yim and 
Su [9] of K-12 learning tools for AI examined 46 papers, but 
and makes no mention any XR/VR tool. The 2021 survey by 
Reiners et al. [10] identified 36 papers that combined XR and 
AI, of which only two were non-domain-specific and related 
to visualizing DL in XR (discussed below). The survey on AI 
in VR by Inkarbekov et al. [11] identified a research gap for 
more user-friendly, intuitive, and adaptable VR tools that can 
accommodate complex and high-dimensional AI models. 
From these surveys we conclude that VR-based visualization 
of AI has not been thoroughly investigated nor readily adopted 
and remains relatively unexplored. 

VR-related NN visualization work includes Bellgardt et al. 
[12], who depict convolutional ANNs in VR as node-link 
diagrams by stacking circular layers for a robotic image 
processing case. InteractML [13] is a node-based tool for 
creative practitioners to train an ML model for movement 
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interactions in VR using real-time gesture demonstrations. 
AIive [14] uses a force-directed graph visualization and 
sonification to enable VR users to manipulate NN parameters 
via virtual hands and auditory feedback. Towards non-experts, 
Meissler et al. [15][16] depict a simplified CNN model in 3D 
in a closed room virtual environment, with information in 2D 
anchored to different areas of the room. Schreiber and Bock 
[17] use the Unreal Engine to display a NN in 3D, whereby 
connections between layers are not visualized. While VR is 
mentioned in the title, there is no mention of VR or immersion 
in the paper, which focuses on 3D. Queck et al. [18] create a 
virtual room in VR with areas providing CNN information. 
VR4DL [19] can train and test CNNs with a focus on 
biomedical image classification; it is not intended to be 
generic for arbitrary CNNs, and is tailored to users with little 
to no knowledge of ML. DeepVisionVR [20] visualizes CNNs 
in VR with a focus on image processing.  

Common 2D NN model visualization tools include 
(TensorFlow) Deep playground, TensorBoard, Netron, 
Comet, and neptune.ai. 

III. SOLUTION CONCEPT 
Our VR-ANN solution concept is shown (in blue) in the 

ML area relative to our other prior VR solutions in our 
conceptual map of Figure 1. Our generalized VR Modeling 
Framework (VR-MF) (detailed in [21]) is the foundation, 
which provides a domain-independent hypermodeling 
framework, which addresses the VR aspects of visualization, 
navigation, interaction, and data integration. Our VR-based 
solutions specific to the Enterprise Architecture (EA) and 
Business Process (BP) space (EA & BP) include: VR-EA [21] 
for mapping EA models to VR, VR-BPMN [22] for BPMN 
models, VR-EAT for enterprise repository integration, VR-
EA+TCK [6] for knowledge and content integration, and VR-
EvoEA+BP [7] for EA evolution and business process 
animation, VR-ProcessMine, and VR-SBOM [5]. Solutions in 
the SE and Systems Engineering (SysE) areas include: VR-
Git [3], VR-GitCity, and VR-GitEvo+CI/CD for git-related 
solutions, VR-DevOps [4], VR-V&V (Verification and 
Validation), VR-TestCoverage, VR-SDLC [2], VR-ISA for 
informed software architectures, and VR-UML and VR-
SysML for software and systems modeling. 

 
Figure 1.  Conceptual map of our various published VR solution concepts 
with VR-ANN highlighted in blue. 

A. Visualization in VR 
To better delimit the context of a NN model in a multi-NN 

VR space, each NN model is visualized within an outlined 3D 
transparent Boundary Box (BB) placed on a hyperplane. This 

enables further additional portfolio of NNs to be visualized 
contemporaneously. Contained within the NN BB are outlined 
transparent 3D BBs, each representing a NN layer, which 
vertically delineates a set of spherical nodes (neurons). Lines 
are used as connectors to indicate which nodes are connected 
between layers. 

B. Navigation in VR 
Dual navigation modes are incorporated in our solution: 

default gliding controls for fly-through VR, while teleporting 
instantly places the camera at a selected position in space.  
While teleporting can be potentially disconcerting, it may 
reduce the likelihood of VR sickness. 

C. Interaction in VR 
User-element interaction is supported primarily through 

VR controllers and the incorporation of a VR-Tablet. The VR-
Tablet provides detailed context-specific element 
information. Various tabs in the VR-Tablet enable support for 
loading, training, executing, or configuring NN models and 
viewing related graphs. Since for our examples no text entry 
and keyboard were required, a virtual keyboard was not 
included. However, our implementation can be readily 
enhanced with a virtual keyboard for text entry using laser 
pointer key selection, as demonstrated in our other VR 
solutions. A small control sphere is placed as an affordance at 
the bottom front corner on the boundary of the hyperplane for 
dragging, collapsing (to reduce visual clutter), or expanding a 
NN BB.  

IV. REALIZATION 
For our prototype realization, the VR visualization aspects 

were implemented using Unity in C#, referred to as our 
frontend, as shown in Figure 2. It connects via a Socket to our 
backend Data Hub, which is based on the hexagonal (or ports-
and-adapters) design pattern and is implemented in Python.  It 
integrates and stores all data via PyMongo to a MongoDB 
database in JSON/BSON format. 

 
Figure 2.  VR-ANN logical architecture. 

NN model support is implemented within the Data Hub in 
Python. The Keras API was used as a high-level DL API 
primarily due to its popularity and flexibility, since it supports 
multiple backends, such as TensorFlow, PyTorch, 
OpenVINO, and JAX (Python library for high-performance 
ML). Initially for prototyping, the Sequential model with 
various layer types placed in sequence is supported, but 
support for additional models can be readily added. 

Data can be imported from or exported to the common 
keras format (.keras extension), which is a zip archive 
containing JSON-based configuration, H5-based state file 
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containing layers and weights, model weights, and metadata. 
Additionally, the CSV file format is supported. Further 
formats can be readily supported via adapters. The models can 
either be pretrained, loaded, and executed in VR (load and 
execute), or can be (re)configured and trained in a VR session 
via our Model Builder support mode. 

To exemplify the internal interaction, a sequence diagram 
for a VR-centric training session is shown in Figure 3. 
Initially, the list of available NN projects is retrieved from the 
Data Hub. If the user creates a new model and starts a training 
session, then the layer data is sent to the Data Hub, the training 
inputs are retrieved, and a model is created and trained via the 
Keras API, training values are logged, and the model is saved 
or exported. The acquired layer data is returned to Unity via 
the socket, and is visualized as a model, which can be further 
analyzed. 

 
Figure 3.  VR-ANN sequence diagram for a VR-centric training session. 

To support VR interaction, we implemented the VR-
Tablet as shown in the bottom right in Figure 4. The tab 
groups Load, Training, Execution, Display options, and 
Graphs are shown, as is the scrollbar. Here, under the selected 
Display options tab, the epoch slider is shown as well as 
options to show or color connections. Also shown in this 
figure, the model layer BBs top side provide layer information 
(number and type) and metrics (number of neurons) and 
containing spheres as neurons evenly spaced along a single 
vertical plane with slots for the next best-fitting square matrix, 
filled from the bottom left (upper right may have empty slots), 
while dropout layers are depicted as an opaque slab. 

Connectors are shown by default in blue; the diameter of the 
lines indicate the relative weighting to the next layer.  

In execution, the most active (top five) routes as nodes and 
connectors are colored (darker to lighter) green. Connectors 
can optionally be colored (iterated list of 32 colors) to more 
easily follow a connector between nodes. 

 
Figure 4.  BBs and VR-Tablet showing tab groups and input options. 

To support Model Builder mode, opaque 3D boxes 
represent layers ordered from left to right, each of which 
offers appropriate options based on type, as shown in Figure 
5. To avoid requiring text input and simplify interaction, the 
default values can be adjusted with plus/minus buttons and 
dropdown lists offer selection options. Layers can be removed 
by an X button at the top right, and new layer types can be 
inserted via the VR-Tablet. The ordering of the layers can be 
adjusted by dragging the boxes. RNN support was not yet 
implemented. All applicable parameters can be selected in the 
VR-Tablet, including epochs, learning rate, optimizer, loss 
function, etc. 

 
Figure 5.  Model Builder for defining and configuring a NN. 

Support for spawning two graph types was implemented: 
a loss graph and an accuracy graph, each of which also offer a 
corner sphere affordance for flexible placement or collapsing. 
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V. EVALUATION 
The evaluation of our VR-ANN solution concept is based 

on the design science method and principles [24], in particular 
a viable artifact, problem relevance, and design evaluation 
(utility, quality, efficacy). A case study is used based on the 
following scenarios: comparison to 2D visualization, build 
and train support, analysis support, and scaling support. 

A. 2D vs. VR-ANN Visualization 
To visually compare a typical NN tool’s 2D visual 

representation of a NN to VR-ANN, an FNN is shown in the 
TensorFlow Playground in Figure 6. The equivalent NN in 
VR-ANN is shown in Figure 7. The VR-ANN model is 
immersively accessible, and can be readily investigated and 
analyzed. Much of the information seen in the 2D playground 
is available in VR by interacting with the VR-Tablet or 
elements (layer, nodes). Given many connections in 2D, we 
contend it to be more straightforward to immersively follow a 
connector in VR separated spatially in 3D space. 

 

 
Figure 6.  Screenshot of a NN model in TensorFlow playground [25]. 

 
Figure 7.  Equivalent NN in VR-ANN containing layers as BBs of 
connected nodes. 

B. Build and Train NN Model Support 
Support for building NNs was shown in Figure 5. Via the 

VR-Tablet, a preconfigured existing model can be loaded, or 
additional layer types flexibly. Once trained, the model   

C. Analysis Support 
To demonstrate analysis support, we utilize an Iris flower 

dataset available on Kaggle [26]. For this, 50 samples each of 
three Iris species (Setosa, Versicolor, Virginica) are classified 
in the output based on four properties: SepalLengthCm, 
SepalWidthCm, PetalLengthCm, PetalWidthCm. After 
building and training, the entire model with all layer types and 
neurons is visualized within a BB as was shown in Figure 7. 
This helps in comprehension of the total number of layers and 
their type, size, and ordering. Metrics are provided on each 

layer BB as seen in the upper right of Figure 8. As shown, the 
connections between neurons can be optionally colored to 
help differentiate them when immersively following a 
connection. 

 
Figure 8.  Colored connections between neurons. 

To support more detailed analysis, selecting a single node 
will cause only connections related to that node to be shown 
and all others to be hidden, as seen in Figure 9. Here, the 
weight values of all the connected input nodes are displayed 
above each input node in the previous layer, metadata about 
the selected node is shown in a panel above that node, such as 
bias and output values, and output connections are visible.  

 
Figure 9.  Node selection shows details related to that node. 

 
Figure 10.  Loss (center) and Accuracy (right) graphs relative to epochs. 
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Beyond the data available in the VR-Tablet, rather than 
just have the graphs in the VR-Tablet, a loss graph and/or 
accuracy graph can be spawned (and moved or collapsed via 
the affordances) and retained with the model context as shown 
in Figure 10. Thus, when multiple similar models or slightly 
different configurations are loaded in VR, one can more 
readily determine the differences.  

The inputs can be adjusted as shown in Figure 11 (left), 
and via the VR-Tablet the model executed. The top 
classification result for this data set can be seen in Figure 11 
(right). After NN execution, the top five most frequent 
activation paths (pathways, routes) are indicated via (darker-
to-lighter) green nodes and connectors as shown in Figure 12.   

  
Figure 11.  Execution on inputs (left) and result in the output layer (right). 

 
Figure 12.  Overall top primary active routes (green nodes and connectors). 

D. Scaling Support 
To demonstrate the scaling ability of VR to support large 

NN models, Figure 13 depicts a mid-sized model that consists 
of ten (8 hidden) layers with 432 neurons counts (4, 100, 50, 
25, 100, 50, 25, 50, 25, dropout, 3). Figure 14 shows a large 
model consisting of 982 neurons across ten (8 hidden) layers 
(4, 100, 200, 25, 100, 200, 100, 50, 200, 3) with the connectors 
colored. Our principle is to initially depict a model’s reality 
with its inherent complexity. However, as shown in the 
analysis case, via immersion, selection of an element of 
interest, display filtering such as turning off connectors, visual 
overload can be addressed. Based on the stakeholder’s interest 
and intentionality, comprehension or issue analysis for large 
models can be supported and stakeholder collaboration 
opportunities with a common immersive model utilized. 

VI. CONCLUSION 
This paper described our VR-ANN contribution, a 

solution concept towards immersive visualization of ANNs in 
VR. Our prototype demonstrates its feasibility. The case-
based evaluation provides insights into its capabilities and 
potential for immersively supporting the comprehension, 
building, configuring, training, and analysis of ANN models 
and related stakeholder collaboration. The scaling case 
showcased its ability to immersively depict large models, 
which could benefit more advanced users when the models 
become much larger than what current 2D models can readily 
display, or when investigating anomalies or issues. Future 

work includes RNN and CNN support, additional framework 
and format support, and a comprehensive empirical study. 
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Figure 13.  Mid-sized model consisting of 8 hidden layers and 432 neurons. 

 
Figure 14.  Large model (8 hidden layers and 982 neurons) with colored connections. 
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