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Abstract— Industry 4.0 offers a set of methods, techniques, 

tools, and technologies that are naturally relevant for the 

development of services in the airports of the future. 

Integrating these different concepts into an airport is not 

without its challenges, given the complexity of the systems in 

place. Modelling and simulation phases have therefore become 

essential to ensure the success of these integrations. In this 

paper, we presented a case study involving the simulation of 

autonomous vehicle fleets for baggage handling in a simplified 

airport, in which each vehicle is simulated by a fuzzy agent. 

We established a Unified Modeling Language (UML) model of 

the system, providing both static and dynamic views of the 

circuit and the vehicles. Three different strategies were tested, 

with the goal of determining the number of Autonomous 

Industrial Vehicles (AIV) that should circulate to handle the 

baggage arriving at the two entry points. Then, we presented 

our simulation results. These results allowed us to highlight the 

impact of various parameters, such as the number of 

simulations, the number of bags processed, the total simulation 

duration, and the total number of bags processed per hour. 

Keywords- automatic baggage handling; autonomous 

industrial vehicles; fuzzy agent-based simulation; airport 4.0. 

I.  INTRODUCTION 

Industry 4.0 is the fourth industrial revolution after the 
invention of the steam engine, mechanization and mass 
production, computerization and robotization. It brings the 
concepts of the Internet of Things (IoT), Cyber-Physical 
Systems (CPS), Machine to Machine (M2M), and intelligent 
robotics, such as Autonomous Mobile Robots (AMR) or 
Autonomous Industrial Vehicles (AIV) [1]. Industry 4.0 
assumes decentralized decision-making, interoperability, 
cyber assistance, predictive maintenance, eco-design and is 
user centred [2]. Industry 5.0 has complemented the previous 
one by amplifying the consideration of humans with Human 
machine connectivity and co-existence [3][4]. 

The deployment of fleets of autonomous vehicles (AMRs 
or AIVs) in the context of Airport 4.0 raises several 

challenges, all related to the actual level of autonomy of 
these "intelligent" vehicles: decision-making to maintain a 
required level of performance in carrying out tasks, traffic 
flow, vehicle localization, fault detection, collision 
avoidance, vehicle perception in changing environments, as 
well as acceptance by users and operators. Simulation, prior 
to the deployment of autonomous vehicles, makes it possible 
to consider the various constraints and requirements 
formulated by manufacturers and future airport users [5]. 

The main advantages of simulating the operations carried 
out by a fleet of autonomous industrial vehicles are the 
reduction of fleet development time and cost, the 
minimization of potential operational risks associated with 
the deployment of vehicles in a space shared with humans, 
but also the verification of fleet performance. This makes it 
possible to assess the feasibility of different scenarios for the 
circulation of autonomous vehicles at a strategic or 
operational level, the possibility of a rapid understanding of 
the operations carried out by these vehicles, the identification 
of improvements in the layout configurations of vehicle 
circulation areas [6], and safety assessment during 
coexistence and possible interactions between autonomous 
vehicles and human operators [7]. 

An autonomous baggage handling system is a complex 
and highly adaptive transportation system. So, different types 
of simulation frameworks and environments have been 
proposed for simulating complex systems involving 
autonomous vehicles (AMRs or AIVs), such as discrete 
event systems [8] or agent-based systems [9]. 

Many agent-based approaches are proposed for the 
modelling and simulation of autonomous vehicles [10]. They 
offer simulation contexts ranging from trajectory planning to 
optimal task allocation, while enabling collision and obstacle 
avoidance [11], addressing issues of traffic congestion, 
parking requirements, environmental implications or even 
the performance of autonomous vehicle systems [12]. 

One of the main problems of complex systems, such as 
automatic baggage handling systems in airports, results from 
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the acquired or transmitted data, which may be uncertain, 
insufficient or available in a fragmented manner due to the 
dynamics of the environments and the variation of 
acquisition times. Fuzzy logic then appears as a good 
solution to model and simulate the uncertainty and the 
unknown in these complex and adaptive systems [13][14]. 

In [15][16], Zadeh defines fuzzy logic and the notion of 
fuzzy sets, introducing the notion of linguistic variables 
whose values are generally vague, fuzzy, or relative, such as 
“low”, “medium”, “high”, “most”, or “a certain number”. By 
defining these linguistic variables (fuzzy sets), as well as 
rules using them (fuzzy rules), it is then possible to build 
Fuzzy Inference Systems (FIS). 

Fuzzy set theory is therefore particularly suited to the 
processing of uncertain or imprecise information that should 
lead to decision-making by autonomous agents [17]. Also, 
the definition of fuzzy agents to manage the levels of 
imprecision and uncertainty involved in modelling the 
behaviour of simulated vehicles seems quite appropriate 
[18]. 

Fuzzy agents can track the evolution of fuzzy 
information from their environment and from the agents 
themselves. By interpreting this fuzzy information, they can 
act and interact within a fuzzy multi-agent system. Thus, a 
fuzzy agent can discriminate a fuzzy interaction value to 
assess its degree of affinity (or interest) with another fuzzy 
agent. 

Moreover, most of the control tasks performed by 
autonomous mobile robots (simulated by agents or real) have 
been the subject of performance improvement studies using 
fuzzy logic: motion planning, navigation and obstacle 
avoidance [19]; path planning [20], localization [21], and 
intelligent management of energy consumption [22]. 

We believe it is useful to provide here some details about 
the research context that led to this publication. The 
academic collaboration between the authors, focusing on the 
dual theme of fuzzy logic and autonomous industrial 
vehicles, played an important role in the development of this 
article by combining expertise from each respective field. In 
addition, the industrial collaboration within the framework of 
the multi-partner collaborative project named ALPHA also 
had a significant place in this same research context. Thus, 
we find it important to share the following information 
regarding this second aspect: 1) the ALPHA project brought 
together a four-party consortium, including two industrial 
partners and two research laboratories; 2) the aim of the 
project was to identify and validate a mobile robotics 
solution for the transportation of unit baggage in airports; 
and 3) the ALPHA project focused particularly on two key 
challenges: on the one hand, optimizing an AGV fleet based 
on minimal energy consumption; on the other hand, 
minimizing the complexity of the robotic solution under the 
constraint of a large number of AGVs. 

In this article, we start by presenting the context of fuzzy 
agent-based modelling and simulation. In Section 3, we 
propose a case study on simulation of autonomous vehicle 
fleets for baggage handling in a sample airport. Three 
strategies are presented with three different data sets. In 
Section 4, we analyse the results obtained by each of the 

strategies according to the performance criteria defined in the 
previous Section. Finally, we conclude on the proposed 
fuzzy agent-based modelling and simulation, and then we 
present the perspectives for improvement in the short term. 

II. FUZZY AGENT-BASED MODELLING AND SIMULATION 

We indicated in the introductory section that many agent-
based approaches are proposed for the modelling and 
simulation of complex systems, such as autonomous 
vehicles. We further assume that, equipped with reasoning 
and decision-making capabilities based on fuzzy knowledge, 
agents could simulate more complex, but also more realistic, 
situations. 

A. Fuzzy agent-based application modelling 

The modelling of an agent-based system or application, 
often discussed from a process or methodological point of 
view [23], requires adopting a local vision, to respect the fact 
that each agent is responsible for their knowledge and 
actions (agent autonomy), which are often decentralized. 

Different models can be used to propose a methodology 
for designing an agent-based application, including: an agent 
model, to define the characteristics of an agent; a task model, 
to represent the tasks that can be performed by agents; an 
expertise model, to describe the knowledge of agents; a 
coordination model, to define the protocols and interactions 
between agents; an organization model, to describe the 
organization of the agent society; or a communication model, 
to describe the interactions between agents and users. Our 
agent modelling work mainly refers to the Agent Unified 
Modeling Language (AUML) [24]. 

In [25], we proposed a four-phase agent-based system 
modelling method (Figure 1): (1) create use case diagrams 
(the services provided by the system); (2) for each use case, 
create sequence diagrams specifying the interactions 
(message exchanges and scheduling) between the agents 
involved in these reference cases; (3) from the sequence 
diagrams, which allowed us to identify the agents, the system 
objects and their interactions, create the class diagram: the 
objects are associated with classes, the messages exchanged 
(service requests between objects) are translated by 
operations on the classes, the parameters associated with the 
operations are translated into class attributes – this diagram 
can possibly be completed by a collaboration diagram; (4) 
from the class diagram, define the behaviour of each agent 
(agent class) by means of a state or activity diagram (we also 
used Petri nets). The description of the roles played by the 
different cooperative agents mainly focuses on collaboration 
and sequence diagrams. We subsequently integrated an 
expertise model into the previous method, particularly in the 
form of knowledge and fuzzy inference rules [26]. 

We are now testing the integration of learning 
capabilities into fuzzy agents in the form of a basic but 
generic neural network or reinforcement learning processes. 
This is to give agents the ability to better adapt in unforeseen 
situations during their modelling, and to adjust their fuzzy 
knowledge when extracting it from human experts is difficult 
or problematic (uncertain knowledge or approximate fuzzy 
modelling). 
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Figure 1. Agent-based system design: methodology adapted from AUML 

B. Fuzzy agent modelling 

An agent-based system is fuzzy if some of the agents that 
compose it have fuzzy behaviours or if the knowledge they 
use is fuzzy. This means that agents are modelled in such a 
way as to [18]: 

• use fuzzy knowledge in their inferences; this 
knowledge consists of fuzzy linguistic variables, 
fuzzy linguistic values, and fuzzy rules [17]; 

• adopt fuzzy behaviours, following fuzzy inferences 
[27]; 

• and potentially implement fuzzy interactions, act in 
fuzzy organizations, or play fuzzy roles [28]. 

Formally, a fuzzy agent-based system (1) and the fuzzy 
agents that compose it (2) can be defined as follows: 

 =  

~
,

~
,

~
,

~~
 () 

Where 
~

 is a set of fuzzy agents; 
~

 is a set of fuzzy 

interactions between fuzzy agents; 
~

 is a set of fuzzy roles 

that fuzzy agents can perform; 
~

 is a set of fuzzy 

organizations defined for fuzzy agents (subsets of strongly 

linked fuzzy agents). 
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Where, for a fuzzy agent i
~ , )~( i  is its function of 

observation; )~( i  is its function of decision; )~( i  is its 

function of action; and 
i

~  is its set of fuzzy knowledge. 

In the following case study, we will mainly develop 
fuzzy knowledge modelling. For the interested reader, we 
have extensively developed fuzzy modelling of other 
dimensions in the following articles [26][27][28][29]. 

III. CASE STUDY: SIMULATION OF AUTONOMOUS VEHICLE 

FLEETS FOR BAGGAGE HANDLING 

In this section, we present a case study of a baggage 
handling system in an airport using a fleet of autonomous 
vehicles. We will successively propose the agent model of 
vehicle behaviour, the fuzzy logic modelling of their 
decision rules, and three baggage handling strategies to 
discuss the performance obtained in the following section. 

A. Presentation of the case study 

The case study presented in this paper proposes the 

simulation of baggage handling in a basic airport with two 

baggage entry flows and two baggage exit flows. The 

mobile robots (AIV) in charge of baggage handling travel a 

loop circuit shown in Figure 2.a. The AIVs are simulated by 

fuzzy agents, and the airport circuit is represented by a 

directed graph. This graph has 17 nodes (Figure 2.b): node 

P0 represents the parking lot, nodes R1 and R2 represent the 

2 baggage pick-up points, nodes D1 and D2 represent the 2 

baggage drop-off points, and the other 12 nodes Pi represent 

characteristic points of the circuit (curve start points, curve 

end points, convergence points and divergence points). 

 

 
Figure 2. Simulation Application: a) the circuit, and b) the graph model 

The application itself is developed in Python. Figure 3 

presents its object and agent architecture in the form of a 

UML class diagram: static objects are represented in blue, 

and agents, therefore dynamic, are represented in red (only 

AIV agents are fuzzy agents). An infrastructure can be 

deployed in this environment. It includes a traffic plan and 

potentially active elements, such as beacons, tags, charging 

stations, etc. Static or dynamic obstacles (e.g., operators or 

broken-down AIVs) can also be activated in this simulation 

environment. 
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To study the performance of the solutions considered in 

this simulation, we defined the optimization system 

presented below (3): the objectives are to Minimize 𝑥, 

Maximize 𝑦, and Minimize 𝑧, where 𝑥 is the number of 

AIVs, 𝑦 is the baggage throughput per hour, and z is the 

recharge time of an AIV per hour (in ideal conditions where 

an AIV picks up one baggage each turn, a level of 

performance that we will analyse in the case study presented 

in Section 3, based on strategies deployed by the AIVs). 

 

Where 𝑀𝑎𝑥(𝑥) is the maximum number of AIVs; 𝐿avg is 
the average length of the circuit; 𝑑 is the safety distance 
between 2 AIVs; Cbat is the average capacity of a battery; t0 is 
the average charging time of a battery; t1 is the average 
waiting time for a battery recharge; T0 average duration of a 
circuit lap; t2 is the time to pick up a bag; t3 is the time to 
drop off a bag; Tavg is the average number of revolutions 
made by an AIV during one hour; and vavg is the average 
speed of the AIVs on the circuit. 

 

 
Figure 3. UML class-diagram of the fuzzy-agent based simulator. 

An initial study focused on the sizing of the problem 

(traffic plan, number of AIVs, determination of applicable 

speeds, distances between AIVs, energy consumption of 

these AIVs, etc.) [5], followed by a Petri nets-based 

simulation of the AIV behaviour in function of strategies of 

baggage handling developed (Figure 4), allowed us to set 

the following parameters: 𝑀𝑎𝑥(𝑥)=40, 𝐿avg=313, vavg=5, 

d=8, t2=t3=2, and z  10% of the AIVs operating time if t1 

is zero. 
 

 
Figure 4. Petri net model of the circuit in Figure 2.a. It allows us to simulate 

a solution, while verifying that it retains the properties of liveness (non-
blocking) and bounding of quantitative parameters such as the number of 

AGVs. The transitions in red indicate the possible evolution of the Petri net. 

B. AIV behaviour and their fuzzy knowledge 

As defined in the agent-based systems design 
methodology, one of the steps is to model the behaviour of 
the agents in the form of an activity or state diagram. The 
AIV agents in the simulation will have a behaviour adapted 
to the strategy implemented to process the baggage. Thus, 
Figure 5 presents the activity diagram of an AIV agent when 
it circulates according to the Round robin strategy 
(continuous looping if there is baggage to process). 

 

 
Figure 5. AIV behaviour based on “Round robin” strategy 

AIVs are fuzzy agents that therefore have fuzzy 
knowledge. In this simulation, 2 types of fuzzy inferences 
are considered: the prediction of the number of AIVs that 
must circulate to process baggage, and the determination of 
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the branch to choose to take a baggage (passage through R1 
or R2). 

For prediction, AIV agents have 3 linguistic variables 
(NbBag, NbAIV, Prediction, as shown in Figure 6) and 9 
rules, such as (4): 

IF NbBag IS low AND NbAIV IS high                     
THEN Prediction IS highDecrease (4) 

As for the choice of branch R1 or branch R2, the AIVs 
have 5 linguistic variables (NbBagInR1, NbBagInR2, 
NbAIVToR1, NbAIVToR2, GoTo, as shown in Figure 7) and 
18 rules, such as (5):  

IF NbBagInR1 IS low AND NbAIVToR1 IS high    
THEN GoTo IS R2 (5) 

 
Figure 6. Linguistic variables to predict whether an AIV should circulate. 

C. The three considered strategies  

The goal here is to determine the number of AIVs that 
must circulate to process baggage arriving at both entry 
points. Three distinct strategies were simulated to test them 
and establish their performance on the system: 

• Round robin. AIVs rotate around the circuit and 
pick up a bag if one is available on R1 or R2, 
depending on their route. 

• On-demand. AIVs are assigned when baggage 
arrives and is available in the parking lot. 

• Fuzzy logic-based demand prediction. The number 
of AIVs rotating around the circuit is calculated 
periodically based on predicted needs using fuzzy 
rules established by the operator. Other types of 
predictive strategies could be used, but as we have 
already shown the interest of fuzzy logic to 
efficiently solve this type of problem [30], we 
decided to develop this approach in this comparison 
of strategies. 

Baggage arrival is a determining factor in the observable 
results for the three previous strategies. We have therefore 
defined different types of scenarios to cover many cases. 
Below we present the three main scenarios (without their 
variants): 

• Sc1 – Real data. Baggage arrival is simulated based 
on aircraft arrivals at a sample airport, to better 
account for the variability of incoming baggage flow 
(high demand periods and low demand periods). 
These data cover a full day's traffic at the sample 
airport. 

 

 
Figure 7. Linguistic variables for an AIV to choose one of the 2 branches. 

• Sc2 – Random Data. Baggage arrival is randomly 
simulated over a period of one hour. Random data 
generation is performed upstream to create a single 
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data set. This data set is then used to test the three 
strategies. 

• Sc3 – Mass data. 1000 bags arrive continuously at 
the 2 entrances of the circuit. This involves 
performing a stress test for each strategy, regardless 
of the quality of each strategy’s performance (e.g., a 
baggage waiting time threshold). 

IV. RESULTS 

Now, we present the results of the 9 simulations carried 

out according to the specifications formulated in the 

previous Section (3 scenarios x 3 strategies). The five 

performance criteria retained, with regard to the 

optimization system presented in (3), are: the duration of the 

simulation (i.e., the duration of processing of all baggage 

entering the simulated scenario), the number of baggage 

processed, the number of baggage processed per hour 

(throughput per hour), the number of circuit turns made by 

the AIVs to process all baggage, the average waiting time 

for baggage before being taken by an AIV, and the 

performance impact of AIV recharge times is estimated at 

10% of AIV circulation time. 

We will detail the results for each of the 6 criteria, then 

we will present the synthesis of these simulations. 

Results regarding total simulation duration (Table 1). 

With the exception of the 1h scenario in random baggage 

flow, the Round robin strategy always has the longest 

duration, the On-demand and FL Prediction strategies are 

more variable, with a shorter duration for On-demand when 

the baggage flow is continuous (test Mass data), and a lower 

duration for FL Prediction when the flow is more variable 

(flow depending on the arrival of aircraft at test Real data). 

Both FL Prediction and On-demand strategies optimize the 

processing time by activating AIVs when baggage arrives 

by determining the right traffic branches, which is not the 

case for AIVs in the Round robin strategy. 

Results regarding the total number of bags processed 

(Table 2). Two of the scenarios have a fixed number of bags 

(the test airport called Real data with a fixed number of bags 

of 1306, and the Mass data scenario with 1000 continuous 

bags); for the third scenario, with a random flow over 1 

hour, the On-demand strategy is the least efficient (1864 

bags), then the LF Prediction strategy (1956 bags), finally 

the most efficient is the Round robin strategy (2015 bags). 

On this criterion, the Round robin strategy is overall the 

most satisfactory, it is also on this criterion that it has its 

main advantage. 

Results regarding the overall throughput of the 3 

strategies (Table 3). The two strategies of Round robin and 

On-Demand have the worst overall results. In continuous 

and variable flows, the Round robin strategy performs 

poorly (respectively 1578 and 1713 bags/h). On the other 

hand, in random flow over 1 hour, the On-demand strategy 

performs the least (1864 bags/h). The average and overall 

flow rate is unquestionably the best with the Prediction 

strategy (1807 bags/h on average over the 3 scenarios). 

Results regarding the total number of turns made by 

the AIVs (Table 4). For this criterion, the Round robin 

strategy is systematically the least efficient, and this 

significantly. 1664 rounds on average over the 3 scenarios 

for the Round robin strategy, against 1526 rounds on 

average for the FL Prediction strategy and 1390 rounds on 

average for the On-demand strategy. The average and 

overall number of AIV rounds is undoubtedly the best with 

the On-demand strategy (1390 rounds on average over the 3 

scenarios); the allocation of an arriving bag to an AIV is 

indeed very efficient. For the FL Prediction strategy, the 

average results remain satisfactory (1526 rounds on average 

over the 3 scenarios), while those of the Round robin 

strategy are rather mediocre (1664 rounds on average over 

the 3 scenarios). 

Results regarding the average waiting time for bags 

before being processed by an AIV (Table 5). For this 

criterion, the Round robin strategy is twice the least efficient 

(for the one-hour random flow and for the variable flow of 

the Real data test), and the On-demand strategy is the least 

efficient for the continuous flow of 1000 bags. The On-

demand strategy gives very satisfactory results on average 

for the 3 scenarios (22 s average wait for a bag), and the FL 

Prediction strategy also gives satisfactory performances for 

the three scenarios (23 s average wait for a bag). 

Results regarding the performance impact of AIV 

recharge times (Table 6). The AIVs run the same algorithm 

to determine whether they should recharge at a charging 

station located in the parking lot. The principles of the 

algorithm are as follows: 4 stations (corresponding to 10% 

of the 40 AIVs), recharge every 10 laps of the circuit (every 

10 x 66s = 660s, on average), recharge if possible, when the 

AIVs are in the parking lot and recharge all the AIVs at the 

end of the simulation. Table 6 gives the results for a 

simulation with scenario 2 (one-hour simulation in random 

mode): number of recharges, total recharge time, and total 

duration of the simulation (3600s + final recharge for the 

AIVs to be fully charged again). The results provided by the 

on-demand strategy are the best, although at the cost of 

many recharges (when the AIVs return to the parking lot). 

The FL Prediction strategy offers a good compromise with 

interesting results that can be further improved by adjusting 

the values of the linguistic variables used in the fuzzy rules. 

 

TABLE I.  SIMULATION DURATION FOR THE 3 STRATEGIES (S) 

Scenarios Real data Random data Mass data 

Round robin 2744 3600 2280 

On-demand 2686 3600 2196 

FL prediction 2515 3600 2252 
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TABLE II.  NUMBER OF BAGS PROCESSED BY THE 3 STRATEGIES 

Scenarios Real data Random data Mass data 

Round robin 1306 2015 1000 

On-demand 1306 1864 1000 

FL prediction 1306 1956 1000 

TABLE III.  FLOW RATE OF THE THREE STRATEGIES (bags/h) 

Scenarios Real data Random data Mass data 

Round robin 1713 2015 1578 

On-demand 1750 1864 1639 

FL prediction 1868 1956 1597 

TABLE IV.  NUMBER OF TURNS COMPLETED BY THE AIVS 

Scenarios Real data Random data Mass data 

Round robin 1622 2074 1298 

On-demand 1306 1864 1000 

FL prediction 1376 2021 1182 

TABLE V.  AVERAGE WAITING TIME PER BAG BEFORE (S) 

Scenarios Real data Random data Mass data 

Round robin 41 57 14 

On-demand 26 21 20 

FL prediction 29 22 19 

TABLE VI.  IMPACT OF THE RECHARGING OF AIV BATTERIES 

Scenarios 
Number of 

recharges 

Total duration 

of recharges 

Total duration 

of simulation 

Round robin 195 11760 3823 

On-demand 622 9810 3683 

FL prediction 198 11658 3793 

 
Finally, we can discuss the benefits of using the 

communication capabilities of AIV agents. Indeed, adding 
communication between the AIVs and the infrastructure 
improves the performance of the Round Robin strategy (2% 
higher throughput and up to 11% fewer rounds for the 
AIVs). This communication also improves the results of the 
algorithm that determines whether an AIV needs to recharge. 
Indeed, by passing near the parking lot where the charging 
stations are located, the infrastructure can communicate to 
the AIV if one of the 4 stations is available. This information 

allows the AIVs to avoid waiting, especially to maintain a 
good level of baggage processing performance during 
periods of dense and continuous flow. 

V. CONCLUSION AND PERSPECTIVES 

In this article, we presented the context of fuzzy agent-
based modelling and simulation. We introduced the general 
framework for modelling fuzzy agent-based applications, 
highlighting the fact that in such systems, each agent is 
responsible for its own knowledge and actions, which makes 
it an autonomous entity within the system. 

It is important to note that the modelling of fuzzy agents 
is based on the fuzzy nature of knowledge, behaviours, and 
interactions. 

We presented a case study involving the simulation of 
autonomous vehicle fleets for baggage handling in a 
simplified airport, in which each vehicle is simulated by a 
fuzzy agent. This simplification allows us to establish a 
baseline configuration to which we can add more complex 
and dynamic situations encountered in real airports, such as 
the introduction of baggage checkpoints requiring baggage 
drop-off and pick-up by the same or a different AIV. 

We established a UML model of the automatic baggage 
handling system, providing both static and dynamic views of 
the circuit and the vehicles. Three different strategies were 
tested, with the goal of determining the number of AIVs that 
should circulate to handle the baggage arriving at the two 
entry points. 

Finally, we presented our simulation results. These 
results allowed us to highlight the impact of various 
parameters, such as the number of simulations, the number 
of bags processed, the total simulation duration, and the total 
number of bags processed per hour. 

We plan to continue improving the performance of fuzzy 
models in simulations of AIV agent behaviour for 
autonomous baggage handling in airports. This may consist 
of adding neural network-based learning capabilities 
[31][32], to increase the relevance and efficiency of their 
decisions in the collective management of their autonomies 
and in compliance with the performance expected by airport 
operators. 

Another extension of our research consists of continuing 
work started recently, still in a simulation approach, on the 
incorporation of human-robot coworking aspects to maintain 
system performance, simulate the management of incidents 
occurring on the circuit or other types of problems difficult 
to solve for AIVs alone, and thus improve practical 
credibility for Airport 4.0 stakeholders. 
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