
ChatSEC: Spicing up Vulnerability Scans with AI for Heterogeneous University IT

Mario Hoffmann
IT Department, Leipzig University

Infrastructure Group
Leipzig, Germany

e-mail: mario.hoffmann@uni-leipzig.de

Erik Buchmann
Dept. of Computer Science, Leipzig University

Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.AI) Dresden/Leipzig, Germany

e-mail: erik.buchmann@uni-leipzig.de

Abstract—With their heterogeneous and self-administrative
structure, universities and comparable institutions differ from
others in the industry and business in terms of enforcing IT
security policies. This makes it challenging for the CIO (Chief
Information Officer) and IT department to enforce common IT
security rules. Through fast pacing positional changes within re-
search groups, information on installed and maintained systems,
as well as responsibilities can be lost. This has a negative impact
on IT security. In this paper, we describe our ongoing work on
ChatSEC, our approach to improve the reports generated by a
vulnerability scan appliance. By using large language models and
external threat intelligence, ChatSEC generates intuitive expla-
nations how to assess and mitigate the reported vulnerabilities.
Our preliminary evaluation indicates, that ChatSEC has much
potential to improve IT security at universities and similarly
heterogeneous institutions.

Keywords-AI; Heterogeneous Infrastructure; IT Security.

I. INTRODUCTION

The implementation of IT security at universities and similar
institutions differs greatly from that in business and industry.
Students need to set up their own servers to host their
lab projects. Researchers change institutions without leaving
instructions for security maintenance and the planned lifespan
of the services they have set up. Each research group needs
its very own, highly specific IT infrastructure. Some research
communities are expected to transfer lab data via insecure
plain-text protocols, such as the File Transfer Protocol (FTP).
Due to the academic self-administration, the CIO and the cen-
tral IT department have limited authority to enforce security
rules. It is also not desirable to restrict the research groups
and the educational programs by committing them to use only
central IT services, that are secured by the IT department. On
the other hand, the Local System Administrators (LSA) in the
research groups do not necessarily have much knowledge in
IT security. The rapid pace, at which research develops and re-
search personnel changes position, means that responsibilities
and information on installed systems quickly become outdated.

An internal vulnerability scan at the Leipzig University
(May, 2023) detected 8311 vulnerabilities, 535 of them unique,
on 3825 hosts, with scores from 2.1 (low) to 10.0 (criti-
cal) on the Common Vulnerability Scoring System version
3 (CVSSv3) metric [1] [2]. The scan detected 19 different
operating systems (OS). Because the OS were installed in
different versions, we observed a total of 39 different OS
instances. Approximately 4,2% of the discovered vulnera-
bilities were due to missing OS patches or insecure OS

configurations. Approximately 72% of the vulnerabilities were
on hosts outside of the IT Department. Figure 1 shows a typical
vulnerability scan report for one host.

We shared the scan reports with the responsible LSAs,
and asked them to fix the vulnerabilities. We observed LSAs
inheriting this responsibility from a predecessor, and had little
expertise with the system. We also observed, that complex
requests from the IT department were postponed in favor of
undelayable teaching- and research assignments. Maintaining
IT security requires to invest much more time, than just setting
up a system as a demonstrator or for teaching purposes.

The concern of this work-in-progress paper is to close
this gap between the IT department and the LSAs in the
research groups. We propose ChatSEC, our approach to tailor
the results of a vulnerability scan with a large language
model (LLM) for specific target groups in a highly hetero-
geneous IT environment. Thus, ChatSEC has a different focus
than approaches such as Microsoft’s Security Copilot [3] or
SecBot [4]. In particular, we make three contributions:

• We describe ChatSEC, our approach to utilize AI to
prepare and extend vulnerability scan reports for LSAs
with limited IT security knowledge.

• We discuss implementation alternatives to generate intu-
itive explanations from domain-specific reports, and to
add threat intelligence and specific mitigation strategies.

• We provide a preliminary evaluation of our approach,
based on the aforementioned vulnerability scan.

Our preliminary evaluation indicates, that ChatSEC has the
potential to greatly improve the IT security at universities and
similarly structured, heterogeneous organizations. We plan to
integrate our approach into our next vulnerability scan, which
will provide us with a data set of scan reports to improve and
user feedback for a qualitative study on the LSA’s perception
of ChatSEC. For security considerations, we plan to test LLMs
that can be hosted as a service by the IT department.

Paper structure: Section II presents related work. Section III
describes our ChatSEC concept, which is briefly evaluated in
Section IV. Section V concludes the paper.

II. RELATED WORK

This section summarizes approaches comparable to ours,
LLMs, NLP approaches and threat intelligence.

29Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

Vulnerability Scan Report
Scan Time: Wed, Jan 1, 2024 1:00 AM - Wed, Jan 1, 2024 1:09 AM, Hosts scanned: 1

Results (1/1)
Vulnerability Severity Host Location

Ubuntu: Security Advisory (USN-5767-1) 9.8 (High) 012.345.67.89 package
Summary
The remote host is missing an update for the ’python2.7, python3.6, python3.8, python3.10’ package(s).

Vulnerability Detection Result
Vulnerable package: libpython3.8
Installed version: libpython3.8-3.8.10-0ubuntu1 20.04.5
Fixed version: >=libpython3.8-3.8.10-0ubuntu1 20.04.6

Solution
Solution Type: Vendorfix. Please install the updated package(s).

Affected Software/OS
’python2.7, python3.6, python3.8, python3.10’ package(s) on Ubuntu 18.04, Ubuntu 20.04, Ubuntu 22.04, Ubuntu 22.10.

Vulnerability Insight
Nicky Mouha discovered that Python incorrectly handled certain SHA-3 internals. An attacker could possibly use this issue to
cause a crash or execute arbitrary code. (CVE-2022-37454) Python incorrectly handled certain IDNA inputs. An attacker could
possibly use this issue to expose sensitive information, denial of service, or cause a crash. (CVE-2022-45061)

References
CVE: CVE-2022-37454 CVE-2022-45061 WID-SEC-2023-1007 WID-SEC-2023-0561 WID-SEC-2023-0255 WID-SEC-
2023-0138 WID-SEC-2022-2043 WID-SEC-2022-1816 DFN-CERT-2023-1109 DFN-CERT-2023-0886 DFN-CERT-2023-0580
DFN-CERT-2023-0571 DFN-CERT-2023-0552 DFN-CERT-2023-0429 DFN-CERT-2023-0422 DFN-CERT-2023-0120 (· · ·)
Other: https://ubuntu.com/security/notices/USN-5767-1 advisory id:USN-5767-1

Hosts 1 of 1
IP-Address Hostname OS High Medium Low Total Severity

012.345.67.89 ourhost.ourdomain.tld Canonical Ubuntu Linux 1 0 0 1 9.8 (High)

Figure 1. Typical vulnerability scan report

A. Comparable Approaches

We aim for compensating the lack of IT security expertise
by using LLMs, with a specific focus on heterogeneous
university IT. Existing approaches have a different focus: Mi-
crosoft’s Security Copilot [3] helps IT security teams of large
companies to process security-related data, and contributes to a
security strategy. SecBot [4] is a questionnaire-based chatbot
for IT security, that helps end-users with security planning
and mitigation strategies. ChatIDS [5] rewrites IDS-generated
threat alarms in an intuitive way to help end-users securing a
smart-home scenario. Comparable approaches in other fields
exist, e.g., to interpret research papers in chemistry [6].

A recent survey [7] also shows, that current chatbots can
provide IT-security knowledge to help with IT security related
tasks, based on domain specific datasets. This needs a high
adaptability, because the models are used in unknown contexts.
Using fine-tuned, domain-specific LLMs [8] with domain-
specific embeddings can increase the precision.

B. Large Language Models

LLMs [9] [10] refer to pre-trained models, based on large
amounts of texts and data, which utilize statistical distribution
of tokens to obtain a generative ability. They differ from their
predecessors Pre-trained Language Model (PLM) in model and
data sizes. LLMs are the first models, that show emergent
abilities [11], such as multi-step reasoning or instruction

following to solve complex tasks. Those abilities are significant
for currently used models, such as Llama-3 [12], Claude 3 [13]
Gemini [14], or GPT-4 [15].

LLMs are instructed by textual prompts in natural lan-
guage. Well-engineered prompts improve and bias the gener-
ated output [16] [17] [18]. Thus, the prompts are used to utilize
the emergent abilities. Prompt-engineering strategies [19],
[20] include Chain-of-Thought prompting [21] (asking the
LLM step by step), Reflection [22] (asking the LLM to rethink
his answer), Few-Shot prompting [23] (giving examples) or
Repetition [18] (repeating relevant aspects in the prompt).
Over-generalization is a common issue with LLMs [18]. Slight
variations of the prompt can have a big impact on the model
output [24]. If reproducible outputs are needed, the seed and
other model parameters can be fixed [25].

C. NLP approaches

To evaluate the LLM output, we also use approaches from
natural language processing (NLP).

Readability measures assess the level of readability of texts
by categorizing texts into school grades or scoring systems.
The most common readability measures are Flesch-Kincaid-
Grade-Level (FKG) [26] for English texts, and Wiener-
Sachtextformel IV (WSF) [27] for German texts. Table I shows
a mapping between the metrics: FKG results in school grades,
ranging from 0 to 18, according to college years of the U.S.
school system. The WSF algorithm refers to German school

30Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

https://ubuntu.com/security/notices/USN-5767-1

ChatSEC

vulnerability
report (2)

vulnerability
scan (1)

detected
vulnerabilities (3)

add. threat
information (5)

Vulnerability Scan
Appliance

close vulner-
abilities (7)

enhanced
report (6)

LSAs

Threat Intelligence
Databases LLM

rewritten
report (4)

Local
Systems

Figure 2. ChatSEC architecture and data flow.

TABLE I
FKG & WSF READABILITY METRICS

Readability FKG WSF
very hard 17-18 13-15

hard 13-16 12
rather hard 10-12 11

medium 8-9 9-10
rather simple 7 7-8

simple 6 6
very simple 5 4-5

grades, and ranges from 4th to 15th grade. The lower the result,
the more readable is the assessed text.

Stemming reduces a word to its root [28] to normalize texts.
For example, the root form of the words ”change”, ”changing”
and ”changes” would be ”chang”. This unifies derivations of a
word by removing suffixes. Different languages need different
stemming algorithms [29] [30]. Popular stemmers are:

• PortStemmer (Python port, [31]; English language)
• Snowball (PortStemmer v.2, [32]; multilingual)
• Cistem (based on [33]; German language)

D. Threat Intelligence

Threat Intelligence [34] is indispensable for threat mitiga-
tion and -prevention. There are three major options to gather
threat intelligence data, build IT security related contexts
between all obtained data, and exchange this information:

The Common Vulnerabilities and Exposures (CVE) pro-
gram is a list of publicly known vulnerabilities [35]. A single
vulnerability is identified by IDs in the format ”CVE-2024-
1234”, with ”2024” as the year of occurrence and ”1234”
as a consecutive number. The list offers several options
to further describe the vulnerabilities, such as references,
affected versions or cross-references to other data sources.
A common source for CVEs is the National Vulnerability
Database (NVD) [36]. The Common Weakness Enumeration
(CWE) list provides a root cause mapping [37]. It correlates
with the CVE ids and identifies the underlying root cause of
a vulnerability. Thus, a CVE registered vulnerability is an
instance of one or more CWE-described weaknesses. There
are several description levels ranging from abstract to very

detailed. The Searchsploit framework by ExploitDB [38] is
often used by penetration testers and security researchers. It
provides a list of available exploits for different software,
operating systems or CVE ids.

III. OUR CHATSEC CONCEPT

We aim to implement an IT security approach in a research
institution, which depends on plenty of heterogeneous IT
systems. Those systems must be managed locally in the
research groups, and cannot be unified under the umbrella of
the IT department. There are two disctinct roles involved:

The Local System Administrator (LSA) has domain
knowledge of the IT services needed of its research group,
and is responsible for specific IT components, that are not
part of the central IT infrastructure of the university.

The IT Department (ITD) is responsible for the univer-
sity’s general IT infrastructure, and also for its perimeter secu-
rity. This includes periodic vulnerability scans, and supporting
the LSAs in securing their systems. The ITD possesses expert
knowledge on IT security, but has limited human resources.

We propose ChatSEC to rewrite vulnerability scan reports
for LSAs. The rewritten reports must be easy to read, in-
tuitively understandable and directly applicable for an LSA.
Needlessy complex, convoluted sentences full of security-
specific technical concepts should be avoided, and references
to mitigation strategies must to go beyond ”Browse the vendor
homepage for a security patch that solves your issue”.

A. ChatSEC Architecture and Workflow

The architecture of ChatSEC is shown in Figure 2. ChatSEC
obtains scan reports, as illustrated in Figure 1, from a vulner-
ability scan appliance. ChatSEC then rewrites these reports
with the help of a LLM. Finally, the rewritten report is sent
to the LSAs, who are responsible for closing vulnerabilities.
The rewriting process consists of three stages:

1) Generate an intuitive explanation
2) Add threat intelligence information
3) Add mitigation strategies
In the following, we explain our concept for these stages,

and we explain how the output of the stages can be evaluated.

31Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

This vulnerability description is about a security advisory for Ubuntu operating system. The advisory states that the remote
host (a computer connected to a network) is missing an update for the ’python2.7, python3.6, python3.8, python3.10’ packages.
The update is announced through the USN-5767-1 advisory. The first vulnerability, identified as CVE-2022-37454, is related to
Python’s handling of certain SHA-3 internals. This vulnerability could be exploited by an attacker to cause a crash or execute
arbitrary code on the affected system. The second vulnerability, identified as CVE-2022-45061, is related to Python’s handling of
certain IDNA inputs. An attacker could potentially exploit this vulnerability to expose sensitive information, perform a denial of
service attack, or cause a crash on the affected system. In summary, these vulnerabilities in Python could allow attackers to crash
the system, execute arbitrary code, expose sensitive information, or cause a denial of service attack. It is important to update the
affected packages to protect the system from these potential risks.

Figure 3. Transformed scan report from Figure 1

B. Intuitive Explanations
As Figure 1 illustrates, vulnerability scan reports are often

written and formatted in a very technical, less intuitive way.
Therefore, LSAs need help to understand them linguistically
and conceptually. This stage of ChatSEC generates intuitive
texts and examples from the scan results by utilizing a LLM.
In particular, we generate prompts, that instruct the LLM to
summarize each scan result in an intuitive way. This helps
LSAs to understand the actual problem reported, without the
need to deep dive into IT security.

C. Threat Intelligence
The severity score of a vulnerability indicates its threat

potential. However, it is challenging for an LSA to find
out how serious similarly scored vulnerabilities could affect
a specific system. This stage enriches the output from the
first stage with threat intelligence data (e.g., the number of
active exploits) without decreasing the readability of the texts.
Therefore, we fetch vulnerability-related information from
multiple threat intelligence data sources.

D. Mitigation Strategies
This stage helps the LSA to mitigate the vulnerabilities from

the scan report. If the vulnerability can be closed with an
update, ChatSEC generates intuitive instructions how to obtain
and install updates, based on software package, OS version
information, etc. from the scan report. However, we observed
that 95.8% of the vulnerabilities detected by our scan report
refer to configuration problems. In this case, ChatSEC either
obtains mitigation information from the NVD [36] with a tag
from the report. Alternatively, individually created ChatSEC
requests can be used.

E. Evaluation Options
We see three options to evaluate ChatSEC: To find out, if

ChatSEC’s output is intuitively understandable, we can use
NLP techniques, such as readability metrics and stemming:
The fewer domain-specific words are used, the better for non-
domain-specific readers. The evaluation of the correctness of
the generated output needs a manual assessment by an expert.
User experiments allow to obtain direct feedback from LSAs
through questionnaires. Indirect feedback can be obtained
by repeating the vulnerability scan, some time after ChatSEC
has explained the results of the first scan to the LSAs: If
ChatSEC’s reports were indeed understandable and helpful,
we should see a vast decrease in the number of vulnerabilities.

IV. EVALUATION

To obtain evidence of how promising our concept is, we
implemented the two stages Intuitive Explanations and Threat
Intelligence into a research prototype of ChatSEC, and we
evaluated it with NLP techniques and a manual assessment.

A. Implementation and Evaluation Setup

Our focus is the feasibility and applicability of ChatSEC on
our internal vulnerability scan, as described in Sec. I. Thus, we
left aside aspects of prompt engineering, model selection and
model tuning (cf. Sec. II). We managed the vulnerability scan
results with Greenbone [39], and implemented our ChatSEC
prototype using the GPT-3.5 Turbo API of ChatGPT [15].

We used Chain-of-Thought prompting [21], i.e., we exe-
cuted Figure 4 and 5 in a sequence, which we found most
promising in preliminary tests: The first prompt produces
a simplified report. The second prompt adds examples to
that report. < · · · > denotes the position where the names,
descriptions and details from the vulnerabilities managed
with Greenbone are inserted. Because our LSAs use German
and English, with the command ”Answer in German.” we
instructed the LLM to also generate German output, and we
evaluated both versions. To obtain focused answers, we set the
system prompt parameter ”temperature” to 0.2 [40]. To provide
an intuitive example, Figure 3 shows ChatSEC’s output with
the vulnerability scan report from Figure 1 and the prompts
from Figure 4 and 5.

You will be provided with a vulnerability description. [An-
swer in German.] Help in the following order: Summarize
the provided vulnerability description and explain it to a non-
technician. <Vulnerability information>

Figure 4. System prompt to simplify vulnerability scan reports

You will be provided with a vulnerability description. [Answer
in German.] Give a simple example to show what can happen
if the provided vulnerability is exploited to a non-technician.
<Vulnerability summary from Figure 4>

Figure 5. System prompt, that adds examples to the simplified report

To add threat intelligence, ChatSEC fetches the CWEs and
CVEs associated with each vulnerability scan report from the
CWE list [37] and the NVD CVE database [36]. ChatSEC
also queries Searchsploit [38] for the number of available

32Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

exploits per vulnerability. ChatSEC uses the prompts shown
in Figure 6 and 7 to translate this domain-specific information
into an intuitive text, that can be added to the translated report
and sent to an LSA. The number of known exploits can be
appended directly, without an extra prompt.

You will be provided with a list of properties of an IT security
severity score. The list is formed as a key-value list, where
the values are on the right side of the colon. [Answer in
German.]. Assume that you answer to a non-technician. Help
in the following order: Answer in sentences. Explain each list
item and assume that ”low” or ”None” is highly critical.
<list of severity properties>

Figure 6. System prompt to generate a severity explanation

You will be provided with an IT weakness. Assume that
you answer to a non-technician. Help in the following order:
Explain the weakness enumeration in simple terms. Only return:
Summarize your own explanation for non-technicians. Do not
provide mitigation advices.
<CWE description>

Figure 7. System prompt, that explains a CWE

B. Intuitive Explanations

We evaluate the understandability and readability of Chat-
SECs output first. Therefore, we let ChatSEC generate two
outputs for each of the 535 unique vulnerabilities from our
internal security scan, both in English and German.

To measure how much our ChatSEC implementation relies
on a vocabulary from the security domain, we computed the
average number of words for the scan report and the generated
texts first. The orginal scan reports are much shorter than the
texts produced by ChatSEC (see Table II). We stemmed both
the generated texts and the National Institute of Standards and
Technology’s (NIST) glossary [41], and counted the matches.
The last three columns of Table II show the matches per
stemmer. Consider Column 3: PortStemmer found, that 14% of
the 68 words from the original security scan could be found in
the NIST glossary, and 15.5% of ChatSEC’s Englisch output
of 345 words. Thus, our prompt did not let the AI restrict
the use of domain-specific vocabulary. A ”n.a.” refers to a
stemmer, that is not applicable to English or German texts.

TABLE II
AVERAGE NUMBER OF WORDS AND DOMAIN-SPECIFIC VOCABULARY

Avg. num.
of words

Port-
Stemmer

Cistem Snowball

Original
report

68 14% n.a. 7%

English
output

345 15.5% n.a. 15.5%

German
output

275 n.a 10% 10%

We measure the readability with FKG for English texts
and WSF for German texts. ChatSEC’s English output was

evaluated with an average FKG of 12, ranging from 8.7
to 16.5. Thus, on average the English texts are rated as
”rather hard” or ”hard” to read, with exceptions spanning from
”medium” to ”very hard” (cf. Table I). The WSF assesses the
German output with an average score of 7 (”rather simple”),
ranging from 4.3 to 10.6, i.e., from ”very simple” to ”rather
hard”. Thus, the generated German texts were slightly easier
to read than the English ones.

C. Threat Intelligence

While understandability and readability can be evaluated
automatically, an evaluation of the correctness, completeness
and applicability of threat intelligence added to a security scan
report requires an expert assessment. For the time being, we
therefore limit ourselves to a proof of feasibility. We declare
success, if ChatSEC is able to enrich its intuitive output with
the correct number of exploits, correct additional CVSSv3 data
and the right root causes, without significantly decreasing the
readability. For evaluation, we have chosen CVE ID 2019-
0708, which appeared in our vulnerability scans.

With this CVE ID, ChatSEC queries various external data
sources: Searchsploit [38] tells ChatSEC, that this ID is
associated with four known exploits. By querying the CWE
list [37], ChatSEC learns that the root cause of the vulnera-
bility is CWE-416, named as ”Use After Free” and described
as ”Improper Control of a Resource Through its Lifetime”.
From the NVD CVE database [36], ChatSEC learns that
this vulnerability has the CVSSv3 score 9.8 (critical), and is
associated with the following vulnerability information:

• ”attackComplexity”:”low”
• ”privilegeRequired”:”None”
• ”userInteraction”:”None”
Figure 8 shows an example for the resulting threat intelli-

gence, that is translated with the prompts from Figure 6 and
6. This text is then added to ChatSECs translated vulnerability
report and sent to the LSAs.

The severity score indicates, that the attack complexity is low,
meaning that it is relatively easy for an attacker to exploit
the security vulnerability. Additionally, no privilege is required
for the attack, meaning that the attacker does not need any
special access rights or permissions to carry out the attack.
Furthermore, there is no user interaction required, suggesting
that the attack can be automated without user input.
The referenced cause CWE-416, or ”Use After Free,” is a
computer security vulnerability where a program tries to use
memory that has already been freed up. This can cause errors
or allow hackers to exploit the system.
Searchsploit found 4 currently available exploits for this vul-
nerability.

Figure 8. Intuitive threat intelligence for CVE ID 2019-0708

We found, that the ChatSECs generated output was correct
both in English and German. The English output had a FKG
of 13.5 (hard), the German output had a WSF of 4 (simple).
Thus, adding threat intelligence information did not decrease
the readability of ChatSECs output, and the German version
is still easier to read.

33Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

V. CONCLUSION

The heterogeneous IT ecosystem and the self-administrative
organizational structure makes it challenging to implement IT
security in universities. In this paper, we outlined our ongoing
work on ChatSEC, our approach to rewrite vulnerability scan
reports for local system administrators with limited IT security
knowledge. We focused specifically on intuitive explanations,
additional threat intelligence and mitigation strategies, that are
applicable by our target auditory without having to browse
external sources. Our evaluation provided evidence, that Chat-
SEC, with the help of an LLM, indeed produces reports that
are helpful to assess and close detected vulnerabilities.

As part of our future work, we plan to conduct extensive
user experiments in combination with the next internal se-
curity scan, to obtain direct feedback on ChatSEC. Based
on this feedback, we will improve the LLM prompts and
readability scores. We will also include further sources for
threat intelligence, and fully implement the integration of
mitigation strategies into ChatSEC’s reports. We will also
test open source LLMs that can be installed locally, to avoid
that information on detected vulnerabilities must leave the
premises. Eventually, we plan to integrate ChatSEC into a
Security-as-a-Service tool, that can be used on demand.

REFERENCES

[1] Forum of Incident Response and Security Teams (First), “Common
Vulnerability Scoring System (CVSS-SIG),” https://www.first.org/cvss,
retrieved: Aug. 2024.

[2] National Institute of Standards and Technology (NIST), “Vulnerability
Metrics (CVSS),” https://nvd.nist.gov/vuln-metrics/cvss, retrieved: Aug.
2024.

[3] Microsoft Cooperation, “Microsoft Security CoPilot,”
https://www.microsoft.com/de-de/security/business/ai-machine-
learning/microsoft-security-copilot, retrieved: Aug. 2024.

[4] M. F. Franco et al., “SecBot: A business-driven conversational agent for
cybersecurity planning and management,” in 2020 16th international
conference on network and service management (CNSM). IEEE, 2020,
pp. 1–7.

[5] V. Jüttner, M. Grimmer, and E. Buchmann, “ChatIDS: Explainable
cybersecurity using generative AI,” arXiv preprint arXiv:2306.14504,
2023.

[6] K. G. Yager, “Domain-specific chatbots for science using embeddings,”
Digital Discovery, vol. 2, no. 6, pp. 1850–1861, 2023.

[7] S. Shafee, A. Bessani, and P. M. Ferreira, “Evaluation of LLM
Chatbots for OSINT-based Cyberthreat Awareness,” arXiv preprint
arXiv:2401.15127, 2024.

[8] S. Pal, M. Bhattacharya, S.-S. Lee, and C. Chakraborty, “A domain-
specific next-generation large language model (LLM) or ChatGPT is
required for biomedical engineering and research,” Annals of Biomedical
Engineering, vol. 52, no. 3, pp. 451–454, 2024.

[9] M. Shanahan, “Talking about large language models,” Communications
of the ACM, vol. 67, no. 2, pp. 68–79, 2024.

[10] W. X. Zhao et al., “A survey of large language models,” arXiv preprint
arXiv:2303.18223, 2023.

[11] J. Wei et al., “Emergent abilities of large language models,” arXiv
preprint arXiv:2206.07682, 2022.

[12] Meta, “Llama 3,” 2024, retrieved: Aug. 2024. [Online]. Available:
https://llama.meta.com/llama3/

[13] Anthropic, “The Claude 3 model family: Opus,
Sonnet, Haiku,” https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model Card Claude
3.pdf, 2024, retrieved: Aug. 2024.

[14] Gemini Team Google, “Gemini: A family of highly capable multimodal
models,” arXiv preprint arXiv:2312.11805, 2023.

[15] OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[16] S. Arora et al., “Ask me anything: A simple strategy for prompting
language models,” in Proceedings of the 11th International Conference
on Learning Representations, 2022.

[17] C. Si et al., “Prompting GPT-3 to be reliable,” arXiv preprint
arXiv:2210.09150, 2022.

[18] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
Johnny can’t prompt: how non-AI experts try (and fail) to design LLM
prompts,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–21.

[19] J. W. Rae et al., “Scaling language models: Methods, analysis & insights
from training gopher,” arXiv preprint arXiv:2112.11446, 2021.

[20] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large lan-
guage models are zero-shot reasoners,” Advances in Neural Information
Processing Systems, vol. 35, pp. 22 199–22 213, 2022.

[21] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[22] G. Kim, P. Baldi, and S. McAleer, “Language models can solve computer
tasks,” in Advances in Neural Information Processing Systems, A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds.,
vol. 36, 2023, pp. 39 648–39 677.

[23] T. Brown et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[24] T. Hagendorff, “Machine psychology: Investigating emergent capa-
bilities and behavior in large language models using psychological
methods,” arXiv preprint arXiv:2303.13988, 2023.

[25] E. Lee, “Control OpenAI model behavior with seed: Step-by-step
with code,” https://drlee.io/control-openai-model-behavior-with-seed-
step-by-step-with-code-9bba4e137a63, 01 2024, retrieved: Aug. 2024.

[26] J. P. Kincaid and et al., “Derivation of new readability formulas
(automated readability index, fog count and flesch reading ease formula)
for navy enlisted personnel,” Research Branch Report, Tech. Rep., 1975.

[27] R. Bamberger and E. Vanecek, Lesen - Verstehen - Lernen - Schreiben.
Diesterweg, 1984.

[28] D. Khyani, B. Siddhartha, N. Niveditha, and B. Divya, “An interpretation
of lemmatization and stemming in natural language processing,” Journal
of University of Shanghai for Science and Technology, vol. 22, no. 10,
pp. 350–357, 2021.

[29] D. Yogish, T. Manjunath, and R. S. Hegadi, “Review on natural language
processing trends and techniques using NLTK,” in Proceedings of the
2nd International Conference on Recent Trends in Image Processing and
Pattern Recognition. Springer, 2019, pp. 589–606.

[30] A. G. Jivani et al., “A comparative study of stemming algorithms,”
International Journal of Computer Applications in Technology, vol. 2,
no. 6, pp. 1930–1938, 2011.

[31] C. J. Van Rijsbergen, S. E. Robertson, and M. F. Porter, New models
in probabilistic information retrieval. British Library Research and
Development Department London, 1980.

[32] M. Porter, “Snowball,” https://snowballstem.org/, retrieved: Aug. 2024.
[33] L. Weissweiler and A. Fraser, “Developing a stemmer for German based

on a comparative analysis of publicly available stemmers,” in Language
Technologies for the Challenges of the Digital Age: 27th International
Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017,
Proceedings 27. Springer, 2018, pp. 81–94.

[34] R. McMillan, “Definition: Threat intelligence,”
https://www.gartner.com/en/documents/2487216, 2013, retrieved:
Aug. 2024.

[35] MITRE Corporation, “Common vulnerabilities and exposures,” https:
//cve.mitre.org/, retrieved: Aug. 2024.

[36] National Institute of Standards and Technology (NIST), “National Vul-
nerability Database (NVD),” https://nvd.nist.gov/, retrieved: Aug. 2024.

[37] MITRE Corporation, “Common weakness enumeration,” https://cwe.
mitre.org/, retrieved: Aug. 2024.

[38] OffSec, “ExploitDB - SearchSploit,” https://www.exploit-db.com/
searchsploit, retrieved: Aug. 2024.

[39] Greenbone, “Vulnerability Management,” 2024, retrieved: Aug. 2024.
[Online]. Available: https://www.greenbone.net/

[40] OpenAI, “OpenAI Platform API Reference,” https://platform.openai.
com/docs/api-reference/chat/create, retrieved: Aug. 2024.

[41] National Institute of Standards and Technology (NIST), “Cyberse-
curity Basics - Glossary,” https://www.nist.gov/itl/smallbusinesscyber/
cybersecurity-basics/glossary, retrieved: Aug. 2024.

34Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

https://www.first.org/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://www.microsoft.com/de-de/security/business/ai-machine-learning/microsoft-security-copilot
https://www.microsoft.com/de-de/security/business/ai-machine-learning/microsoft-security-copilot
https://llama.meta.com/llama3/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://drlee.io/control-openai-model-behavior-with-seed-step-by-step-with-code-9bba4e137a63
https://drlee.io/control-openai-model-behavior-with-seed-step-by-step-with-code-9bba4e137a63
https://snowballstem.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.exploit-db.com/searchsploit
https://www.exploit-db.com/searchsploit
https://www.greenbone.net/
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
https://www.nist.gov/itl/smallbusinesscyber/cybersecurity-basics/glossary
https://www.nist.gov/itl/smallbusinesscyber/cybersecurity-basics/glossary

	Introduction
	Related Work
	Comparable Approaches
	Large Language Models
	NLP approaches
	Threat Intelligence

	Our ChatSEC Concept
	ChatSEC Architecture and Workflow
	Intuitive Explanations
	Threat Intelligence
	Mitigation Strategies
	Evaluation Options

	Evaluation
	Implementation and Evaluation Setup
	Intuitive Explanations
	Threat Intelligence

	Conclusion
	References

