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Abstract — Research data is expected to grow exponentially with 
the adoption of artificial intelligence (AI) and machine learning 
(ML). Robust data management practices are crucial for 
ensuring data integrity, provenance tracking, and adherence to 
ethical and regulatory standards, which is essential for building 
trustworthy AI systems. This paper explores the adoption of 
oneAPI, an open standards-based programming model, for 
streamlining research data management across diverse AI 
systems. It also explores containerization to ensure consistent 
execution across heterogeneous Cloud-based environments 
while providing security over sensitive data-based systems. By 
leveraging oneAPI's cross-architecture capabilities, including 
Data Parallel C++ (DPC++) and the other AI toolkits based on 
oneAPI, researchers can develop secure and performant AI 
solutions that seamlessly process and analyze sensitive data 
across heterogeneous computing environments. This unified 
approach proposes a framework for consistent data handling 
and reproducibility of research computing results where data 
confidentiality, security and integrity are concerns notably in 
the Cloud. Through a case study example, this paper discusses 
the benefits of adopting oneAPI for AI research data 
management (RDM), highlighting its potential to accelerate 
scientific discoveries while maintaining robust security and 
privacy standards. 

Keywords - AI; data security; research data management; 
oneAPI, DPC++; accelerator; containers 

I.  INTRODUCTION 

The rapid advancement of artificial intelligence and 
machine learning technologies has revolutionized various 
research domains, enabling breakthroughs and discoveries 
that were once considered unattainable [1][2][3]. However, 
as these powerful techniques become increasingly ubiquitous 
in research, the need for secure and reproducible RDM 
practices has emerged as a critical concern [4][6]. Ensuring 
the confidentiality, security and integrity of sensitive data 
while maintaining reproducibility across diverse computing 
environments is a significant challenge faced by researchers 
and data scientists [6]. AI and ML systems often rely on large, 
complex datasets, including personal information, medical 
records, or proprietary data, which necessitate robust security 
measures to protect against unauthorized access, data 

breaches, or unintended leaks. Additionally, the 
reproducibility and traceability of research data is crucial for 
scientific integrity, enabling peer review, validation, and 
knowledge sharing within the research community. 
Inconsistencies in software environments, dependencies, or 
hardware configurations can lead to irreproducible results, 
hindering collaboration and impeding scientific progress. 
This article’s contribution is a framework that sets guidelines 
beyond descriptive identifiers in data repo metadata and file 
handling requirements to include computational and 
confidentiality metadata identifiers to accommodate sensitive 
and secure data in research. Furthermore, the proposal and 
findings in this article are found to go beyond research in 
industry where confidentiality and security of data is a 
concern. Finance handles personal and proprietary market 
metrics and sustainability data for environment, social and 
governance (ESG) portfolio development. In architecture, 
building Information Management (BIM) systems used for 
nuclear power plants and water systems are becoming more 
tightly integrated into modern practices. 

This paper begins by discussing existing research data 
management practices and their limitations in the context of 
AI and machine learning workflows. It then introduces 
containerization as a solution for creating secure and 
reproducible environments, highlighting the benefits of 
containerization for data security. The work proposes 
integrating containerization with Data Parallel C++ (DPC++) 
and the oneAPI unified cross-architecture programming 
model. This is followed by an exploration of using DPC++ 
for secure data processing within containers. A case study 
example is provided to illustrate the approach, along with 
experimental results demonstrating the effectiveness and 
promise of the proposed framework. Finally, the paper 
concludes with a summary of the findings and an outlook on 
potential future work in this area. 

A. Prior work 

Traditional approaches to RDM have struggled to keep 
pace with the rapid evolution of AI and ML technologies, 
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presenting researchers with a myriad of challenges [7]. These 
include managing dependencies across diverse hardware and 
computing architectures, ensuring consistent and 
reproducible environments, optimizing resource utilization, 
and maintaining data security throughout the research data 
lifecycle [8] [9] [10]. 

B. This work 

To address these challenges, this paper proposes the 
integration of containerization technologies with oneAPI's 
Data Parallel C++ (DPC++), a powerful language extension 
for efficient data parallelism and hardware acceleration. 
Containerization provides isolated and reproducible 
environments, encapsulating dependencies and 
configurations, enabling portability across different 
computing platforms. DPC++, on the other hand, offers a 
unified programming model that leverages parallel 
processing capabilities across central processing units 
(CPUs), graphic processing units (GPUs), and other 
accelerators, optimizing resource utilization and accelerating 
computationally intensive tasks. By combining 
containerization and DPC++, researchers can develop secure 
and high-performance AI and ML systems that adhere to best 
practices in RDM. This integration promises to enhance data 
confidentiality and integrity through robust encapsulation 
and isolation techniques, while enabling efficient parallel 
processing and hardware acceleration. Additionally, the 
reproducibility of research findings is facilitated by 
consistent and portable runtime environments, fostering 
collaboration and knowledge sharing within the scientific 
research community. 

II. EXISTING RDM PRACTICES AND THEIR LIMITATIONS 

IN THE CONTEXT OF AI AND ML. 

Existing Research Data Management (RDM) practices 
and their limitations in the context of AI and Machine 
Learning (ML) fall into the following areas [7]: 

Static Data Management Plans: Traditional RDM often 
relies on static and rigid data management plans created at the 
start of a project. These plans may not adapt well to the 
iterative and experimental nature of AI and ML research. The 
limitations become evident when project requirements 
evolve, new data sources emerge, or when the scope of the 
project changes, rendering the initial data management plan 
inadequate. 

Lack of FAIR Data Principles: The FAIR data principles 
(Findability, Accessibility, Interoperability, and Reuse) are 
not always fully embraced in RDM practices. AI and ML 
algorithms rely on large volumes of high-quality, well-
curated data. If data is not findable, accessible, interoperable, 
and reusable, it can hinder the development and 
reproducibility of AI/ML models. Inconsistent metadata 

standards, lack of data documentation, and poor data 
organization can limit the effectiveness of AI/ML workflows 
[11]. Specifically, the limitations that are of primary concern 
in this article are as follows. 

1) Insufficient Metadata Discipline:  
Metadata, which provides context, description and other 

ontology [12] for the data, is often underappreciated in RDM, 
especially in AI and ML. Rich, standardized metadata 
enables data discovery, understanding biases, and ensuring 
ethical usage. Inadequate metadata management can lead to 
data misinterpretation, integration issues, challenges 
reproducing results, gaps in implementing RDM best 
practices, and premature data staleness.  

2) Lack of Integration with Emerging Data Types:  
RDM practices are sometimes slow to adapt to emerging 

data types, such as real-time data streams, unstructured data, 
or sensitive data requiring special handling. AI and ML 
applications often rely on these diverse data sources, and 
traditional RDM may not provide the necessary tools and 
guidelines for their effective management, limiting the 
potential of AI/ML initiatives [1][2]. By integrating a 
metadata framework inclusive of core computing devices, 
robust metadata management practices can be seamlessly 
applied, addressing key RDM challenges of quality, 
reproducibility, security, and continuous best practice 
adherence in AI/ML projects. 

3) Insufficient Data Ethics and Privacy Considerations: 
With the ethical implications of AI and ML under 

increasing scrutiny, RDM practices need to incorporate 
robust data privacy, ethical handling, and consent 
management frameworks. Traditional RDM may not 
adequately address these concerns, leading to potential legal, 
ethical, and societal issues when applying AI/ML 
technologies. The integration of AI tools based on an open 
library standard such as oneAPI and repo metadata inclusive of 
data public and private modifiers provides a framework versatile 
enough to be implemented by developers or code-savvy 
researchers while removing the technical heavy lifting from the 
data custodian who typically focuses on data governance. 

III. CONTAINERIZATION FOR SECURE AND 

REPRODUCIBLE ENVIRONMENTS 

A. Benefits of containerization for system isolation 

Containerization offers significant benefits for data 
security, including robust dependency management and 
environment consistency, which are crucial in ensuring the 
confidentiality, integrity, and availability of sensitive data in 
AI and ML workflows. These workflows often rely on a 
myriad of software dependencies, such as deep learning 
frameworks, data preprocessing libraries, and various other 
tools. Containerization encapsulates all these dependencies 
within a single, isolated container, ensuring that no external 
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dependencies or conflicting libraries can inadvertently 
introduce vulnerabilities or compromise the security of the 
AI/ML pipeline. By packaging all the required dependencies 
together, containers eliminate the risk of unintended 
interactions with other AI/ML systems or compatibility 
issues that could potentially lead to security breaches or data 
leaks. 

Environment consistency is another key benefit of 
containerization for data security. AI/ML workflows are 
often developed and tested in different environments (e.g., 
local development, staging, production), each with its own 
unique configuration and system settings. Inconsistencies 
between these environments can lead to unexpected behavior, 
security vulnerabilities, or data integrity issues. 
Containerization solves this problem by ensuring that the 
same consistent environment is used across all stages of the 
workflow, from development to production. By 
encapsulating the entire runtime environment, including 
system libraries, configuration files, and environment 
variables, containers guarantee that the AI/ML application 
will run identically in any environment, reducing the risk of 
security vulnerabilities introduced by environmental 
differences. 

In the context of AI and ML workflows, data security is 
of paramount importance, as these applications often deal 
with sensitive or regulated data, such as personal information, 
medical records, or financial data. Containerization provides 
an additional layer of isolation and control, ensuring that 
sensitive data is processed within a secure and consistent 
environment, minimizing the risk of unauthorized access, 
data breaches, or unintended data leaks. 

B. Integration of containerization with DPC++ and 
oneAPI for security of sensitive data 

Containerization technologies can seamlessly integrate 
with DPC++ and oneAPI, providing a powerful combination 
for efficient and secure data processing in AI and ML 
workflows. DPC++ is a heterogeneous programming model 
that enables portable, performance-optimized code to be 
written for various hardware architectures, including CPUs, 
GPUs, and various accelerators. It is a part of the oneAPI 
initiative, which aims to provide a unified and open 
programming model for diverse architectures. DPC++ and 
oneAPI offer numerous benefits for data-intensive 
applications, such as AI and ML, by enabling efficient 
parallelization, optimized memory management, and 
hardware acceleration. Integrating containerization with 
DPC++ and oneAPI can provide the following advantages for 
seamless data processing: 

 
 
 

1) Consistent and Reproducible Environments:   
Containerization ensures that the DPC++ and oneAPI 

runtime environments, including libraries, dependencies, and 
configurations, are consistently packaged, and deployed 
across different systems. This consistency is crucial for 
reproducibility, as it guarantees that the data processing 
pipelines will behave identically, regardless of the underlying 
hardware or software environment. 

2) Portability and Hardware Abstraction:  
DPC++ and oneAPI provide hardware abstraction and 

portability, allowing code to run efficiently on different 
architectures, such as CPUs, GPUs, and accelerators. By 
combining the portability of C++ using DPC++ with 
containerization, self-contained and portable data processing 
pipelines can be seamlessly deployed across diverse 
hardware platforms without modification. 

3) Efficient Resource Utilization:  
Containers are lightweight and can efficiently utilize 

available hardware resources, including GPUs and 
accelerators. By integrating DPC++ and oneAPI with 
containerization, developers can optimize resource utilization 
by efficiently parallelizing data processing tasks across 
multiple containers, each using the full potential of the 
underlying hardware. 

4) Simplified Deployment and Scaling:  
Containerized DPC++ and oneAPI applications can be 

easily deployed and scaled across different environments, 
from local development to cloud-based deployments or high-
performance computing (HPC) clusters. This streamlined 
deployment process facilitates collaboration, enables 
efficient scaling of data processing pipelines, and accelerates 
time-to-market for AI and ML solutions. 

5) Versioning and Provenance Management:  
Containerization tools like Docker and Singularity offer 

versioning capabilities, allowing developers to track changes 
to the DPC++ and oneAPI environments, dependencies, and 
configurations over time. In addition, the program can 
integrate data provenance tracking mechanisms by using C++ 
features such as classes, inheritance, and encapsulation. 

IV. DATA PARALLEL C++ FOR SECURE DATA 

PROCESSING 

The combination of DPC++ (Data Parallel C++) and C++ 
encapsulation offers significant advantages for secure and 
efficient data processing in AI and ML systems. These two 
powerful tools complement each other, enabling developers 
to build high-performance, scalable, and secure applications 
while adhering to best practices in software engineering. 
DPC++ is a powerful language extension that enables 
efficient data parallelism and hardware acceleration across 
various architectures, including CPUs, GPUs, and 
accelerators. By leveraging DPC++, developers can harness 

24Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services



  

 

  

 

the full potential of parallel computing, optimizing resource 
utilization and accelerating computationally intensive tasks 
such as training deep learning models or processing large 
datasets. This parallel processing capability is crucial for AI 
and ML systems, which often require significant 
computational resources to handle complex algorithms and 
massive amounts of data. 

Complementing DPC++, C++ encapsulation provides a 
robust approach to organizing and protecting sensitive data 
and algorithms within AI and ML systems into digital objects 
[13] [14]. Encapsulation is a fundamental principle of object-
oriented programming (OOP) that allows developers to 
bundle related data and functions into a single unit, called a 
class. This class acts as a secure container, protecting the 
internal implementation details from external access or 
modification, while exposing a well-defined public interface 
for interacting with the encapsulated functionality. By 
combining DPC++ and C++ encapsulation, developers can 
create secure and efficient AI and ML systems that use the 
power of parallel processing on selected accelerators while 
adhering to best practices in secure software engineering. 
DPC++ enables efficient data parallelism and hardware 
acceleration, optimizing performance and resource 
utilization, while C++ encapsulation provides a robust 
framework for organizing and protecting sensitive data and 
algorithms. 

This combination also supports the integration of secure 
execution environments, such as from a container. By 
encapsulating critical components within containers, 
developers can further enhance the security of their AI and 
ML systems, protecting sensitive data and computations from 
unauthorized access or modification, even in the presence of 
privileged software or system administrators. 

V. CASE STUDY EXAMPLE 

In the field of genomics research, managing and 
analyzing large datasets of genetic sequences is a 
computationally intensive task. Researchers often need to 
process terabytes of data while ensuring the privacy and 
confidentiality of sensitive patient information [15]. This 
case study proposes how a combination of C++ 
encapsulation, oneAPI, and Object Oriented Programming  
can address these challenges. 

1) Data Organization and Encapsulation: 
Researchers create a GenomicData class in C++ to 

encapsulate genomic sequences and associated metadata 
(e.g., patient information, sample details, consent forms). 
This class organizes the data into modular units, promoting 
data provenance tracking and adherence to privacy 
regulations. 

 
 

2) Secure Data Processing within Secure Containers: 
To ensure the confidentiality of sensitive patient data, the 

GenomicData class and its methods executes within a 
container such as Docker or Apptainer. Although containers 
can run in hardware-based and attested memory, they provide 
a trusted execution environment protecting the data and 
computations from unauthorized access or modification, 
even from privileged software or system administrators. 

3) Parallel Sequence Alignment with Data Parallel 
C++: 

One of the core operations in genomic analysis is 
sequence alignment, which involves comparing genetic 
sequences against reference databases [15]. The researchers 
implemented a SequenceAligner class that leverages Data 
Parallel C++, oneAPI, and hardware acceleration (CPUs, 
GPUs) to perform parallel sequence alignment operations as 
per a sample shown in Figure 1. 

 

Figure 1. A Class implementation of the case study 

The alignSequences method utilizes Data Parallel C++ 
constructs and oneAPI's Unified Shared Memory (USM) to 
efficiently distribute the alignment tasks across available 
hardware accelerators, significantly improving performance. 

4) Secure Data Storage and Backup: 
To maintain data integrity and availability, the 

researchers implement a DataStorageManager class that 
handles secure storage and backup of genomic data within the 
secure container. This class encapsulates methods for 
encrypting data, performing incremental backups, and 
securely transferring backups to off-site storage locations. 

5) Auditing and Data Access Control: 
Adhering to data governance policies, the GenomicData 

class includes methods for auditing data access and 
operations. Access control mechanisms ensures that only 
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authorized researchers could interact with the sensitive 
genomic data. The GenomicData class encapsulates both the 
genomic data itself (stored as a vector of strings) and its 
provenance metadata (stored as an unordered map of key-
value pairs). 

The class constructor initializes the data and sets the 
initial provenance metadata with the source of the data as 
follows. A preprocess method performs any necessary 
preprocessing steps on the data and updates the provenance 
metadata with information about the preprocessing method 
and its parameters. A sample of such and accompanying 
metadata are shown in Figures 2 and 3. 

Figure 2. A preprocessing method 

Figure 3. Example metadata 

By encapsulating both the data and its provenance 
metadata within the same class, provenance information is 
propagated throughout the AI/ML workflow [16], enabling 
comprehensive tracking and documentation of the data's 
lineage. 

A. Explanation 
By leveraging C++ encapsulation, oneAPI, and OOP 

principles, the researchers are able to develop a secure and 
efficient solution for managing and analyzing genomic data: 

 Sensitive patient data is further protected through 
hardware-based trusted containers, ensuring 
confidentiality and privacy. 

 Computationally intensive sequence alignment 
operations is accelerated using Data Parallel C++ and 
oneAPI, enabling efficient analysis of large genomic 
datasets. 

 Modular and encapsulated design promotes code 
reusability, maintainability, and adherence to RDM 
best practices. 

 Secure data storage, backup, auditing, and access 
control mechanisms ensures data integrity, 
availability, and compliance with regulations. 

This case study demonstrates how the combination of 
C++ encapsulation, oneAPI, and OOP can enable secure, 
efficient, and compliant Research Data Management in the 
field of genomics and can serve as a template for applications 
in other data-intensive domains such as BIM and finance. 
Following is a description of what the public and private 
methods do in the context of the SequenceAligner class from 
the genomic data case study: 

1) Public Method: 
a. void alignSequences(GenomicData& 

data):  
This public method is responsible for performing 

sequence alignment operations on the genomic data 
encapsulated within the GenomicData class. It takes a 
reference to a GenomicData object as input. The method 
loads the genomic sequences and a reference database into 
Unified Shared Memory (USM) for efficient data sharing 
among accelerators. It then leverages Data Parallel C++ 
constructs (std::parallel_for) and oneAPI to parallelize the 
sequence alignment tasks across available hardware 
accelerators (CPUs, GPUs). After the parallel alignment is 
completed, the method stores the aligned sequences back into 
the GenomicData object. 

2) Private Method: 
a. void alignSequence(Sequence& seq, const 

ReferenceDB& db): 
This private method is a helper function that performs the 

actual sequence alignment operation for a single genomic 
sequence (seq) against the reference database (db). It is called 
in parallel by the std::parallel_for construct within the 
alignSequences method. The implementation details of the 
sequence alignment algorithm are encapsulated within this 
private method. By keeping this method private, the class 
adheres to the encapsulation principle, hiding the 
implementation details from external code and providing a 
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well-defined public interface (alignSequences) for sequence 
alignment operations. 

The separation of public and private methods in the 
SequenceAligner class follows the principles of 
encapsulation and information hiding from Object-Oriented 
Programming: The public alignSequences() method provides 
a high-level interface for initiating sequence alignment 
operations on genomic data, abstracting away the underlying 
implementation details. The private alignSequence() method 
encapsulates the low-level details of the sequence alignment 
algorithm, allowing for potential changes or optimizations 
without affecting the public interface. This design promotes 
code modularity, maintainability, and extensibility, as the 
implementation details of the sequence alignment algorithm 
can be modified or improved without impacting the public 
interface used by other parts of the application. Additionally, 
by leveraging Data Parallel C++ and oneAPI within the 
public alignSequences method, the class can efficiently 
utilize hardware acceleration and parallel processing 
capabilities, improving the performance of computationally 
intensive sequence alignment operations on large genomic 
datasets. The SequenceAligner class is designed to 
encapsulate and protect the sensitive genomic data 
processing logic within the private alignSequence method. It 
should be note that there are still potential risks if external 
code can directly access or modify this private method, which 
could compromise the integrity and confidentiality of the 
genomic data processing pipeline. 

VI. EXPERIMENTAL RESULTS 

We used oneAPI to handle data loading, preprocessing, 
and post-processing steps, ensuring consistent and 
reproducible experiments using openVINO AI inferencing 
engine for all combinations. A validation dataset consisting 
of 5000 images was used. Researchers can configure the 
environment through a metadata configuration file, 
specifying dataset paths, model paths, access modifiers and 
evaluation parameters. The experiment generates a detailed 
accuracy report, easing model and environment comparisons. 
Additionally, it runs in an Apptainer container, enabling 
portable and reproducible experiment environments across 
different computing platforms. This methodology allowed us 
to implement best practices in research data management and 
reproducible AI/ML workflows using the framework 
proposed in this paper. This method goes further suggesting 
metadata of a dataset include data access modifiers to 
selectively secure data and define the computing device in the 
oneAPI software library thereby providing a unified 
computing device framework.  

 
 
 

TABLE I.  Experimental  resul ts 

Results 
(XPUs) 

Metrics 
Reproducibility 
of computing 

result 
Transparency Access 

Modifiers 
Cloud 

Environment 

CPU 
only 
(Intel) 

Same results 
when executed 
on same 
validation data 

Metadata-
json config 
file, ONNX, 
oneAPI 

All 
public 

Container, 
no enclave 

GPU 
(AMD) 

Same results 
when executed 
on same 
validation data 

Metadata-
json config 
file, ONNX, 
oneAPI 

All 
public 

Container, 
no enclave 

GPU 
Nvidia 

Not fully 
tested 

Metadata-
json config 
file, ONNX, 
oneAPI 

All 
public 

Container, 
no enclave 

Table 1 details the metrics thought most relevant to 
evaluate the framework on an AI model. The results from this 
experiment enable a holistic evaluation of the framework and 
the effort involved in setting it up for a research project. It 
highlights the AI model evaluation process using oneAPI and 
DPC++ framework for data repo metadata in a containerized 
environment, providing consistent, reproducible, and well-
documented results aligned with research data management 
best practices. However, it should be noted that although the 
tests did not cover a combination of public and private data 
access modifiers, the results can still be holistically 
interpreted as successful and promising. 

VII.  CONCLUSION AND FUTURE WORK 

While existing RDM practices provide a foundation for 
data management, they often fall short in several key areas 
when applied to AI and ML contexts. Adapting RDM to 
address these limitations is essential for unlocking the full 
potential of AI and ML applications and ensuring responsible 
and effective data-driven innovation. Containerization 
technologies like Docker and Apptainer offer robust 
dependency management, environment consistency, and 
enhanced control over the software supply chain, making 
them valuable tools for maintaining data security in AI and 
ML workflows. By encapsulating dependencies, isolating 
environments, and enabling secure software development 
practices, containerization contributes to the confidentiality, 
integrity, and availability of sensitive data throughout the 
AI/ML lifecycle. The constructive interaction between 
DPC++ and C++ encapsulation empowers developers to 
build high-performance, scalable, and secure AI and ML 
systems that can efficiently process large datasets while 
maintaining data confidentiality and integrity. This approach 
promotes code maintainability, extensibility, and 
collaboration, enabling the development of robust and 
reliable AI and ML solutions that can be trusted in critical 
applications. There are, however, some scenarios like the 
SequenceAligner class could be at risk from external code 
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requiring access to the private alignSequence method where 
external code is able to manipulate or inject offending data 
into the alignSequence method, and potentially compromise 
the integrity of the sequence alignment algorithm. Future 
work to mitigate these risks as identified in section V. should 
include the possibility of splitting the validation dataset into 
public and private access modifiers then validate accuracy 
under that scenario and the implementation of enclaves which 
involves encryption. Encrypted computing [17] is another 
emerging paradigm that could further address RDM 
challenges in decentralized systems by encrypting and 
decrypting at the edge device. This involves the custodian’s 
proprietary data or algorithms encrypted throughout the end-
to-end computation process, reducing the risk of 
unauthorized access or theft. 
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