

AI Systems Adoption of Unified Research Data Management on Accelerator
Computing

A framework for unifying RDM and confidential AI using oneAPI

Peter Darveau
Digital Research Alliance of Canada – Center for Advanced Computing – University of Ottawa

Ottawa, Canada
e-mail: pdarveau@uottawa.ca

Abstract — Research data is expected to grow exponentially with
the adoption of artificial intelligence (AI) and machine learning
(ML). Robust data management practices are crucial for
ensuring data integrity, provenance tracking, and adherence to
ethical and regulatory standards, which is essential for building
trustworthy AI systems. This paper explores the adoption of
oneAPI, an open standards-based programming model, for
streamlining research data management across diverse AI
systems. It also explores containerization to ensure consistent
execution across heterogeneous Cloud-based environments
while providing security over sensitive data-based systems. By
leveraging oneAPI's cross-architecture capabilities, including
Data Parallel C++ (DPC++) and the other AI toolkits based on
oneAPI, researchers can develop secure and performant AI
solutions that seamlessly process and analyze sensitive data
across heterogeneous computing environments. This unified
approach proposes a framework for consistent data handling
and reproducibility of research computing results where data
confidentiality, security and integrity are concerns notably in
the Cloud. Through a case study example, this paper discusses
the benefits of adopting oneAPI for AI research data
management (RDM), highlighting its potential to accelerate
scientific discoveries while maintaining robust security and
privacy standards.

Keywords - AI; data security; research data management;
oneAPI, DPC++; accelerator; containers

I. INTRODUCTION

The rapid advancement of artificial intelligence and
machine learning technologies has revolutionized various
research domains, enabling breakthroughs and discoveries
that were once considered unattainable [1][2][3]. However,
as these powerful techniques become increasingly ubiquitous
in research, the need for secure and reproducible RDM
practices has emerged as a critical concern [4][6]. Ensuring
the confidentiality, security and integrity of sensitive data
while maintaining reproducibility across diverse computing
environments is a significant challenge faced by researchers
and data scientists [6]. AI and ML systems often rely on large,
complex datasets, including personal information, medical
records, or proprietary data, which necessitate robust security
measures to protect against unauthorized access, data

breaches, or unintended leaks. Additionally, the
reproducibility and traceability of research data is crucial for
scientific integrity, enabling peer review, validation, and
knowledge sharing within the research community.
Inconsistencies in software environments, dependencies, or
hardware configurations can lead to irreproducible results,
hindering collaboration and impeding scientific progress.
This article’s contribution is a framework that sets guidelines
beyond descriptive identifiers in data repo metadata and file
handling requirements to include computational and
confidentiality metadata identifiers to accommodate sensitive
and secure data in research. Furthermore, the proposal and
findings in this article are found to go beyond research in
industry where confidentiality and security of data is a
concern. Finance handles personal and proprietary market
metrics and sustainability data for environment, social and
governance (ESG) portfolio development. In architecture,
building Information Management (BIM) systems used for
nuclear power plants and water systems are becoming more
tightly integrated into modern practices.

This paper begins by discussing existing research data
management practices and their limitations in the context of
AI and machine learning workflows. It then introduces
containerization as a solution for creating secure and
reproducible environments, highlighting the benefits of
containerization for data security. The work proposes
integrating containerization with Data Parallel C++ (DPC++)
and the oneAPI unified cross-architecture programming
model. This is followed by an exploration of using DPC++
for secure data processing within containers. A case study
example is provided to illustrate the approach, along with
experimental results demonstrating the effectiveness and
promise of the proposed framework. Finally, the paper
concludes with a summary of the findings and an outlook on
potential future work in this area.

A. Prior work

Traditional approaches to RDM have struggled to keep
pace with the rapid evolution of AI and ML technologies,

22Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

presenting researchers with a myriad of challenges [7]. These
include managing dependencies across diverse hardware and
computing architectures, ensuring consistent and
reproducible environments, optimizing resource utilization,
and maintaining data security throughout the research data
lifecycle [8] [9] [10].

B. This work

To address these challenges, this paper proposes the
integration of containerization technologies with oneAPI's
Data Parallel C++ (DPC++), a powerful language extension
for efficient data parallelism and hardware acceleration.
Containerization provides isolated and reproducible
environments, encapsulating dependencies and
configurations, enabling portability across different
computing platforms. DPC++, on the other hand, offers a
unified programming model that leverages parallel
processing capabilities across central processing units
(CPUs), graphic processing units (GPUs), and other
accelerators, optimizing resource utilization and accelerating
computationally intensive tasks. By combining
containerization and DPC++, researchers can develop secure
and high-performance AI and ML systems that adhere to best
practices in RDM. This integration promises to enhance data
confidentiality and integrity through robust encapsulation
and isolation techniques, while enabling efficient parallel
processing and hardware acceleration. Additionally, the
reproducibility of research findings is facilitated by
consistent and portable runtime environments, fostering
collaboration and knowledge sharing within the scientific
research community.

II. EXISTING RDM PRACTICES AND THEIR LIMITATIONS

IN THE CONTEXT OF AI AND ML.

Existing Research Data Management (RDM) practices
and their limitations in the context of AI and Machine
Learning (ML) fall into the following areas [7]:

Static Data Management Plans: Traditional RDM often
relies on static and rigid data management plans created at the
start of a project. These plans may not adapt well to the
iterative and experimental nature of AI and ML research. The
limitations become evident when project requirements
evolve, new data sources emerge, or when the scope of the
project changes, rendering the initial data management plan
inadequate.

Lack of FAIR Data Principles: The FAIR data principles
(Findability, Accessibility, Interoperability, and Reuse) are
not always fully embraced in RDM practices. AI and ML
algorithms rely on large volumes of high-quality, well-
curated data. If data is not findable, accessible, interoperable,
and reusable, it can hinder the development and
reproducibility of AI/ML models. Inconsistent metadata

standards, lack of data documentation, and poor data
organization can limit the effectiveness of AI/ML workflows
[11]. Specifically, the limitations that are of primary concern
in this article are as follows.

1) Insufficient Metadata Discipline:
Metadata, which provides context, description and other

ontology [12] for the data, is often underappreciated in RDM,
especially in AI and ML. Rich, standardized metadata
enables data discovery, understanding biases, and ensuring
ethical usage. Inadequate metadata management can lead to
data misinterpretation, integration issues, challenges
reproducing results, gaps in implementing RDM best
practices, and premature data staleness.

2) Lack of Integration with Emerging Data Types:
RDM practices are sometimes slow to adapt to emerging

data types, such as real-time data streams, unstructured data,
or sensitive data requiring special handling. AI and ML
applications often rely on these diverse data sources, and
traditional RDM may not provide the necessary tools and
guidelines for their effective management, limiting the
potential of AI/ML initiatives [1][2]. By integrating a
metadata framework inclusive of core computing devices,
robust metadata management practices can be seamlessly
applied, addressing key RDM challenges of quality,
reproducibility, security, and continuous best practice
adherence in AI/ML projects.

3) Insufficient Data Ethics and Privacy Considerations:
With the ethical implications of AI and ML under

increasing scrutiny, RDM practices need to incorporate
robust data privacy, ethical handling, and consent
management frameworks. Traditional RDM may not
adequately address these concerns, leading to potential legal,
ethical, and societal issues when applying AI/ML
technologies. The integration of AI tools based on an open
library standard such as oneAPI and repo metadata inclusive of
data public and private modifiers provides a framework versatile
enough to be implemented by developers or code-savvy
researchers while removing the technical heavy lifting from the
data custodian who typically focuses on data governance.

III. CONTAINERIZATION FOR SECURE AND

REPRODUCIBLE ENVIRONMENTS

A. Benefits of containerization for system isolation

Containerization offers significant benefits for data
security, including robust dependency management and
environment consistency, which are crucial in ensuring the
confidentiality, integrity, and availability of sensitive data in
AI and ML workflows. These workflows often rely on a
myriad of software dependencies, such as deep learning
frameworks, data preprocessing libraries, and various other
tools. Containerization encapsulates all these dependencies
within a single, isolated container, ensuring that no external

23Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

dependencies or conflicting libraries can inadvertently
introduce vulnerabilities or compromise the security of the
AI/ML pipeline. By packaging all the required dependencies
together, containers eliminate the risk of unintended
interactions with other AI/ML systems or compatibility
issues that could potentially lead to security breaches or data
leaks.

Environment consistency is another key benefit of
containerization for data security. AI/ML workflows are
often developed and tested in different environments (e.g.,
local development, staging, production), each with its own
unique configuration and system settings. Inconsistencies
between these environments can lead to unexpected behavior,
security vulnerabilities, or data integrity issues.
Containerization solves this problem by ensuring that the
same consistent environment is used across all stages of the
workflow, from development to production. By
encapsulating the entire runtime environment, including
system libraries, configuration files, and environment
variables, containers guarantee that the AI/ML application
will run identically in any environment, reducing the risk of
security vulnerabilities introduced by environmental
differences.

In the context of AI and ML workflows, data security is
of paramount importance, as these applications often deal
with sensitive or regulated data, such as personal information,
medical records, or financial data. Containerization provides
an additional layer of isolation and control, ensuring that
sensitive data is processed within a secure and consistent
environment, minimizing the risk of unauthorized access,
data breaches, or unintended data leaks.

B. Integration of containerization with DPC++ and
oneAPI for security of sensitive data

Containerization technologies can seamlessly integrate
with DPC++ and oneAPI, providing a powerful combination
for efficient and secure data processing in AI and ML
workflows. DPC++ is a heterogeneous programming model
that enables portable, performance-optimized code to be
written for various hardware architectures, including CPUs,
GPUs, and various accelerators. It is a part of the oneAPI
initiative, which aims to provide a unified and open
programming model for diverse architectures. DPC++ and
oneAPI offer numerous benefits for data-intensive
applications, such as AI and ML, by enabling efficient
parallelization, optimized memory management, and
hardware acceleration. Integrating containerization with
DPC++ and oneAPI can provide the following advantages for
seamless data processing:

1) Consistent and Reproducible Environments:
Containerization ensures that the DPC++ and oneAPI

runtime environments, including libraries, dependencies, and
configurations, are consistently packaged, and deployed
across different systems. This consistency is crucial for
reproducibility, as it guarantees that the data processing
pipelines will behave identically, regardless of the underlying
hardware or software environment.

2) Portability and Hardware Abstraction:
DPC++ and oneAPI provide hardware abstraction and

portability, allowing code to run efficiently on different
architectures, such as CPUs, GPUs, and accelerators. By
combining the portability of C++ using DPC++ with
containerization, self-contained and portable data processing
pipelines can be seamlessly deployed across diverse
hardware platforms without modification.

3) Efficient Resource Utilization:
Containers are lightweight and can efficiently utilize

available hardware resources, including GPUs and
accelerators. By integrating DPC++ and oneAPI with
containerization, developers can optimize resource utilization
by efficiently parallelizing data processing tasks across
multiple containers, each using the full potential of the
underlying hardware.

4) Simplified Deployment and Scaling:
Containerized DPC++ and oneAPI applications can be

easily deployed and scaled across different environments,
from local development to cloud-based deployments or high-
performance computing (HPC) clusters. This streamlined
deployment process facilitates collaboration, enables
efficient scaling of data processing pipelines, and accelerates
time-to-market for AI and ML solutions.

5) Versioning and Provenance Management:
Containerization tools like Docker and Singularity offer

versioning capabilities, allowing developers to track changes
to the DPC++ and oneAPI environments, dependencies, and
configurations over time. In addition, the program can
integrate data provenance tracking mechanisms by using C++
features such as classes, inheritance, and encapsulation.

IV. DATA PARALLEL C++ FOR SECURE DATA

PROCESSING

The combination of DPC++ (Data Parallel C++) and C++
encapsulation offers significant advantages for secure and
efficient data processing in AI and ML systems. These two
powerful tools complement each other, enabling developers
to build high-performance, scalable, and secure applications
while adhering to best practices in software engineering.
DPC++ is a powerful language extension that enables
efficient data parallelism and hardware acceleration across
various architectures, including CPUs, GPUs, and
accelerators. By leveraging DPC++, developers can harness

24Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

the full potential of parallel computing, optimizing resource
utilization and accelerating computationally intensive tasks
such as training deep learning models or processing large
datasets. This parallel processing capability is crucial for AI
and ML systems, which often require significant
computational resources to handle complex algorithms and
massive amounts of data.

Complementing DPC++, C++ encapsulation provides a
robust approach to organizing and protecting sensitive data
and algorithms within AI and ML systems into digital objects
[13] [14]. Encapsulation is a fundamental principle of object-
oriented programming (OOP) that allows developers to
bundle related data and functions into a single unit, called a
class. This class acts as a secure container, protecting the
internal implementation details from external access or
modification, while exposing a well-defined public interface
for interacting with the encapsulated functionality. By
combining DPC++ and C++ encapsulation, developers can
create secure and efficient AI and ML systems that use the
power of parallel processing on selected accelerators while
adhering to best practices in secure software engineering.
DPC++ enables efficient data parallelism and hardware
acceleration, optimizing performance and resource
utilization, while C++ encapsulation provides a robust
framework for organizing and protecting sensitive data and
algorithms.

This combination also supports the integration of secure
execution environments, such as from a container. By
encapsulating critical components within containers,
developers can further enhance the security of their AI and
ML systems, protecting sensitive data and computations from
unauthorized access or modification, even in the presence of
privileged software or system administrators.

V. CASE STUDY EXAMPLE

In the field of genomics research, managing and
analyzing large datasets of genetic sequences is a
computationally intensive task. Researchers often need to
process terabytes of data while ensuring the privacy and
confidentiality of sensitive patient information [15]. This
case study proposes how a combination of C++
encapsulation, oneAPI, and Object Oriented Programming
can address these challenges.

1) Data Organization and Encapsulation:
Researchers create a GenomicData class in C++ to

encapsulate genomic sequences and associated metadata
(e.g., patient information, sample details, consent forms).
This class organizes the data into modular units, promoting
data provenance tracking and adherence to privacy
regulations.

2) Secure Data Processing within Secure Containers:
To ensure the confidentiality of sensitive patient data, the

GenomicData class and its methods executes within a
container such as Docker or Apptainer. Although containers
can run in hardware-based and attested memory, they provide
a trusted execution environment protecting the data and
computations from unauthorized access or modification,
even from privileged software or system administrators.

3) Parallel Sequence Alignment with Data Parallel
C++:

One of the core operations in genomic analysis is
sequence alignment, which involves comparing genetic
sequences against reference databases [15]. The researchers
implemented a SequenceAligner class that leverages Data
Parallel C++, oneAPI, and hardware acceleration (CPUs,
GPUs) to perform parallel sequence alignment operations as
per a sample shown in Figure 1.

Figure 1. A Class implementation of the case study

The alignSequences method utilizes Data Parallel C++
constructs and oneAPI's Unified Shared Memory (USM) to
efficiently distribute the alignment tasks across available
hardware accelerators, significantly improving performance.

4) Secure Data Storage and Backup:
To maintain data integrity and availability, the

researchers implement a DataStorageManager class that
handles secure storage and backup of genomic data within the
secure container. This class encapsulates methods for
encrypting data, performing incremental backups, and
securely transferring backups to off-site storage locations.

5) Auditing and Data Access Control:
Adhering to data governance policies, the GenomicData

class includes methods for auditing data access and
operations. Access control mechanisms ensures that only

25Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

authorized researchers could interact with the sensitive
genomic data. The GenomicData class encapsulates both the
genomic data itself (stored as a vector of strings) and its
provenance metadata (stored as an unordered map of key-
value pairs).

The class constructor initializes the data and sets the
initial provenance metadata with the source of the data as
follows. A preprocess method performs any necessary
preprocessing steps on the data and updates the provenance
metadata with information about the preprocessing method
and its parameters. A sample of such and accompanying
metadata are shown in Figures 2 and 3.

Figure 2. A preprocessing method

Figure 3. Example metadata

By encapsulating both the data and its provenance
metadata within the same class, provenance information is
propagated throughout the AI/ML workflow [16], enabling
comprehensive tracking and documentation of the data's
lineage.

A. Explanation
By leveraging C++ encapsulation, oneAPI, and OOP

principles, the researchers are able to develop a secure and
efficient solution for managing and analyzing genomic data:

 Sensitive patient data is further protected through
hardware-based trusted containers, ensuring
confidentiality and privacy.

 Computationally intensive sequence alignment
operations is accelerated using Data Parallel C++ and
oneAPI, enabling efficient analysis of large genomic
datasets.

 Modular and encapsulated design promotes code
reusability, maintainability, and adherence to RDM
best practices.

 Secure data storage, backup, auditing, and access
control mechanisms ensures data integrity,
availability, and compliance with regulations.

This case study demonstrates how the combination of
C++ encapsulation, oneAPI, and OOP can enable secure,
efficient, and compliant Research Data Management in the
field of genomics and can serve as a template for applications
in other data-intensive domains such as BIM and finance.
Following is a description of what the public and private
methods do in the context of the SequenceAligner class from
the genomic data case study:

1) Public Method:
a. void alignSequences(GenomicData&

data):
This public method is responsible for performing

sequence alignment operations on the genomic data
encapsulated within the GenomicData class. It takes a
reference to a GenomicData object as input. The method
loads the genomic sequences and a reference database into
Unified Shared Memory (USM) for efficient data sharing
among accelerators. It then leverages Data Parallel C++
constructs (std::parallel_for) and oneAPI to parallelize the
sequence alignment tasks across available hardware
accelerators (CPUs, GPUs). After the parallel alignment is
completed, the method stores the aligned sequences back into
the GenomicData object.

2) Private Method:
a. void alignSequence(Sequence& seq, const

ReferenceDB& db):
This private method is a helper function that performs the

actual sequence alignment operation for a single genomic
sequence (seq) against the reference database (db). It is called
in parallel by the std::parallel_for construct within the
alignSequences method. The implementation details of the
sequence alignment algorithm are encapsulated within this
private method. By keeping this method private, the class
adheres to the encapsulation principle, hiding the
implementation details from external code and providing a

26Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

well-defined public interface (alignSequences) for sequence
alignment operations.

The separation of public and private methods in the
SequenceAligner class follows the principles of
encapsulation and information hiding from Object-Oriented
Programming: The public alignSequences() method provides
a high-level interface for initiating sequence alignment
operations on genomic data, abstracting away the underlying
implementation details. The private alignSequence() method
encapsulates the low-level details of the sequence alignment
algorithm, allowing for potential changes or optimizations
without affecting the public interface. This design promotes
code modularity, maintainability, and extensibility, as the
implementation details of the sequence alignment algorithm
can be modified or improved without impacting the public
interface used by other parts of the application. Additionally,
by leveraging Data Parallel C++ and oneAPI within the
public alignSequences method, the class can efficiently
utilize hardware acceleration and parallel processing
capabilities, improving the performance of computationally
intensive sequence alignment operations on large genomic
datasets. The SequenceAligner class is designed to
encapsulate and protect the sensitive genomic data
processing logic within the private alignSequence method. It
should be note that there are still potential risks if external
code can directly access or modify this private method, which
could compromise the integrity and confidentiality of the
genomic data processing pipeline.

VI. EXPERIMENTAL RESULTS

We used oneAPI to handle data loading, preprocessing,
and post-processing steps, ensuring consistent and
reproducible experiments using openVINO AI inferencing
engine for all combinations. A validation dataset consisting
of 5000 images was used. Researchers can configure the
environment through a metadata configuration file,
specifying dataset paths, model paths, access modifiers and
evaluation parameters. The experiment generates a detailed
accuracy report, easing model and environment comparisons.
Additionally, it runs in an Apptainer container, enabling
portable and reproducible experiment environments across
different computing platforms. This methodology allowed us
to implement best practices in research data management and
reproducible AI/ML workflows using the framework
proposed in this paper. This method goes further suggesting
metadata of a dataset include data access modifiers to
selectively secure data and define the computing device in the
oneAPI software library thereby providing a unified
computing device framework.

TABLE I. Experimental resul ts

Results
(XPUs)

Metrics
Reproducibility
of computing

result
Transparency Access

Modifiers
Cloud

Environment

CPU
only
(Intel)

Same results
when executed
on same
validation data

Metadata-
json config
file, ONNX,
oneAPI

All
public

Container,
no enclave

GPU
(AMD)

Same results
when executed
on same
validation data

Metadata-
json config
file, ONNX,
oneAPI

All
public

Container,
no enclave

GPU
Nvidia

Not fully
tested

Metadata-
json config
file, ONNX,
oneAPI

All
public

Container,
no enclave

Table 1 details the metrics thought most relevant to
evaluate the framework on an AI model. The results from this
experiment enable a holistic evaluation of the framework and
the effort involved in setting it up for a research project. It
highlights the AI model evaluation process using oneAPI and
DPC++ framework for data repo metadata in a containerized
environment, providing consistent, reproducible, and well-
documented results aligned with research data management
best practices. However, it should be noted that although the
tests did not cover a combination of public and private data
access modifiers, the results can still be holistically
interpreted as successful and promising.

VII. CONCLUSION AND FUTURE WORK

While existing RDM practices provide a foundation for
data management, they often fall short in several key areas
when applied to AI and ML contexts. Adapting RDM to
address these limitations is essential for unlocking the full
potential of AI and ML applications and ensuring responsible
and effective data-driven innovation. Containerization
technologies like Docker and Apptainer offer robust
dependency management, environment consistency, and
enhanced control over the software supply chain, making
them valuable tools for maintaining data security in AI and
ML workflows. By encapsulating dependencies, isolating
environments, and enabling secure software development
practices, containerization contributes to the confidentiality,
integrity, and availability of sensitive data throughout the
AI/ML lifecycle. The constructive interaction between
DPC++ and C++ encapsulation empowers developers to
build high-performance, scalable, and secure AI and ML
systems that can efficiently process large datasets while
maintaining data confidentiality and integrity. This approach
promotes code maintainability, extensibility, and
collaboration, enabling the development of robust and
reliable AI and ML solutions that can be trusted in critical
applications. There are, however, some scenarios like the
SequenceAligner class could be at risk from external code

27Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

requiring access to the private alignSequence method where
external code is able to manipulate or inject offending data
into the alignSequence method, and potentially compromise
the integrity of the sequence alignment algorithm. Future
work to mitigate these risks as identified in section V. should
include the possibility of splitting the validation dataset into
public and private access modifiers then validate accuracy
under that scenario and the implementation of enclaves which
involves encryption. Encrypted computing [17] is another
emerging paradigm that could further address RDM
challenges in decentralized systems by encrypting and
decrypting at the edge device. This involves the custodian’s
proprietary data or algorithms encrypted throughout the end-
to-end computation process, reducing the risk of
unauthorized access or theft.

ACKNOWLEDGMENT

The author thanks the members of the Research IT and
Library of the of the University of Ottawa for their continued
participation and for helpful discussion on the topics of data-
representation and research data management. The work
described here was supported by Digital Research Alliance of
Canada (Alliance) and the University of Ottawa (uOttawa).
The content is solely the responsibility of the author and does
not necessarily reflect the official views of the Alliance,
uOttawa, or Canadian Government.

CONTRIBUTORSHIP

Simone Darveau (University of Waterloo – Waterloo
Canada) contributed to the applicability of the model
framework in an international architectural firm’s BIM
system. Vivianne Darveau (Columbia University, NY USA)
contributed to the applicability of the model framework in an
investment banking context with an international bank. All
authors and contributors discussed the results, the application
and contributed to the final manuscript.

DECLARATION OF INTERESTS

 The author declares no competing interests.

REFERENCES
[1] Peter Darveau "Decision Trees: Modeling with fast intuition

and slow, deliberate analysis." 2023
[2] Peter Darveau "Support Vector Machines: Modeling The Dual

Cognitive Processes of an SVM." 2023.
[3] Peter Darveau "Prognostics and Availability for Industrial

Equipment Using High Performance Computing (HPC) and AI
Technology." 2021

[4] L. Wilson "RDM Network of Experts” [Presentation]. DRI
Cnnnect National Conference, Halifax, NS, Canada 2024, May
24—25.

[5] F. Pérez-Jvostov "Overview of the World Data System”
[Presentation]. DRI Cnnnect National Conference, Halifax,
NS, Canada 2024, May 24—25.

[6] V. Smith."Approaches to sensitive data across the DRI
landscape” [Presentation]. DRI Cnnnect National Conference,
Halifax, NS, Canada 2024, May 24—25.

[7] Gail Birkbeck, Tadhg Nagle and David Sammon (2022)
Challenges in research data management practices: a literature
analysis, Journal of Decision Systems, 31:sup1, pp. 153-167

[8] J. F. Pimentel, L. Murta, V. Braganholo and J. Freire, "A
Large-Scale Study About Quality and Reproducibility of
Jupyter Notebooks," 2019 IEEE/ACM 16th International
Conference on Mining Software, Montreal, Canada, 2019.

[9] Gundersen, O. E., and Kjensmo, S. State of the art:
Reproducibility in artificial intelligence. In Proceedings of the
AAAI conference on artificial intelligence (Vol. 32, No. 1)
2018

[10] Haibe-Kains, Benjamin, et al. Transparency and
reproducibility in artificial intelligence. Nature 586.7829: E14-
E16 2020.

[11] R. Jenkyns "Overview of the World Data System”
[Presentation]. DRI Cnnnect National Conference, Halifax,
NS, Canada 2024, May 24—25.

[12] Brahaj, Armand, et al. “Ontological Formalization of Scientific
Experiments Based on Core Scientific Metadata Model.”
Theory and Practice of Digital Libraries, Springer Berlin
Heidelberg, pp. 273–79

[13] Johanne Medina, et al. “Accelerating the adoption of research
data management strategies”, Volume 5, Issue 11, pp. 3614-
3642

[14] Petr Ježek and Roman Mouček. “Semantic Framework for
Mapping Object-Oriented Model to Semantic Web
Languages.” Frontiers in Neuroinformatics, vol. 9, Feb. 2015,
p., doi:10.3389/fninf.2015.00003

[15] S. J. Mack, J. Sauter, J. Robinson et al. “The genotype list string
code syntax for exchanging nomenclature-level genotyping
results in clinical and research data management and analysis
systems”. HLA. 2023; 102(4): pp. 501-507.

[16] Lixin Han et al. “AASA: A Method of Automatically
Acquiring Semantic Annotations.” Journal of Information
Science, Aug. 2007, pp. 435–450.

[17] Intel Corporation “Accelerated AI Inference with Confidential
Computing” [White Paper]. Link 2023

28Copyright (c) IARIA, 2024. ISBN: 978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services

