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Abstract—The increasing complexity and computational de-
mands of 3D fluid dynamics simulations highlight the need for ad-
vanced surrogate models that strike a balance between predictive
accuracy, computational efficiency, and convergence time. Tra-
ditional Computational Fluid Dynamics (CFD) methods, while
highly accurate, are often resource-intensive and time-consuming.
This research presents advanced U-Net-based surrogate models
for 3D fluid flow prediction, aiming to achieve faster convergence
and more efficient resource utilization while retaining competitive
accuracy relative to traditional CFD solvers. We developed
a U-Net model featuring an improved architecture utilizing
an advanced attention mechanism known as the Convolution
Block Attention mechanism. Considering the high computa-
tional demands, the model was trained using multiple GPUs,
incorporating both model and data parallelism techniques. The
model’s capability was evaluated through overfitting experiments,
where it was trained on a limited dataset to assess its ability
to accurately replicate true labels. These findings highlight the
promise of advanced surrogate models as a viable alternative
to traditional CFD methods, providing faster solutions and
reduced computational costs with comparable accuracy. Future
research will focus on evaluating the current advanced U-Net
model, trained on an extensive dataset of 10,000 samples, against
Fourier Neural Operators and traditional CFD solvers in terms
of training time, accuracy, and resource utilization, including
energy consumption.
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I. INTRODUCTION

The rapid advancements in Machine Learning (ML) and
Deep Learning (DL) have transformed various fields by pro-
viding innovative solutions to complex problems once con-
sidered unsolvable. These technologies have revolutionized
applications across various scientific domains [1]. Notably, in
fluid dynamics, ML and DL have introduced groundbreaking
methods that enhance our ability to understand and tackle intri-
cate challenges, underscoring their profound and far-reaching
impact [2].

Traditional fluid flow analysis relies on the Navier-Stokes
equations (NSE), which, despite their strong theoretical foun-
dation, are time-consuming and computationally intensive,
particularly for complex scenarios. The limited parallelizabil-
ity and iterative nature of algorithms for solving partial differ-
ential equations (PDEs) further complicate achieving conver-
gence and efficient parallelization in real-world, non-convex
problems [3]. Recent developments in fluid flow prediction
have increasingly shifted toward data-driven methodologies,
with deep learning-based surrogate models becoming a robust
alternative to CFD simulations. These models are particularly
effective in predicting complex, nonlinear fluid behavior across

diverse Reynolds numbers, geometries, and flow conditions.
They achieve faster convergence and enhanced computational
efficiency with minimal compromise on accuracy. By leverag-
ing sufficiently large datasets, surrogate models can recognize
patterns without relying on explicit physical laws, making
them particularly valuable for modeling turbulent, unsteady,
or multiphase flows where traditional methods struggle. These
innovations enhance fluid dynamics research and enable more
sophisticated and efficient solutions for critical engineering
applications [4].

The integration of data-driven surrogate models with deep
learning has significantly enhanced both the precision and
efficiency of fluid dynamics simulations. Nonetheless, chal-
lenges such as model generalization and the handling of high-
resolution, large datasets persist, as these models must reliably
predict outcomes under novel or previously unseen conditions
across a diverse range of fluid flow scenarios. Achieving this
level of adaptability requires sophisticated model architectures
capable of accurately capturing the intricate flow dynamics
observed in real-world conditions. As a result, these models
often become highly complex, with millions of trainable
parameters, necessitating the use of multiple GPUs to optimize
training time and computational resources effectively [5].

we propose an advanced U-Net-based surrogate model
specifically designed to predict complex fluid dynamics sce-
narios. We have employed highly optimized multi-GPU train-
ing strategies, such as DeepSpeed ZeRO, to maximize compu-
tational efficiency. The primary research goals and objectives
of this work are as follows:

o Develop an advanced U-Net-based surrogate model and
train it on a multi-GPU setup using data and model
parallelism techniques to predict complex flow scenarios.

e Compare the performance of the U-Net model with
Fourier Neural Operators when trained on a large dataset
of 10,000 samples.

« Evaluate the advanced surrogate model against traditional
CFD solvers by assessing convergence time, accuracy,
and resource utilization, including energy consumption.

The rest of the paper is organized as follows: Section 2
explains the training data generation process and preprocessing
techniques. Section 3 offers an overview of the standard U-Net
model, emphasizing the enhancements in the advanced U-Net.
Section 4 discusses the necessity of multi-GPU training and
compares the model’s results. Finally, Section 5 concludes the
paper and outlines future research directions.
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II. TRAINING DATA GENERATION:

Our study adopts a comprehensive approach to generate
generalized datasets for CFD applications, emphasizing the
need for geometric and positional diversity as underscored by
[6]. Utilizing Python 3.8 and CadQuery 2.1, we employed a
custom-developed Python script to generate a diverse array of
three-dimensional shapes within a rectangular channel domain
[7]. The shapes include cubes, cuboids, cones, cylinders,
spheres, torus, and wedges, varying in size and orientation
to create a versatile dataset suitable for a broad range of CFD
studies.

To delineate regions within and around these geometries, we
used signed distance functions, which provide spatial context
for the geometries to the network. For simulations, we utilized
the in-house developed WalBerla software, which is based on
the lattice Boltzmann method (LBM) to generate true labels
for supervised training. The automation script, coupled with
the Fritz HPC clusters, facilitates the parallel generation of
numerous simulations across multiple cores.

For data preparation, we applied rigorous preprocessing
techniques, including standard scaling and min-max normal-
ization. We observed that standard scaling was more effective
for our application compared to min-max normalization. The
signed distance functions will be used as inputs for the U-Net
model, while the WalBerla simulations will provide the true
labels for supervised learning, ensuring precise and efficient
model training. In total, we have generated 10,000 training
samples for extensive training of the advanced U-Net model.

For simulations, a D3Q27 lattice model, employing a cumu-
lant collision operator, was utilized for the simulations. These
simulations were conducted within a domain of size 2048
x 512 x 512. The Reynolds number was varied from 50 to
10,500.

III. METHODOLOGY

In the following section, we provide a brief overview of the
standard U-Net, outlining its key components, and explore how
the Advanced U-Net extends these foundations with significant
enhancements.

A. U-Net

The U-Net architecture, initially designed for biomedical
image segmentation, is known for its effectiveness in complex
tasks due to its U-shaped structure with contracting and
expanding paths [8]. It has since been enhanced and adapted,
including to 3D volumes and various fields like fluid flow
prediction [9], demonstrating its broad versatility and impact.

Figure 1 illustrates the standard U-Net architecture, distin-
guished by its unique U-shaped configuration that includes an
encoder (contracting path), a bottleneck, and a decoder (ex-
panding path). This innovative design is notable for employing
an extensive number of feature channels in the upsampling
section, facilitating the propagation of contextual information
to higher resolution layers.

The U-Net architecture comprises three main sections: the
encoder, the bottleneck, and the decoder.
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Figure 1. Schematic diagram of standard U-Net architecture

o Encoder: This initial stage, featuring convolutional layers,
max pooling, activation functions, and batch normaliza-
tion, reduces spatial dimensions while enhancing feature
depth, and capturing critical and abstract features.

« Bottleneck: At the network’s lowest resolution, the bot-
tleneck connects the encoder and decoder, using multiple
convolutional layers to handle abstracted data and inte-
grate complex contextual information.

o Decoder: This stage reconstructs high-resolution data by
increasing spatial resolution and reducing feature chan-
nels. It includes skip connections that merge upsampled
outputs with encoder feature maps, reintroducing spatial
details for accurate predictions.

B. Advanced U-Net Architecture and Its Component

In the following section, only the improved features over
standards U-Net architecture are highlighted.

1) Repeating selected Encoder Layers without down sam-
pling: The use of repeated encoder layers without down sam-
pling in advanced U-Net architectures offers several significant
benefits. Firstly, it enhances feature extraction by allowing the
network to iteratively process and refine feature information.
This iterative approach helps capture both low-level details
and high-level abstractions, resulting in a more nuanced and
accurate representation of the input data. Secondly, maintain-
ing consistent spatial dimensions and input/output channels
throughout these layers preserves important spatial details.
This preservation is crucial for accurately representing the
structure and features of the input, which is essential for tasks
that require detailed spatial understanding. Additionally, the
repeated encoder layers improve the network’s contextual un-
derstanding by enabling it to build a more comprehensive view
of complex features and relationships within the data. This
leads to more precise and detailed interpretations, enhancing
the overall effectiveness of the network.

2) Increasing the number of input layers and numbers
of channels: Incorporating additional input layers and in-
creasing the number of channels in a convolutional neural
network significantly enhances its ability to process complex
data. This increased depth enables the network to capture
and analyze finer details, leading to a more sophisticated
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understanding of intricate features. By scaling the number
of channels in encoder layers up to 2048 or even 4096, the
network achieves a hierarchical feature representation. Initial
layers focus on basic patterns, while deeper layers with more
channels interpret these patterns in nuanced contexts, revealing
detailed structures and semantic information. This hierarchical
approach is particularly advantageous in applications such
as high Reynolds number flows, where understanding high-
frequency patterns and complex interactions is crucial.

However, expanding the network’s depth and channel count
introduces challenges, such as an increased risk of overfitting
and higher demands on computational resources and memory
during training. Managing these complexities requires careful
balancing of network architecture to optimize both perfor-
mance and practical feasibility.

3) Varying Kernel Sizes: The selection of kernel size is
crucial in convolutional neural networks (CNNs) for effective
feature extraction. Smaller kernels, such as 3x3x3, are adept at
capturing fine details, such as small eddies and turbulent flow
scales, which is essential for accurately predicting intricate
flow scenarios. Medium-sized kernels, such as 5x5x5 and
7x7x7, strike a balance by capturing a wider range of patterns
and contextual information, thereby enhancing the model’s
versatility. Larger kernels, like 9x9x9, are employed to cover
more extensive portions of the input, enabling the identification
of large-scale patterns and structural elements while maintain-
ing global consistency in predictions. By incorporating a range
of kernel sizes, CNNs can effectively capture both detailed
and broad features, which is particularly advantageous for U-
Net models in performing comprehensive data analysis. This
varied approach enhances the network’s capability to interpret
complex input data across multiple scales.

4) Use of residual connection in the encoder and decoder
Block: Residual connections play a crucial role in deep
networks by mitigating the vanishing gradient problem, which
can impede training by causing gradients to diminish through
multiple layers. They preserve information by maintaining
a continuous flow across layers, merging initial inputs with
subsequent outputs to retain essential features. This capa-
bility enhances model convergence, as residual connections
enable more effective gradient flow and faster convergence.
Additionally, these connections are vital for constructing deep
architectures, allowing networks to learn complex patterns
without the issues typically associated with deeper models.

5) Use of advanced attentions Mechanism: Convolution
Block Attention module: The Convolutional Block Attention
Module (CBAM) [10] significantly enhances neural networks
by focusing attention sequentially on both channel and spatial
dimensions. First, the Channel Attention module compresses
spatial information into a channel descriptor using global av-
erage pooling, which highlights important features and applies
a ReLU activation followed by sigmoid to generate a channel
attention mask. This mask refines feature importance on a
channel-by-channel basis. Subsequently, the Spatial Attention
module identifies critical spatial regions by pooling features
across channels and combining them with a convolutional

layer to create a spatial attention map, which directs the
network’s focus to essential areas. This dual attention mech-
anism enables CBAM to selectively emphasize vital features,
improving the network’s ability to represent complex data and
enhance overall performance.

IV. MULTIPLE GPU TRAINING OF ADVANCED U-NET
MODEL

The enhanced model iteration offers a significant improve-
ment over the standard U-Net by incorporating additional
encoder layers and expanding the number of channels, leading
to enhanced feature extraction and prediction accuracy. While
retaining the core methodologies of the traditional U-Net, this
iteration increases both depth and analytical capability. It inte-
grates the Convolutional Block Attention Mechanism (CBAM)
and introduces residual connections within and between the
encoder and decoder blocks, optimizing data processing and
learning efficiency. As a result, the number of trainable pa-
rameters has increased from 80 million in the standard U-Net
to 511 million in advanced U-Net, contributing to the model’s
complexity [11] [12].

Due to these advancements, the heightened computational
demands pose challenges for training on a single GPU. The
increased model complexity necessitates substantial processing
power and optimal use of high-performance computing (HPC)
resources. To address these challenges and enhance training
efficiency, the deployment of multiple GPUs is essential. Em-
ploying PyTorch’s Distributed Data Parallel (DDP) alongside
DeepSpeed’s ZeRO-2 [13] model parallelism strategy has fa-
cilitated effective parallel processing, resulting in a significant
reduction in training time—approximately 4-5 times faster per
epoch. This approach has also been instrumental in identifying
the optimal resources required for training the advanced U-Net
model.

A. Results and Analysis of Advanced U-Net Model:

1) Model Capacity Evaluation through Overfitting: In deep
learning, particularly for complex tasks like predicting fluid
velocity, assessing a model’s capabilities is essential before
engaging in extensive training. One effective method is to test
the model’s ability to overfit on a small, representative dataset.
This approach helps determine if the model can accurately
capture complex data patterns by minimizing loss on this
subset. For evaluating a U-Net architecture, the model is
deliberately overfitted on a carefully selected small dataset to
drive the loss near zero compared to true labels, indicating its
capability to replicate intricate details accurately. Successful
overfitting, evidenced by significantly reduced loss, suggests
that the model can encapsulate detailed flow dynamics. If
the model fails to achieve satisfactory loss reduction, it may
require architectural enhancements.

In this study, we trained both the standard and an advanced
U-Net model for 500 epochs on a relatively small dataset
consisting of 16 samples. The performance of the models
was evaluated using the L1 loss, which measures the absolute
difference between the predicted labels and the ground truth.
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Figure 2. Comparison of Target Velocity, Predicted Velocity, and Absolute
Error for each component, based on a Model trained with 16 samples for
Standard U-Net Model
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Figure 3. Comparison of Target Velocity, Predicted Velocity, and Absolute
Error for each component, based on a Model trained with 16 samples for
Advanced U-Net Model

The standard U-Net model yielded an L1 loss of 0.32, whereas
the advanced U-Net achieved a markedly lower L1 loss of
0.09.

In terms of predictions, the standard U-Net model exhibited
some resemblance to the target velocity fields but was unable
to capture the finer details of the flow as seen in Figure 2. Its
predictions for the X, Y, and Z velocity components appeared
overly smoothed, with regions of high-velocity present but not
sharply defined. For example, in the predicted X-velocity field,
the regions with higher velocity values are visible, but their
contours are not well defined, resulting in an oversimplified
representation of the complex flow behavior. This lack of
precision indicates the base model’s limitations in capturing
intricate velocity variations, particularly in areas where the
flow is rapidly changing.

Conversely, the advanced U-Net model produced predic-
tions that were much more aligned with the ground truth.
Its predictions for the X, Y, and Z components were sharper
and better represented the spatial complexity of the flow,
especially in regions with high-velocity magnitudes as seen in
Figure 3. Notably, the X-velocity predictions of the advanced

model show a much closer match to the target, especially in
areas where the flow exhibits more complex behavior. This
highlights the advanced model’s superior ability to capture
finer details and dynamic variations in the velocity fields.

These results suggest that the modifications introduced in
the advanced architecture—such as increasing the number
of channels and encoder layers, as well as integrating an
advanced attention mechanism—contribute significantly to its
improved performance. Further evidence of the advanced U-
Net’s superior predictive capability is illustrated in the velocity
plots comparing true labels to predictions, as presented in
Figures 2 and 3.

Evaluating a model’s capacity through overfitting on a small
dataset effectively assesses its initial ability to predict flow
with high accuracy. However, this method does not evaluate
the model’s performance on unseen data. Therefore, after con-
firming the model’s capacity, it is crucial to apply regulariza-
tion techniques during training on larger, more comprehensive
datasets to prevent overfitting. This approach helps maintain
the model’s appropriate level of complexity and optimizes
its effectiveness, thereby avoiding the inefficiencies associated
with overly complex models. Additionally, to ensure robust
performance across various flow scenarios, including both
laminar and turbulent conditions, the model must be trained
on an extensive dataset that encompasses all these variations.
Only a sufficiently large and diverse training dataset can enable
the model to learn and generalize effectively across different
flow patterns.

2) Evaluation of the Advanced U-Net Model with 1000
samples: We trained both the standard U-Net and the advanced
U-Net models on a relatively large dataset comprising 1,000
samples to evaluate their performance under more realistic
conditions. While the standard U-Net model was able to
make predictions of the velocity fields, the quality of these
predictions was comparatively poor when evaluated against the
advanced U-Net model as seen in Figure 4 and 5. The standard
model struggled to accurately capture the flow dynamics,
particularly in regions with more complex or high-velocity
patterns, leading to oversimplified predictions that lacked
detail and precision.

In contrast, the advanced U-Net model showed improve-
ments in its predictive capabilities. However, its performance
was still below what might be expected given its architectural
advantages. Although it did not overfit the data, the predic-
tions were not as sharp or detailed as those observed in the
overfitting experiments, where the model had demonstrated
the ability to perfectly capture the flow patterns on a smaller
dataset. This performance gap suggests that the advanced
model, while more powerful, requires further training on an
even more extensive and diverse dataset to fully realize its
predictive potential and generalize well to unseen data.

One of the key factors contributing to these results is that
the model needs to encounter a wide range of scenarios during
training in order to develop a more robust understanding of
flow dynamics. With a limited number of samples, even though
1,000 represents a substantial increase over smaller datasets,
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Error for each component, based on a Model trained with 800 samples and
validated against 200 samples for standard U-Net Model
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Figure 5. Comparison of Target Velocity, Predicted Velocity, and Absolute
Error for each component, based on a Model trained with 800 samples and
validated against 200 samples for Advanced U-Net Model

the model has not yet been exposed to all possible variations in
the flow patterns. This lack of comprehensive exposure results
in suboptimal generalization, especially when confronted with
new, unseen data.

While the model began to learn the flow dynamics, its
prediction accuracy was notably lower compared to the per-
formance observed during the overfitting experiments. This
discrepancy highlights a gap between the model’s ability to fit
a small dataset and its performance on a larger, more diverse
set. Figure 5 illustrates the model’s predictions when trained
on the 1,000 samples.

V. CONCLUSION AND FUTURE WORK

In this work, we developed an advanced U-Net architecture
for fluid flow prediction in complex geometries and domains.
We conducted a comparative analysis between the advanced
U-Net and the standard U-Net, focusing on overfitting exper-
iments and training performance on a dataset of 1,000 sam-
ples. The architectural improvements in the advanced U-Net
enabled it to capture intricate flow patterns more effectively,
resulting in a 71% improvement in overfitting performance

compared to the standard U-Net. Additionally, while neither
model performed as expected on the 1,000-sample dataset, the
advanced U-Net demonstrated superior accuracy. These results
underscore the need for further training on a larger dataset to
fully realize the potential of the advanced U-Net model.

While working with the advanced U-Net model, we en-
countered several challenges. One significant issue is that,
even though the model is adept at predicting complex fluid
flows, it struggles to generalize effectively when trained on
larger datasets. This difficulty underscores the importance of
implementing careful and specialized training strategies to
ensure accurate performance across extensive datasets.

Another issue arises when an object within a channel is
relatively small, as the flow variations become concentrated
around the object. In contrast, the larger portions of the
channel exhibit minimal variation and are relatively simpler.
This uneven distribution of flow complexity can complicate
the evaluation of model performance. Specifically, using tra-
ditional loss metrics like the L1 error can produce misleading
results. The L1 error might indicate a falsely reduced error
if the model accurately predicts the simpler, less complex
regions of the channel while failing to capture the intricate
flow patterns near the object. This is because the accurate
predictions in the less complex regions can overshadow the
errors in the more complex regions near the object.

To mitigate this problem, one approach is to modify the
error calculation by incorporating weights that emphasize
the accuracy of predictions near the object. By prioritizing
errors in these critical regions, this weighted error calculation
helps to avoid misleadingly low error values and provides a
more accurate assessment of the model’s performance around
complex areas.

In future we plan to extent the work with following aspects,

1) Training on a Larger Dataset: To thoroughly assess the
generalization capability of the advanced U-Net model, we
plan to train it on progressively larger datasets, scaling up
to 10,000 samples. The aim of this step is to systematically
test the model’s ability to learn complex flow dynamics when
exposed to a broader range of scenarios. A larger dataset will
help mitigate the potential for overfitting and allow the model
to generalize better to unseen cases.

In addition to this, we will conduct an ablation study to
analyze the contributions of different architectural elements
(e.g., the number of encoder layers, attention mechanisms,
and increased channels). This will allow us to determine the
importance of each feature and guide further optimization.
Specifically, we will remove or alter these components one at
a time to observe their direct impact on prediction accuracy,
training time, and error rates. Such an approach will provide
insight into which elements are critical for performance and
which might be redundant or unnecessary.

2) Performance Comparison and Hybrid Model Develop-
ment: We will conduct a detailed performance comparison
between the advanced U-Net and the Fourier Neural Operator
(FNO). The rationale behind comparing these models stems
from their fundamentally different architectures: the U-Net ex-
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cels in capturing local spatial features due to its convolutional
nature, while the FNO is designed to efficiently model global
patterns using Fourier transforms. This comparison will focus
on aspects such as:

e Accuracy in capturing fine flow structures (especially in
complex, high-velocity regions).

« Computational efficiency, particularly in terms of training
time and resource consumption.

o Scalability with respect to dataset size and prediction time
for large-scale problems.

Based on the insights from this comparison, we propose the
development of a hybrid model that integrates the strengths of
both architectures. The hybrid model will leverage U-Net’s
ability to accurately capture local features with the FNO’s ca-
pacity to model large-scale, global flow dynamics. Specifically,
we envision an architecture that uses U-Net layers for feature
extraction at finer scales, followed by FNO layers to capture
overarching patterns and relationships. This approach should
improve both the accuracy and efficiency of the predictions,
especially in challenging fluid dynamics simulations.

3) Evaluation of Surrogate Models: We will evaluate the
performance of the surrogate model (based on the advanced
U-Net or the proposed hybrid model) against traditional CFD
methods. This evaluation will focus on several key perfor-
mance indicators:

o Accuracy: We will measure the difference in prediction
accuracy between the surrogate model and CFD simula-
tions, focusing on both average error and maximum error
in critical flow regions.

o Convergence time: Surrogate models are expected to
converge much faster than conventional CFD methods.
We will document and compare convergence times, par-
ticularly in simulations requiring iterative solutions over
complex domains.

o Computational resources: The analysis will include de-
tailed assessments of the computational power required
by each approach, such as CPU/GPU usage, memory
consumption, and overall energy expenditure. The goal is
to quantify the potential cost savings of using surrogate
models.

In addition, we will explore real-time applications of the
surrogate model in industrial settings, where rapid simulations
are often required for optimization, design iteration, or oper-
ational decision-making. The ability of the surrogate model
to provide high-fidelity predictions in a fraction of the time
typically required by CFD will be a significant aspect of this
evaluation.
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