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Abstract—The paper introduces a foundational approach to mo-
torsports scene understanding by investigating the role of synthetic
data generation in advancing scene understanding for high-speed
broadcast scenarios. Utilizing the CARLA (Car Learning to Act)
simulation environment, the study constructs a high-fidelity dataset
incorporating diverse lighting conditions, occlusions, and dynamic
camera perspectives to enhance model generalization. A multi-
stage data refinement pipeline is introduced to mitigate the impact
of extreme occlusions and irrelevant samples while preserving
the complexity of real-world challenges. Possible applications
include 3D real-world understanding from a single monocular 2D
image, which could open up interesting possibilities for augmented
reality in broadcast media by allowing seamless integration of
virtual elements, interactive graphics and dynamic visual effects,
enhancing storytelling, audience engagement, and production
flexibility. The efficacy of the dataset is further evaluated via
transfer learning to the real-world domain, with the model
pretrained on synthetic data demonstrating a significantly superior
performance compared to its counterpart.

Keywords-computer vision; augmented reality; synthetic data
generation; transfer learning.

I. INTRODUCTION

Computer Vision (CV) algorithms based on Artificial Intel-
ligence (AI) are revolutionizing the sports industry, offering
advanced analytical capabilities that enhance performance eval-
uation, officiating accuracy, and fan engagement. By leveraging
AI-driven techniques, such as player tracking, ball trajectory
estimation and action recognition, these algorithms provide
real-time insights that were previously considered unattainable
[1]. Coaches and analysts can use this technology to refine
strategies, optimize training regimens and prevent injuries
by closely monitoring player movements and biomechanics.
Referees benefit from automated decision-making tools that
minimize human error and ensure fair play, while broadcasters
utilize computer vision to generate augmented replays, statisti-
cal overlays and personalized viewing experiences. Yet, while a
noticeable surge of interest towards these techniques has been
observed in a multitude of sports [2]–[4], the specific field
of motorsports has traditionally been regarded as exclusively
linked to industrial applications, with minimal to no scholarly

research available in the literature addressing the analysis and
comprehension of event dynamics and racing scenarios.

Therefore, this study was undertaken to address this gap by
introducing a synthetic dataset that includes 3D information
on ABB FIA Formula E Gen3 racing car models in urban
environments, considering as underlying objective to establish
a foundation for advancing research in motorsports scene
understanding.

The structure of the paper is as follows: Section II reviews
relevant literature pertinent to the present study; Section III
outlines the methodology and technical details employed
in constructing the synthetic dataset, discussing both its
advantages and limitations; Section IV assesses the reliability of
the dataset by examining synthetic-to-synthetic and synthetic-
to-real performance, exploring potential applications of the
work; and Section V concludes the paper, summarizing the
findings and suggesting avenues for future research.

II. RELATED WORK

The increasing popularity of AI, particularly in subfields
like Machine Learning (ML) and Deep Learning (DL), has
led to a significant challenge in the limited size (or lack)
of training datasets. This limitation is primarily due to high
workloads and privacy concerns, which hinder the model’s
ability to generalize effectively [5]. Synthetic Data Generation
(SDG) arose as a viable solution to address such an issue: by
generating artificial data and labels that closely emulate au-
thentic samples, it alleviates constraints imposed by traditional
datasets. This approach proves highly valuable when real data is
insufficient, costly to label or exhibits biased distributions, and
its advantages go beyond cost reduction, contributing to reduced
computational time and addressing bias in data distribution.
Eventually, synthetic data can also be generated on the fly
during training, eliminating the need for storage, and can be
made to be as photorealistic as possible, allowing models to
transfer from synthetic training sets to real test sets.
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A. Synthetic data generation for sports

Cerqueira and Kenwright [6] introduced a novel approach to
CV-based feature extraction in football by leveraging entirely
synthetic training data. Differently from conventional machine
learning models in sports analytics that typically depend
on real-world images, such a study investigates instead the
feasibility of training machine learning models exclusively on
synthetic datasets generated through computer graphics, with
the objective of minimizing the domain gap between synthetic
and real-world data [7]. By generating high-fidelity, labeled
synthetic images of football matches and by incorporating a
diverse range of viewpoints, lighting conditions, occlusions,
and visual artifacts, the authors demonstrate that models trained
exclusively on synthetic data can generalize effectively to real-
world football imagery, accurately identifying pitch markers
and player positions. The study validates the potential of
synthetic data to address key limitations of real-world datasets,
demonstrating its efficacy in the application of synthetic data
for sports analytics.

Bhargavi et al. [8] demonstrated that the integration of syn-
thetic data with lightweight deep learning models can achieve
state-of-the-art results in jersey number identification while
minimizing the need for extensive manual annotations or large-
scale datasets. The proposed method involves an initial step of
detecting and segmenting players from video frames using a
pretrained person detection model [9]. Subsequently, a human
pose estimation model [10] is employed to localize jersey
numbers by identifying torso key points, thereby obviating
the need for manual annotation of bounding boxes. Given the
constraints of real-world datasets in terms of sample size and
class imbalance, the study introduces two synthetic datasets –
Simple2D and Complex2D.

Qin et al. [11] presented SoccerSynth-Detection, a novel syn-
thetic dataset specifically designed for soccer player detection,
addressing the limitations of existing real-world datasets, such
as SoccerNet-Tracking [12] and SportsMoT [13]. To construct
the dataset, the authors augmented a previously developed
soccer stadium simulator by integrating a central camera with
configurations derived from real-world match footage. They
employed assets from the Unreal Engine Marketplace to model
player appearances and animations, while movement logic
was implemented through AI-controlled Behavior Trees. The
simulation environment was further enhanced by incorporating
dynamic lighting, randomized textures and motion blur, thereby
mitigating the domain gap between synthetic and real-world
data to improve model generalization. In the transfer learning
experiment, a model trained on SoccerSynth-Detection was
evaluated against real-world datasets. While it exhibited a
slight reduction in AP50 performance [14] compared to real
datasets, it demonstrated superior results in more stringent
detection settings (mAP50-95), particularly in handling motion
blur, suggesting that the synthetic dataset can either match or
surpass real datasets under specific conditions.

B. Scene understanding in motorsports

Boiarov et al. [15] presented RaceLens, a novel application
that utilizes deep learning and computer vision models to auto-
matically analyze racing photos. It is designed to maximize the
potential of racing photographs by identifying and interpreting
crucial elements in the images, such as detecting racing cars,
recognizing car numbers, and detecting and quantifying car
details. The proposed method employs a Metric Learning [16]
approach to tackle the task, where the main encoder model
takes a 3-channel image as input and outputs a 1-D vector
representing the color scheme of the car in the image. The
embeddings are trained to be closer to each other for images
of the same class and farther apart for different classes, using a
triplet loss and a fully connected layer with cross-entropy loss.
During the inference phase, clusters can be created using the
embeddings, and the so-called Car Number Recognition Model
[17] is utilized to assign the corresponding team names to the
clusters. The method allows for clustering of images based on
color scheme and uses the Car Number Recognition Model to
assign team names to the clusters, enabling the affiliation of cars
with their respective teams. It has been deployed for NASCAR
teams and has processed over 200 race events, with an average
of 7000 photos per event, and has achieved high accuracy in
its analysis, with an average percent of photos without cars
being less than 1%. The framework uses a combination of
models, including Keypoint R-CNN with ResNet-50 backbone
[18], and has been evaluated using COCO metrics, achieving
high average precision and recall.

Tyo et al. [19] presented the Racer Number Dataset (RnD),
a novel and challenging dataset aimed at advancing research
in Optical Character Recognition (OCR) within the domain
of off-road motorsports. The dataset comprises 2,411 images
collected from professional motorsports photographers across
50 distinct off-road competitions, encompassing a total of
5,578 manually annotated bounding boxes that delineate
visible motorcycle racer numbers. These images present a
range of conditions that pose significant challenges to OCR
systems, including occlusions caused by mud, motion blur,
glare, complex backgrounds, and non-standardized fonts. To
assess the efficacy of contemporary OCR techniques in this
domain, the authors conducted a benchmarking study using
two state-of-the-art OCR models [20][21] – both in their pre-
trained configurations and after fine-tuning on the RnD dataset –
underscoring the necessity for domain-specific OCR techniques
that are robust to extreme visual conditions, particularly in the
context of motorsports.

Tyo et al. [22] further extended their work by presenting
the Muddy Racer re-iDentification Dataset (MUDD), similarly
designed to advance research in computer vision applications
for off-road motorsports. The MUDD dataset consists of 3,906
images depicting 150 distinct riders across ten competitions,
specifically curated for the task of rider re-identification
(ReID). In line with their previous findings, empirical results
underscore the necessity for domain-specific adaptations to
enhance OCR and ReID performance in real-world motorsports

49Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-330-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIMEDIA 2025 : The First International Conference on AI-based Media Innovation



applications, with benchmark evaluations conducted using state-
of-the-art OCR and ReID models [23] revealing that existing
pre-trained models perform inadequately in such a domain.
Promising results are nonetheless retrieved via a Contrastive
Multiple Instance Learning (CMIL) framework [24] which
introduces a new formulation that enables contrastive learning
at the bag level: instead of focusing on individual image
representations, CMIL optimizes entire bag representations,
encouraging similar bags to have closer representations while
pushing apart dissimilar ones.

III. METHOD

CARLA (Car Learning to Act) is an open-source urban
driving simulator specifically designed to facilitate research
in autonomous driving [25]. Developed through a collab-
oration between Intel Labs, the Toyota Research Institute,
and the Computer Vision Center in Barcelona, it provides
a sophisticated simulation environment for the development,
testing, and validation of autonomous driving systems. A
distinguishing characteristic of CARLA is its fully open-
source nature, which includes an extensive collection of freely
available digital assets, encompassing urban layouts, vehicles,
pedestrians, and environmental elements. The platform enables
the customization of sensor configurations, incorporating RGB
cameras, depth sensors, and semantic segmentation, thereby
allowing for comprehensive experimentation with perception
systems. Furthermore, CARLA offers a dynamic simulation
environment, supporting variable weather conditions, lighting
scenarios, and traffic situations involving both autonomous and
non-player vehicles as well as pedestrians, thus ensuring a
high degree of realism and adaptability. The interested reader
is recommended to discover more about CARLA in [26].

The rationale behind this work is that pose estimation for
rigid bodies provides a fundamental approach to inferring three-
dimensional (3D) spatial relationships from two-dimensional
(2D) image data, enabling a deeper understanding of object
orientation and motion within a scene. By leveraging key-
point detection and geometric transformations, pose estima-
tion algorithms recover essential structural information, with
consequent mapping of 2D projections to 3D coordinates
through Perspective-n-Point (PnP) methods [27] leading to
spatial understanding. Considering broadcasting applications,
a 6-keypoints pose representation for race cars is proposed,
selecting those keypoints that remain predominantly visible
under typical viewing conditions. These keypoints include the
four wheels, the top of the front wing, and the camera mount,
ensuring robust and consistent pose estimation in dynamic
racing environments.

A. Dataset preparation

Since originally developed for autonomous driving scenarios,
the first extension required for modeling realistic motorsports
images in CARLA consists in decoupling recording sensors and
cameras from the ego vehicle to simulate possible broadcasting-
level panoramic views. This is obtained by synchronously
moving all cameras and sensors from one vehicle to the other

at each world tick by applying a geometric transformation Tτ

to the camera position cτ and orientation ρτ at tick time τ ,
i.e., [

c
ρ

]
τ+1

= Tτ

([
c
ρ

]
τ

)
(1)

where the geometric transformation is computed in such a way
that

Tτ = T̄τ + Xτ (2)

with T̄τ being the transformation that would precisely bring
the camera to point towards the chosen vehicle, and Xτ is the
instantiation at tick time τ of possible noisy operating camera
movements observable in the real setting, such as zoom in,
zoom out or random rotations that force the camera to drift
away from always having the target exactly at the center of
the image. Qualitatively, the optimal results were achieved by
configuring the camera’s field of view to 90° and letting T̄τ

positioning it along a circular trajectory with a radius of 7.5
meters, centered on the target vehicle’s position. The camera
was placed at a height of 3.5 meters above ground level and
oriented directly toward the vehicle, irrespective of the specific
point along the circumference. The transformation noise Xτ is
introduced to simulate zooming effects by applying a random
shift within the interval [−2, 2] meters to both the radius
and height. Additionally, imprecision in camera orientation
is incorporated by applying random variations in the yaw and
pitch angles within the interval [−15◦, 15◦] and in the roll
angle within the interval [−5◦, 5◦].

Three distinct lighting conditions – noon, sunset, and evening
– were considered, with 1, 500 images generated for each setting,
resulting in a total of 4, 500 frames at a resolution of 1920×
1080 pixels.

B. Data refinement

One of the primary advantages of utilizing synthetic data is
the availability of precise ground-truth information regarding
the 3D spatial distribution at every stage. However, data
processed by neural networks typically resides within the
camera coordinate system, necessitating a transformation
pipeline between the real 3D world and its abstracted 2D
sensor representation. Figure 1 provides a step-by-step visual
representation of the proposed approach discussed here:

A) the RGB frame is captured at world tick time τ ;
B) real-world coordinates are employed to project the 3D

bounding box coordinates onto the image plane;
C) an initial estimation of the 2D bounding boxes is obtained

by identifying the extreme coordinates of the original 3D
bounding boxes;

D) these preliminary 2D bounding boxes are further refined by
computing the minimal enclosing rectangle of the vehicle’s
mask convex hull, extracted through semantic segmentation;

E) pose and keypoint visibility are filtered using a point cloud
generated by a LiDAR sensor, distinguishing visible points
from occluded ones relative to the camera perspective;

50Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-330-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIMEDIA 2025 : The First International Conference on AI-based Media Innovation



Figure 1. Qualitative visualization of the iterative SDG pipeline in CARLA.

F) the final dataset consists of the refined 2D bounding
boxes, along with the corresponding poses and keypoints’
visibility.

To minimize the presence of pure background images in the
dataset, frames in which the relevant pixel area—defined as
the number of pixels labeled by semantic segmentation as
belonging to the actor of interest—was less than 1% of the
total image size were automatically discarded during the data
generation pipeline. Likewise, a maximum distance of 150
meters between an actor and the camera was established as a
threshold for determining its relevance. A final criterion for
actor inclusion was based on the ratio between its pixel area and

the size of its refined 2D bounding box: if this ratio fell below
10%, the actor was automatically excluded by the SDG pipeline.
Despite being qualitatively determined, these thresholds were
kept very loose in order to just remove noisy information, such
as complete occlusions or extreme aspect ratios and bounding
box sizes. With respect to keypoint visibility, a threshold of 0.3
meters was established. More in detail, a spherical region with
this radius, centered at the actual 3D location of the keypoint,
is defined in the point cloud: if no other point is detected
within such neighborhood, the keypoint is considered as not
visible.
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Figure 2. Validation mAP50-95 box (B) and pose (P) metrics gap on real data with and without transfer learning from the proposed synthetic dataset.

C. Limitations

Given the significant variability in camera orientations
and the impact of partial environmental occlusions, certain
deficiencies of such a fully automated approach must be
acknowledged. First, when refining the 2D bounding box via
semantic segmentation, it is assumed that the convex hull of
the most frequently labeled vehicle pixels corresponds to the
actor of interest. This assumption is generally robust, but some
care has to be taken in those rare cases of strong occlusions
among vehicles, where mis-classifications might occur.

Second, in order to build the point cloud for visibility
computation, a static ray-casting should ideally be set from the
camera perspective. This is not exactly what is done by CARLA
LiDAR sensor [26], which behaves as a solid approximation
but few (ideally not visible) points might still be present in the
cloud. For such a reason, a strategy of hidden point removal
[28] is implemented: by identifying the points located on the
convex hull of a transformed cloud, visibility can be determined
without neither the need for surface reconstruction nor normal
estimation [29].

IV. EVALUATION AND DISCUSSION

This section presents empirical results obtained using the
dataset introduced thus far. Given the inherently fast-moving
dynamics of motorsports scenarios, the You Only Look Once
(YOLO) framework [30][31] has been chosen to simulate
inference under real-time constraints. From the entire dataset,
3,150 images (70%) were allocated for training, 900 images
(20%) for validation, and 450 images (10%) for testing.

More in detail, the whole training process was executed on a
single NVIDIA Tesla V100 SXM2 GPU (32 GB, 5120 CUDA
cores), inside a Python 3.7.7 environment with PyTorch 1.31.1
for CUDA 11.6. A YOLOv8x model was trained for 100 epochs
with mixed precision on batches of eight 1280×1280 resized
images. A cosine scheduler was set, progressively reducing the
learning rate from its initial value of 1e-4 to a hundredth of it.

Table I and Table II highlight the best COCO metric values
– on both validation and test splits – for vehicle bounding
box detection and keypoints pose estimation, respectively.
Concerning such results, a peculiar disparity between precision
and recall is evident, likely attributable to a non-negligible
presence of false negatives, as inferred from the high precision
value. The suboptimal performance observed on the dataset
may partially stem from the loosely-defined exclusion criteria
applied during its construction. If the exclusion process fails
to properly eliminate all borderline cases, i.e., ground truth
vehicles under challenging occlusions or strong out-of-frame –
the overall recall metric may as results be negatively impacted
by the dataset’s compromised quality rather than the inherent
limitations of the model itself. Yet, while such exclusion
criteria may introduce very challenging scenarios for the model,
this characteristic can be seen as an advantage rather than a
deficiency. By retaining most borderline cases, the dataset better
reflects the complexities of real-world scenarios, where perfect
visibility and ideal conditions are rarely guaranteed. Instead of
filtering out these challenging instances, their inclusion provides
a more comprehensive evaluation of the model’s robustness and
generalization ability. This approach ensures that the model
is trained and tested on a diverse range of conditions, ulti-
mately possibly leading to improved performance in practical
broadcasting applications where imperfect data is the norm.

TABLE I. SYNTHETIC DATASET METRICS FOR BBOX DETECTION.

Split PB RB mAP50B mAP50-95B
Validation 0.952 0.793 0.897 0.793
Test 0.962 0.773 0.884 0.784

TABLE II. SYNTHETIC DATASET METRICS FOR POSE ESTIMATION.

Split PP RP mAP50P mAP50-95P
Validation 0.924 0.728 0.842 0.816
Test 0.918 0.716 0.827 0.795
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Figure 3. Qualitative illustration of dataset samples with 3D space reconstruction after PnP computation.

A. Synthetic to real adaptation

The disparity in performance between synthetic and real-
domain data remains a subject of ongoing discussion within
the research community [32]. Reducing this gap is crucial to
enhance both the reliance on and the applicability of synthetic
data [33]. Given that models trained exclusively on synthetic
data continue to exhibit suboptimal performance when applied
to real-world scenarios [34], this study conducts a qualitative
evaluation of the proposed dataset via transfer learning from
the synthetic domain to the real one, with the objective of
determining whether this approach leads to any improvement
in model performance.

For this purpose, a proprietary dataset consisting of broadcast
images from the 2023-2024 ABB FIA Formula E World
Championship has been assembled from official broadcast
racing highlights: 293 training frames from the Mexico City
ePrix and 42 validation frames from the Portland ePrix were
provided to five independent annotators to generate manually-
labeled ground-truth annotations for bounding boxes and pose
keypoints, including visibility information.

In accordance with the previously described experimental
setup, two distinct YOLOv8x models – one pretrained on the
synthetic dataset and the other initialized from scratch – were
trained on the real data. Figure 2 presents the evolution of
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the mAP50-95 metric over 100 epochs for both bounding
box detection (on the left) and keypoints pose estimation
(on the right) for the two models, emphasizing the disparity
between the two performance trends. The results clearly
illustrate the impact of synthetic pretraining, with the pretrained
model demonstrating an improvement of 24.56% in mAP50-95
for bounding box detection and 23.08% for keypoints pose
estimation, compared to its “vanilla” counterpart.

Table III offers a detailed summary of key statistics, provid-
ing an overview of the performance improvements observed
across all training epochs.

TABLE III. RELEVANT STATISTICS CONCERNING mAP50-95 GAP.

Task AVG STD MIN 25% 50% 75% MAX
Box 0.161 0.042 0.113 0.127 0.149 0.183 0.317
Pose 0.164 0.056 0.016 0.128 0.152 0.205 0.354

B. PnP computation

The PnP problem consists in solving for the rotation and
translation that minimizes the reprojection error from 3D-2D
point correspondences. By reverse engineering the well-known
problem [35]

λ

uv
1

 = K[R|t]


x
y
z
1

 (3)

one is therefore able to abstract the real-world 3D representation
from the given 2D frame. Figure 3 qualitatively illustrates
some dataset samples with corresponding 3D understanding
reconstruction.

When transposed to the real setting, this approach could open
up a whole set of opportunities: for example, understanding
the 3D world from a single 2D image unlocks transformative
possibilities for Augmented Reality (AR) in broadcast TV,
enhancing storytelling, audience engagement, and real-time
visual effects. By reconstructing 3D scenes from standard
camera feeds, broadcasters can seamlessly integrate virtual
objects, dynamic graphics, and interactive overlays into live or
pre-recorded footage without requiring complex depth-sensing
equipment. Real-time depth estimation also facilitates more
natural occlusion handling, ensuring AR elements interact
convincingly with on-screen subjects. Additionally, AI-driven
3D scene understanding allows broadcasters to create adaptive,
personalized content, such as interactive replays or custom
viewing perspectives. These advancements reduce production
costs, increase creative flexibility, and redefine audience en-
gagement, making AR-enhanced broadcasting more accessible
and compelling across news, sports, and entertainment.

V. CONCLUSION AND FUTURE WORK

Through the adoption of simulation platforms, such as
CARLA, this study introduces the feasibility of constructing a
high-fidelity dataset that encapsulate real-world complexities,
including variable lighting conditions, partial occlusions, and
non-static camera viewpoints. The empirical findings indi-
cate that, while synthetic datasets may introduce challenges

associated with domain adaptation, they serve as a robust
framework for enhancing model generalization and performance
in real-world deployment scenarios. Given the inherently time-
consuming and costly nature of manual data annotation, the
proposed work aims to address this limitation in the domain of
motorsports scene understanding. Empirical results on real-
world data demonstrate the effectiveness of the proposed
dataset in minimizing the reliance on extensive labeled datasets,
thereby offering a robust foundation for further analysis, and a
structured way to address 3D scene reconstruction in broadcast
media images.

Future research should prioritize the refinement of exclusion
criteria, the development of advanced domain adaptation
strategies, and the integration of physics-based simulations
to further mitigate the domain gap between synthetic and real-
world data. Ultimately, continued innovation in synthetic data
generation methodologies will be instrumental in fostering the
development of more reliable, scalable, and adaptable AI-driven
vision systems for motorsports analytics and beyond.

Future work will indeed focus on advancing the end-to-
end synthetic data generation pipeline, with the objective of
increasing the fidelity, diversity, and domain-relevance of the
generated data. Enhancements in procedural generation, domain
randomization, and photorealistic rendering could significantly
improve model generalization and robustness, particularly
in scenarios where annotated real-world data is limited or
biased. Another potential extension involves the integration
of additional semantic classes, specifically targeting vehicle
livery recognition. Incorporating livery as a distinct detection
class would enable the system to differentiate between visually
similar vehicle instances based on team or sponsor-specific
visual attributes. This capability could help mitigate the inherent
class imbalance and representation bias present in existing
real-world datasets, thereby improving fairness and reliability
in downstream perception tasks, and leading to models even
more suitable for broadcasting purposes. Furthermore, a re-
examination of the CARLA simulation framework presents
valuable opportunities for domain-specific augmentation. By
introducing racing-oriented dynamics – such as high-speed
maneuvers, competitive interactions, and tactical behavior
patterns – the simulation environment can be tailored to better
reflect the operational context of racing environments. In
this context, incorporating (inter)action recognition becomes
particularly salient. Beyond static object detection, the ability
to model and infer temporal and relational dynamics among
agents (e.g., overtaking, blocking, cooperative maneuvers) can
facilitate higher-level scene understanding and event prediction.
This shift from instance-level perception to spatiotemporal
reasoning has the potential to significantly enhance the decision-
making capabilities of those agents operating in competitive,
high-speed environments.

The generated synthetic dataset is made publicly accessible
to foster further research in this field and is available for
download [36].
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