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Abstract—This study explores the application of AI-assisted
techniques in analyzing and classifying bowed string instruments
from Chinese and Western traditions, focusing on the compar-
ison between the erhu and the violin. Using a combination
of spectrogram analysis, Mel-Frequency Cepstral Coefficients
(MFCCs), and Convolutional Neural Networks (CNNs), the
study captures the distinct timbral and articulation differences
between the two instruments. Particular attention is given to
bowing techniques such as vibrato, portamento, pizzicato, which
manifest differently due to structural and acoustic variations.
Beyond recognition, this research contributes to AI-assisted music
arrangement and composition, providing tools to analyze and
synthesize playing techniques across different musical traditions.
By bridging Eastern and Western bowed instrument performance
styles, this approach supports both cultural heritage preservation
and innovation in contemporary music production.

Keywords-AI-assisted music creation; Audio fingerprinting;
Spectrogram matching; Convolutional neural networks; Audio
signal processing.

I. INTRODUCTION

Music creation and arrangement rely heavily on accurate
music recognition technologies, which facilitate the identifica-
tion and integration of musical elements in various production
contexts. Numerous techniques have emerged in the field
of music recognition, significantly improving music retrieval,
automated generation, and media management [1]. Central to
these developments is audio fingerprinting, which segments
an audio signal into small time windows and transforms them
into frequency domain representations via Fourier analysis
[2]–[4] . This method allows for the extraction of distinc-
tive "fingerprints" based on unique spectral characteristics,
which are used to match audio tracks across platforms like
Shazam and Echoprint [5]. Complementing this, spectrogram
matching uses visual representations of sound and relies on
CNNs to detect patterns in these spectrograms, making it
possible to classify music even in noisy environments [6]
[7]. Additionally, rhythm and chord matching further enriches
the recognition process by analyzing temporal features and
harmonic progressions within a track, helping identify mu-
sical patterns and styles [8]. Lastly, lyrics matching extends
the scope of music recognition by using Natural Language
Processing (NLP) to transform sung vocals into text [9]. This
text is then matched against a lyrics database to identify songs,
making it particularly useful for recognizing cover versions or

different renditions of the same song, where the melody might
differ but the lyrics remain consistent.

These methodologies, each using unique aspects of audio
processing and analysis, highlight the complexity and dynamic
nature of music recognition technology. They not only improve
the accuracy and efficiency of music identification but also
enrich the user experience across various digital platforms,
paving the way for innovative applications in the music and
media industries.

Although these techniques have greatly enhanced our ability
to identify and categorize music, current research predomi-
nantly focuses on the design and technological recognition of
a certain musical instrument [10] [11], exploring innovative
computational methods and digital fabrication that enable
musical instrument identification and song matching. How-
ever, there remains a notable gap in the research specifically
targeting the detailed identification of playing techniques on
single instruments, especially within the domain of traditional
Chinese music. This is a critical area for music learning
and cataloging, as understanding and preserving the unique
playing techniques of traditional music not only plays a
crucial role in cultural heritage and education but also greatly
enhances music creation and arrangement by providing deeper
insights into the expressive potential of these instruments [12].
Furthermore, there’s a need for developing technologies that
can assist in the nuanced detection of specific musical styles
and techniques, which are often overlooked in broader music
recognition systems [13]. Thus, this paper presents a novel
deep-learning model designed to recognize various playing
techniques of two bowed string instruments from different
musical traditions—the Western Violin and the Chinese Erhu.
Section 2 details the theoretical foundations of audio process-
ing and CNNs. Section 3 describes the system architecture and
implementation. Section 4 presents experimental results for
Violin and Erhu techniques. Section 5 compares the bowing
techniques between the two instruments. Section 6 discusses
implications and future work.

II. THEORY

This section introduces the theoretical principles underlying
the signal processing and deep learning operations imple-
mented in the system. For different playing techniques, such as
focusing on pitch and playing frequency, we employ various
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approaches to handle pitch and playing frequency to ensure
the most suitable solution for a specific technique. These
techniques are described below.

1) Audio Signal Processing:
a) Pitch Shifting: Pitch shifting alters the frequency

content of the audio without changing the tempo. Here, the
Short-Time Fourier Transform is expressed as STFT. It can be
expressed using the phase vocoder approach in the frequency
domain:

pitch_shifted_data = STFT−1(STFT(data) · ejωδ)

where δ denotes the pitch shift in radians, and ω is the angular
frequency vector.

b) Audio Stretching: Time-stretching changes the dura-
tion of the audio signal. Using the phase vocoder method, the
operation is defined as:

stretched_data = STFT−1(STFT(data) · ejϕ)

where ϕ is a phase adjustment applied to maintain continuity
in the time-stretched signal.

2) Feature Extraction:
a) Mel-Spectrogram: The Mel-spectrogram is computed

from the Short-Time Fourier Transform (STFT) of the signal,
mapped onto the Mel scale:

Mel(f) = 2595 log10

(
1 +

f

700

)
mel_spec = |STFT(data)|2

where f is the frequency in Hz.
b) MFCCs: Mel Frequency Cepstral Coefficients

(MFCCs) are derived from the logarithm of the Mel-
spectrogram, followed by a Discrete Cosine Transform
(DCT):

MFCCs = DCT(log(mel_spec))

3) Convolutional Neural Networks:
a) Convolutional Layer: A convolutional layer in a CNN

can be mathematically modeled as:

output = σ(W ∗ X + b)

where W represents the kernel weights, X is the input, b is the
bias, and σ is a nonlinear activation function, such as ReLU
defined by σ(x) = max(0, x).

b) Pooling Layer: Pooling layers reduce the spatial di-
mensions of the input feature maps:

pooled = max
k,l

(input[i+ k, j + l])

for max pooling over the window defined by indices k and l.
This detailed theoretical foundation ensures the robustness

and comprehensiveness of the specifications, guiding the prac-
tical implementation of the proposed audio processing and
CNN methodologies.

III. ARCHITECTURE AND DETAILS

This section elaborates on the system architecture and
implementation specifics designed for the project, includ-
ing algorithm selection, software development practices, and
Python programming techniques utilized. Each component’s
functionality and its integration within the system are clarified
for thorough understanding.

A. System Architecture

The system is structured around several key functionalities
which include:

• Data Preprocessing: Initial steps such as normalization,
noise reduction, and data augmentation are applied to the
audio data to enhance model performance and robustness.
In addition, we cut training pieces to be 3 seconds long
each, labling them with 1 if they have certain feature and
0 if they don’t have. Each playing technique is associated
with a separate dataset comprising approximately 500
audio segments, with 70% allocated for training, 15%
for validation, and 15% for testing.

• Feature Extraction: Utilizing the librosa library,
features such as MFCCs, spectral contrast, and tonnetz
are extracted, which are crucial for the audio signal
analysis.

• Convolutional Neural Network (CNN): The model em-
ploys CNN architectures, implemented using TensorFlow
and Keras, to process and classify audio data effectively.

B. Implementation Details

1) Algorithm Selection: The project employs CNNs due to
their effectiveness in audio and image processing tasks. CNNs
are chosen for their ability to identify hierarchical patterns
in data, which is essential for the analysis of complex audio
signals.

2) Software Development: Python is selected as the main
programming language, supported by its extensive libraries
and frameworks that facilitate the implementation of data
science and machine learning algorithms efficiently.

3) Frameworks and Libraries: Key frameworks and li-
braries used in the project include:

• TensorFlow and Keras: For designing, training, and
validating deep learning models. These frameworks offer
comprehensive tools that aid in the rapid development
and deployment of ML models.

• Librosa: A library for music and audio analysis, pro-
viding the necessary functionalities to implement music
information retrieval systems.

4) Model Development: The model takes features from
Mel-spectrograms and MFCCs as input, represented as 2D
time–frequency matrices. It consists of three convolutional
layers with 3×3 kernels, each followed by max-pooling. The
model was trained for 100 epochs with a batch size of 32. A
final dense layer with softmax activation handles classification.
Training uses categorical cross-entropy loss and the Adam
optimizer.
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C. Instrument Introduction

This study explores two bowed string instruments from dif-
ferent musical traditions: the Violin, a cornerstone of Western
classical musicand the Erhu, a representative Chinese tradi-
tional instrument. While both instruments share similarities in
their bowed playing technique, they exhibit distinct structural,
tonal, and expressive differences.

1) Violin: The Violin is a Western bowed string instrument
that has been a central part of orchestral, chamber, and solo
music for centuries as shown in Figure 1(a). It typically has
four strings tuned in perfect fifths (G-D-A-E) and is played
with a horsehair bow. Unlike the Erhu, the Violin has a
fingerboard, allowing for precise pitch control and a broader
range of fingering techniques. It is known for its brilliant and
resonant tone, capable of a wide range of expressive dynamics,
from delicate pianissimo to powerful fortissimo.

2) Erhu: The Erhu, as shown in Figure 1(b), is a tra-
ditional bowed instrument with a distinctive timbre that is
often described as mimicking the human voice. Unlike the
Violin, the Erhu has only two strings, tuned a perfect fifth
apart, and lacks a fingerboard, which allows for continuous
gliding motions, producing characteristic portamento effects.
The bow is positioned between the two strings, requiring a
unique bowing technique where the player alternates between
inner and outer strings. The Erhu’s sound is softer and more
nasal compared to the Violin, and it is widely used in Chinese
folk, traditional, and contemporary music.

By comparing these two bowed string instruments, this
study aims to highlight the unique playing techniques, tim-
bral qualities, and expressive characteristics that differentiate
Chinese traditional and Western classical music traditions.

(a) Violin (b) Erhu

Figure 1: The Violin and Erhu

IV. RESULTS

This section focuses on the detection and analysis of four
essential playing techniques for the violin: portamento, pizzi-
cato, vibrato, and chords, as well as three techniques for
the erhu: pizzicato, portamento, and horse neighing. Detailed
explanations and visual representations of each technique are
provided in the following subsections.

For the full code, training pieces, and testing cases, please
refer to the following GitHub and Google Drive repositories:
GitHub Repository, Google Drive Repository.

A. Violin pizzicato

The violin’s pizzicato showcases its versatility and dynamic
articulation. By plucking the strings instead of bowing, it
produces crisp, percussive tones that range from delicate to
forceful. This technique adds rhythmic clarity and timbral va-
riety, enriching both classical and contemporary compositions.
Beyond its technical role, pizzicato enhances expressive depth,
allowing performers to craft playful, agile, or dramatic effects,
highlighting the violin’s adaptability across musical genres.

(a) Pizzicato spectrogram

(b) Spectrogram without pizzicato

Figure 2: Comparison of violin pizzicato audio spectrograms

Figure 2(a) showcases pizzicato, the core distinguishing
feature is the discrete, rapidly decaying frequency components,
evident in the short, isolated horizontal bands. Each note
exhibits a sharp attack followed by a quick fade. The gaps
between notes indicate the lack of sustained bow pressure,
reinforcing the percussive and transient nature of pizzicato ar-
ticulation. In contrast, Figure 2(b) shows a violin performance
without pizzicato, characterized by continuous and sustained
horizontal bands that indicate prolonged bowing. The accuracy
under 20 test cases is 100% with a threshold of 0.38.

B. Violin Vibrato

Violin vibrato is an essential and nearly omnipresent tech-
nique, appearing in almost every performance. It is created by
oscillating the fingertip on the string, producing continuous
pitch variations. This enriches the tone, adding warmth, depth,
and expressiveness. Vibrato is so frequently used that a note
without it often feels unusual in classical violin playing.

This detailed spectrogram Figure 3 vividly illustrates a
violin performance incorporating vibrato, which is clearly
discernible through the distinct, wavering patterns of the
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Figure 3: Vibrato spectrogram

frequency bands. These oscillating bands represent the subtle
pitch variations characteristic of vibrato. The analysis demon-
strates exceptional precision, achieving an accuracy of 100%
at a threshold value of 0.18, underscoring the reliability and
effectiveness of the method used to detect and quantify this
acoustic feature.

C. Violin Portamento

Violin portamento is a smooth sliding technique that con-
nects two notes seamlessly. It is produced by gliding the
finger along the string while maintaining contact, creating
a continuous pitch transition. This effect adds expressive
fluidity. Portamento is frequently used in both classical and
contemporary music to enhance emotional depth, making
melodic passages sound more lyrical and connected. Its subtle
or exaggerated application depends on stylistic interpretation,
shaping the expressiveness of a performance.

Figure 4: Portamento spectrogram

Figure 4 represents violin with portamento, characterized
by smooth, diagonal transitions between frequencies. These
sloping lines indicate a continuous pitch glide, as the player’s
finger slides between notes without discrete separation. The
accuracy is 100 % at the threshold of 0.07.

D. Violin Chords

Violin chords involve playing multiple strings simultane-
ously, creating a rich harmonic texture. They can be performed
as double stops, where two notes are played together, or
as triple/quadruple stops, where three or four strings are
struck in succession. This technique adds depth, power, and
resonance, commonly found in orchestral, solo, and folk music
for dramatic or harmonic emphasis.

Figure 5(a) represents a series of chords, as clearly ev-
idenced by the densely packed horizontal bands that span

(a) Chords spectrogram

(b) Spectrogram without chords

Figure 5: Comparison of chord audio spectrograms

across multiple frequency ranges. These bands indicate the
simultaneous vibration of multiple strings, each contributing
to the overall harmonic structure. This dense clustering of
frequencies is a hallmark of polyphonic music, where multiple
pitches are sounded together to form harmonies. In contrast,
Figure 5(b), which represents a violin playing without chords,
displays a markedly different pattern. Here, the horizontal
bands are fewer in number and more evenly spaced, reflecting
the individual notes being played in a monophonic manner.
Each band corresponds to a single pitch, with the spacing
between them indicating the intervals of the melody. Figure
6 below shows the model accuracy for detecting chords on
violin.

Figure 6: Model effectiveness in detecting chords on violin.

E. Erhu Pizzicato

The pizzicato technique on the erhu exemplifies the in-
strument’s versatility and expressive range. This technique
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involves plucking the strings with the fingers, rather than using
the bow, producing a sharp, percussive sound that contrasts
with the typical bowed tones of the instrument. The pizzicato’s
unique timbre and rhythmic precision make it an effective
tool for creating lively, staccato passages that add dynamic
contrast to musical phrases. This technique’s ability to produce
clear, articulated notes with a distinct percussive quality allows
performers to inject a new layer of expression into their music,
enhancing the emotional depth and rhythmic complexity of a
piece.

(a) Pizzicato spectrogram

(b) Spectrogram without pizzicato

Figure 7: Comparison of erhu pizzicato audio spectrograms

In Figure 7(a), the characteristics of a pizzicato played
on the erhu are visually evident. The defining feature is
the presence of sharp, distinct vertical lines that appear at
regular intervals. These lines represent the short, percussive
nature of the pizzicato notes, which decay quickly and lack
sustained resonance. In contrast, Figure 7(b) lacks these pizzi-
cato features. Instead, it displays smoother, more continuous
horizontal bands, indicative of sustained, bowed notes typical
of traditional erhu playing. Here, we employ 200 test pieces to
evaluate the model. The highest accuracy achieved is 98.02%,
with the best threshold set at 0.578. Here, we demonstrate the
ROC curve as shown in Figure 8. For this model, the precision
is 0.9756, the recall is 0.9877, the F1-score is 0.9816, and the
AUC score is 0.9850.

F. Erhu Portamento

The portamento technique on the erhu showcases the in-
strument’s ability to convey emotional depth and seamless
movement between notes. This technique involves sliding
the pitch between two notes, creating a smooth, continuous
transition rather than a distinct jump. The erhu’s rich, fluid
sound is often used to mimic the human voice, allowing the
performer to evoke a sense of intimacy and vulnerability.
Portamento is frequently employed in both traditional and

Figure 8: ROC curve for detecting pizzicato on erhu.

contemporary erhu music to enhance the lyrical quality of
melodies, providing a sense of narrative flow and emotional
continuity.

Figure 9: Portamento spectrogram

In Figure 9, the defining characteristics of portamento on
the erhu can be observed. The smooth, continuous transitions
between frequencies are evident, marked by sloped, connected
lines that represent the sliding motion of the player’s fingers
along the string. This creates a fluid, expressive sound with
gradual pitch changes.

As the portamento effect on the Erhu is not always distinct,
and normal bowing can sometimes produce portamento-like
characteristics, the accuracy is 62.8% at a threshold of 0.25.

G. Erhu Horse Neighing

The horse neighing technique on the erhu is a distinctive
and evocative expression of the instrument’s ability to mimic
natural sounds. This technique involves a combination of fast
bowing, specific finger pressure, and sliding motions that
produce a sound resembling the neighing of a horse. The
erhu’s two strings and the player’s control over bowing speed
and intensity allow for the creation of sharp, high-pitched
sounds that imitate the rhythm and tone of a horse’s whinny.

In Figure 10, the characteristics of the "horse neighing"
sound on the erhu are evident. The texture is dense and
irregular, with rapid, fluctuating frequency patterns that create
a chaotic and dynamic visual representation. These features
correspond to the high-pitched, vibrating sound that mimics
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Figure 10: Horse neighing spectrogram

the neighing of a horse, achieved by rapid bowing and finger
movements.

Here, we employ 180 test pieces to evaluate the model. The
accuracy and the optimal identification threshold are presented
below. The highest accuracy comes to 100%, with the best
threshold set at 0.03.

V. COMPARISON OF BOWING TECHNIQUES

The erhu and violin, as representatives of Chinese and
Western bowed string instruments, exhibit distinct differences
in playing techniques, articulation, and spectral characteristics.
These differences arise from their structural design, musical
traditions, and expressive focus, which are clearly reflected in
their Mel-spectrograms.

The violin, with its four-string setup and fingerboard, allows
for precise articulation, harmonic richness, and diverse bowing
techniques. The spectrograms of violin performances show
dense harmonic overtones, sustained resonance, and well-
defined pitch transitions. In contrast, the erhu’s two-string, fret-
less design enables continuous pitch glides, broader vibrato,
and unique timbral effects, as reflected in its spectrogram.
The absence of a fingerboard results in smoother portamento,
appearing as gradual frequency slopes. Erhu vibrato is broader
and more fluid, leading to a more expressive but less structured
modulation compared to the violin.

While both instruments share core bowing techniques, such
as vibrato, portamento, and pizzicato, their execution differs
significantly. The violin excels in precision, harmonic layering,
and articulation control, while the erhu prioritizes expres-
sive fluidity, dynamic phrasing, and microtonal variation. By
combining deep learning with spectral analysis, this study
effectively distinguishes Chinese and Western bowed instru-
ment performance styles, demonstrating the potential of AI in
capturing nuanced musical expression.

VI. CONCLUSION AND FUTURE WORK

This study applied AI-assisted techniques to analyze and
classify bowing techniques of two culturally distinct bowed
string instruments—the erhu and the violin. The experiments
focused on detecting and analyzing four essential violin
techniques—portamento, pizzicato, vibrato, and chords—as
well as three primary erhu techniques—portamento, pizzi-
cato, and horse neighing. The spectrogram analysis revealed

distinct spectral patterns for each technique, demonstrating
how structural differences between the instruments affect their
articulation and sound production. These classification results
could support AI-assisted music arrangement by automatically
annotating performance techniques, enabling intelligent audio
mixing and digital orchestration.

Beyond technical classification, this study provides valuable
insights into the contrasts between Chinese and Western bowed
instruments, bridging traditional musicology with computa-
tional analysis. The findings contribute to both cultural her-
itage preservation and modern AI-assisted music composition,
offering potential applications in automated music arrange-
ment, interactive music synthesis, and digital instrument mod-
eling. In addition, while this study focuses on violin and erhu,
the approach can be extended to other bowed instruments,
subject to retraining on appropriately labeled datasets.

Future work will focus on expanding the dataset to include
additional bowing techniques and other western and chinese
instruments, refining model accuracy through advanced neural
network architectures, and exploring real-time performance
analysis. In addition, future work will compare CNNs with
RNNs and transformer-based architectures to explore their
effectiveness on time-series classification. By integrating AI
with musicology, this research paves the way for a deeper
understanding of global musical traditions and their computa-
tional representations.
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