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Abstract—Type-1 Diabetes Mellitus (T1DM) is a chronic
condition characterized by the pancreas’s inability to produce
insulin, requiring continuous monitoring and management of
blood glucose levels. Accurate prediction of blood glucose levels
can significantly improve patient outcomes by reducing hypo-
and hyperglycemic events. This study develops a personalized
automated blood glucose forecasting system leveraging the past
blood glucose levels and insulin pump data. Utilizing the publicly
available Diatrend dataset, encompassing thirty-one days of
data for five subjects, we evaluated three machine learning
algorithms: K-Nearest Neighbors (KNN), Random Forest (RF),
and Multilayer Perceptron (MLP). After hyper-parameter tuning,
the performance of each algorithm was assessed using Root Mean
Squared Error (RMSE), Mean Squared Error (MSE), and the
coefficient of determination (R2), with a particular emphasis
on RMSE. The Random Forest model demonstrated superior
performance, achieving a test RMSE range of 14.98−23.62 across
all subjects. This research highlights the efficacy of supervised
machine learning algorithms in predicting blood glucose levels
over one-hour intervals for T1DM patients, underscoring the
potential of personalized machine learning models to improve
diabetes management.

Keywords- blood glucose prediction; Type-1 Diabetes Mellitus;
insulin delivery system

I. INTRODUCTION

Type 1 Diabetes (T1DM) is a chronic condition where the
pancreas fails to produce insulin, the hormone needed to control
blood sugar levels. People with T1DM face challenges in
managing blood sugar, which can be too low (hypoglycemia)
or too high (hyperglycemia). Low sugar levels, below 70 mg/dL,
can cause symptoms like sweating, hunger, and even serious
issues like seizures or coma [1], [2]. High sugar levels, over
140 mg/dL, may lead to problems in the eyes, heart, and nerves
[3], [4]. Managing these fluctuations requires careful insulin
use, which can be challenging and risky [5].

The eight leading cause of death globally is diabetes [6].
The number of deaths has been increasing since the start of
the 21st century [7]. The increasing trend approximates that
there will be 13.5-17.4 million people suffering from T1DM
by 2040 [8]. Majority of the deaths occur before 70 and are
due to high glucose levels [9].

A development of a sophisticated insulin delivery method
that combines Continuous Glucose Monitoring (CGM), which
utilizes the subcutaneous interstitial fluid to measure glucose
levels and insulin pumps which use glycemic data from the
monitors to provide temporary insulin formulas like basal or

bolus to maintain glucose levels. The device asks the patient
for information on physical activity, insulin bolus dosage, meal
sizes and carbohydrate content, among other things, in order
to obtain more accurate assessments [10].

To further enhance the capabilities of CGMs, Machine Learn-
ing (ML) offers a promising avenue. ML can perform human-
like tasks through learning from data and being able to adapt to
unseen data. There are various types of ML algorithms, such as
Supervised, Unsupervised, Semi-supervised, and Reinforcement
learning [11]. Supervised learning is typically the task of ML
to learn a function that maps an input to an output based on
sample input-output pairs [12]. It uses labeled training data and
a collection of training examples to infer a function. Supervised
learning is carried out when certain goals are identified to be
accomplished from a certain set of inputs [13]. There are two
different types of common supervised tasks which include
“classification” that separates the data or “regression” that fits
the data [12]. For the purpose of this study, regression was
used consisting of different algorithms [14].

The integration of technology in diabetes management has
led to significant advances in the prediction and control of blood
glucose levels [15]. CGMs combined with insulin pumps, forms
the backbone of artificial pancreas systems, which automate
insulin delivery to maintain optimal glucose levels [16]. These
closed-loop systems have shown promise in reducing the burden
of daily diabetes management and improving overall quality
of life for patients [17]. Studies have demonstrated that such
systems can significantly improve glycemic control, reduce
HbA1c levels, and mitigate the risks associated with long-
term diabetes complications [18]. The continuous evolution of
these technologies and their integration with machine learning
algorithms hold the potential to transform diabetes care, making
it more precise, personalized, and effective [19].

Our paper focuses on evaluating closed-loop insulin deliv-
ery systems, known as artificial pancreas systems, for their
effectiveness and safety in managing T1DM. By analyzing
CGM data, we developed a method to fine-tune insulin rates
using various ML models. Our personalized approach using
the Diatrend dataset demonstrates the strength and flexibility
of these models for individual patient needs.

The paper is structured as follows: The Introduction discusses
the challenges of T1DM and the role of ML in improving
insulin systems. The Related Work section reviews existing
models and their limitations. Materials and Methods explain
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our dataset, data preparation, and methodology. Results provide
an analysis of model performance. Discussion interprets the
findings, comparing them with existing methods. Future Work
& Limitations suggest improvements and study constraints.
The Conclusion summarizes our contributions and highlights
the importance of personalized systems in diabetes care.

II. RELATED WORK

Predicting blood glucose levels in patients with T1DM has
been the focus of numerous studies employing a variety of
machine learning algorithms and models. Machine learning
plays a crucial role in predicting blood glucose levels by
analyzing vast amounts of data to identify patterns and
trends that are not easily discernible by traditional methods.
This allows for more accurate and personalized predictions,
ultimately improving diabetes management and reducing the
incidence of hypo- and hyperglycemic events. Prior research
has demonstrated the potential of different methods, yet each
approach has limitations that impact the predictability and
efficiency of the models.

The emergence of CGMs has introduced different method-
ologies aimed at forecasting glucose levels. There have
been advancements in creating physical models and/or data-
driven observational models that attempt to predict glucose
levels of patients [20]. A few models that have been used
are Proportional-Integral-Derivative (PID) Controllers [21],
Artificial Neural Networks (ANNs) [22], Recurrent Neural
Networks (RNNs) [23], Long Short-Term Memory (LSTM)
Networks [24], Support Vector Machines (SVM) [25], [26],
Fuzzy Logic Systems [27], and RFs [28]. Recently, neural
network based models are gaining popularity: the use of dilated
recurrent neural networks (DRNNs), which have shown promise
in improving prediction accuracy by handling sequential data
more effectively and overcoming issues like gradient vanishing
[29]. Additionally, transfer learning approaches, where models
are initially trained on a generalized dataset and then fine-
tuned with individual patient data, have demonstrated enhanced
prediction accuracy for specific subjects [30].

One notable study, titled “A Machine Learning Approach to
Predicting Blood Glucose Levels for Diabetes Management”
implemented the Support Vector Regression (SVR) algorithm
alongside a physiological model characterized by three com-
partments: meal absorption dynamics, insulin dynamics, and
glucose dynamics. The researchers utilized a small sample size
of five T1DM patients to pull different parameters including
carbohydrate intake, rapid-acting insulin, bolus and basal rate,
body mass, and insulin sensitivity (IS) [31].

Similarly, another research paper compared the efficacy of
LSTM networks and Temporal Convolutional Networks (TCNs)
for blood glucose level prediction [32]. This study also explored
various classification algorithms, including SVM, Naive Bayes,
and Decision Tree for comparison. The results indicated that
there was little benefit to employing TCN or LSTM over
conventional models, pointing to a potential application gap
for these cutting-edge neural networks. This emphasizes the

necessity of more research to determine the circumstances in
which these models could provide meaningful advantages.

Further research evaluating the accuracy of SVM, Naive
Bayes, and Decision Tree algorithms in diabetes classification
were conducted using the Pima Indian Diabetes Database [33].
One weakness of the dataset was its homogeneity—all of
the patients were of the same race. This limited the results’
applicability to more diverse populations with a range of genetic
and lifestyle backgrounds.

In order to overcome issues like missing data, research
has also been done using RNN algorithms to predict blood
glucose levels [34]. The study focused on improving prediction
accuracy by utilizing the temporal dependencies in CGM data.
The existence of missing data, however, presented a serious
problem and might have an effect on the model’s predictability
and accuracy. Developing efficient methods to deal with missing
data is essential to enhancing RNN models’ resilience in
practical applications.

Interestingly, researchers have proposed a hybrid approach
combining SVM and Neural Networks (NN) to improve
blood glucose level predictions. This method demonstrates
enhanced accuracy in glucose forecasting, particularly in
reducing prediction errors compared to traditional models
[35]. However, the study relies on a relatively small dataset,
which may affect the generalizability of the model to broader
populations.

Building on these efforts, we adopt a different approach by
utilizing the same dataset as prior studies but with distinct
model choices and methodology. While deep learning models
like LSTM and Encoder-Decoder are commonly used for time-
series predictions, as highlighted in "Deep Learning-Based
Glucose Prediction Models: A Guide for Practitioners" [36], we
opt for simpler machine learning techniques such as KNN, RF,
and MLP in order to easily integrate into healthcare systems.
Additionally, we focus on hyperparameter optimization for
individual subjects rather than complex training strategies like
personalized or fine-tuning methods. This allows us to prioritize
model simplicity and interpretability while still leveraging the
same data.

In contrast to other approaches, our methodology involves
the use of three distinct algorithms: KNN, RF, and MLP, to
provide personalized solutions for each patient. The dataset
we used includes a diverse group of subjects with varied
characteristics, such as differences in sex and race, enhancing
the representativeness and predictability of our results. By
conducting hyperparameter tuning and training multiple models,
we selected the best-performing model to ensure the robustness
and accuracy of our findings, setting our research apart from
previous studies.

This body of related work highlights the ongoing efforts
and challenges in predicting blood glucose levels in T1DM
patients. Each study contributes uniquely to the field, offering
insights and advancements while highlighting areas for further
investigation and improvement.
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Figure 1. Flowchart of the process.

III. MATERIALS AND METHODS

This section outlines the materials and methods employed
in this study, providing a detailed framework for the research
process.

A. Dataset

We utilized the Diatrend dataset [37], which offers extensive
continuous data from wearable medical devices. This includes
8,220 days of insulin pump data and 27,561 days of CGM
data from 54 diabetic patients. For our analysis, we selected
five subjects out of 17 subjects from this dataset who had
comprehensive CGM and basal insulin readings available to
ensure data completeness.

B. Data Pre-processing

The dataset was initially filtered to identify patients with
both CGM and basal insulin readings. To prepare the data for
analytical and statistical models, several pre-processing steps
were undertaken to ensure data quality and completeness.

Basal insulin data entries, which include fields for "date,"
"rate" (units per hour), and "duration" (milliseconds), were

adjusted to ensure that no single duration exceeded 5 minutes
(300,000 milliseconds). Any entries with duration longer than
5 minutes were split into multiple 5-minute segments, and
the corresponding timestamps were updated accordingly. This
adjustment facilitated accurate alignment with CGM data,
ensuring consistent time intervals.

The modified basal insulin data was integrated with the CGM
data to create a unified dataset. For each CGM timestamp, the
corresponding basal insulin data was merged. If multiple basal
insulin entries existed within the interval between two CGM
readings, the basal entry that either matched or immediately
followed the CGM timestamp that was selected.

Missing values in the CGM data for columns like "mg/dl"
(glucose concentration) column were addressed using forward-
fill imputation. This method replaces missing values with
the last observed value, which is appropriate for maintaining
the continuity of time-series data. Both CGM and basal
insulin datasets were sorted by date to preserve their temporal
sequencing.

To capture both glucose trends and insulin delivery patterns
over time, the following features were calculated using a rolling
window of 12 data points (equivalent to 1 hour if readings are
taken every 5 minutes): Glucose Mean (glucose_mean): The
mean glucose level over the window. Glucose Standard Devia-
tion (glucose_std): The standard deviation of glucose levels over
the window. Weighted Basal Infusion (basal_infusion): This
feature was calculated as the sum of the product of "duration"
and "rate" divided by the sum of "duration" over the window,
representing the average basal insulin delivery rate weighted
by duration.

These features provided a comprehensive view of glucose
dynamics and insulin administration, which are critical for
predictive modeling in diabetes management. After feature
extraction, the dataset for each data point included the following
features:
• date: Timestamp of the CGM reading.
• glucose_mean: Mean glucose level over the past hour.
• glucose_std: Standard deviation of glucose levels over the

past hour.
• basal_infusion: Weighted average basal insulin infusion rate

over the past hour.
• mg/dl: Current glucose reading.
After this, we divided the dataset in the order of time to preserve
the temporal order and prevent any mixing of future and past
data, hence randomization was not an option. By doing this,
we made sure that the model learned from earlier data and was
tested on later data, similar to real-world prediction situations,
maintaining the quality of our time-based analysis.
• Training Set (70%): The earliest 70% of the data points,

used to train the model.
• Validation Set (15%): The subsequent 15% of data points,

used for hyper-parameter tuning.
• Test Set (15%): The latest 15% of data points, used to

evaluate the model’s performance on unseen data.
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C. Methodology

For our analysis, we chose KNN, RF, and MLP regression
models because of their proven effectiveness in both time-series
prediction and glucose level forecasting:
• KNN: Valued for its straightforward approach and ability to

capture local data patterns, KNN has successfully been used
in glucose prediction, yielding satisfactory outcomes [38].

• RF: This ensemble learning technique improves predictive
accuracy and mitigates over fitting. RF models are known
for their robust performance in analyzing medical data and
offer feature importance metrics, enhancing interpretability
[39].

• MLP: As a type of neural network, MLP excels at modeling
complex, non-linear relationships, making it highly appro-
priate for glucose prediction where such intricate patterns
are present [40].

In particular, the feature importance scores provided by RF
models significantly boost interpretability, which is essential
in personalized medicine. Our choices emphasize a balance
between achieving high predictive performance and maintaining
model interpretability.

The dataset consists of five subjects. The dataset comprises
data from five distinct subjects. For each subject, we developed
a unique model using data specific to that individual since
subject’s timestamps were different for all subject’s readings.
Each of the three algorithms was applied separately to the data
from each subject, allowing us to conduct thorough experiments
tailored to each subject’s dataset.

We conducted hyper-parameter tuning for each model to
enhance performance. For KNN, we tested using between 1 and
16 neighbors to find the right balance for understanding both
small and large patterns in the data. With RF, we experimented
with using between 10 and 100 decision trees and adjusted
their depth from 1 to 7 to avoid making the model too complex
or too simple. For the MLP, we varied the starting learning
rates between 0.00001 and 0.05 and adjusted the number of
iterations from 10 to 100 to see how these factors affected the
model’s learning and improvement speed. Each configuration’s
performance was assessed using RMSE and R² on the validation
set. This tuning process was crucial for ensuring generalization
and avoiding over fitting. The optimal hyper-parameters differed
across subjects, reflecting the unique glucose dynamics of each
individual [41]. Furthermore, the best-performing model was
employed to evaluate its performance by applying it to the test
data of all subjects.

Following an extensive hyper-parameter tuning phase, the
models that exhibited the best performance based on validation
metrics were selected. These models were then rigorously tested
on each of the five subjects’ test data to evaluate their reliability.
This evaluation involved calculating three key performance
metrics: MSE, RMSE, and the R². These steps ensured an
assessment of the model’s predictive capabilities, providing
insights into their performance on data that was not used during
training and hyper-parameter tuning. Refer to Figure 1 for a
visual representation of the Materials and Methods processes.

IV. RESULTS

In this section, we present the performance of three machine
learning models— KNN, RF, and MLP— across five different
subjects, using the RMSE and R² (coefficient of determination)
score as the key metric.

Graphs illustrating model performance metrics for each
algorithm and subject using validation data are shown in Figure
2. Specifically, we plotted RMSE against the K values for KNN
models, RMSE against the number of estimators (n_estimators)
for various max_depth configurations in RF models, and RMSE
against the number of iterations for different learning rates in
MLP regression models.

The graph displays an RMSE range of 14.98 to 23.62
mg/dL. While this is relatively high, it falls within acceptable
limits for glucose prediction models. Given that glucose levels
can vary significantly and rapid fluctuations are common in
Type 1 Diabetes patients, clinical guidelines typically consider
deviations within ±30 mg/dL to be acceptable. Therefore, our
model’s errors are within a clinically relevant range [42].

(a) Subject 52 (RF) (b) Subject 29 (MLP)

(c) Subject 46 (MLP) (d) Subject 38 (MLP)

(e) Subject 54 (RF)

Figure 2. Subject’s graph of their best performing model
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Results of the best model obtained from hyper-parameter
tuning on the validation and test datasets is shown in Tables I
and II.

TABLE I. TRAINING RESULTS FOR DIFFERENT SUB-
JECTS AND MODELS

ID KNN RF MLP
52 MSE: 252.947 MSE: 227.535 MSE: 317.137

RMSE: 15.904 RMSE: 15.084 RMSE: 17.808
R2 Score: 0.912 R2 Score: 0.921 R2 Score: 0.890

29 MSE: 438.806 MSE: 425.273 MSE: 420.411
RMSE: 20.947 RMSE: 20.622 RMSE: 20.503

R2 Score: 0.857 R2 Score: 0.861 R2 Score: 0.863
46 MSE: 814.730 MSE: 717.231 MSE: 820.608

RMSE: 28.543 RMSE: 26.781 RMSE: 28.646
R2 Score: 0.880 R2 Score: 0.895 R2 Score: 0.879

38 MSE: 317.209 MSE: 310.727 MSE: 301.532
RMSE: 17.810 RMSE: 17.627 RMSE: 17.364

R2 Score: 0.866 R2 Score: 0.869 R2 Score: 0.873
54 MSE: 342.127 MSE: 299.137 MSE: 375.030

RMSE: 18.496 RMSE: 17.295 RMSE: 19.365
R2 Score: 0.772 R2 Score: 0.800 R2 Score: 0.750

TABLE II. TESTING RESULTS FOR DIFFERENT SUB-
JECTS AND MODELS

ID KNN RF MLP
52 MSE: 314.087 MSE: 305.725 MSE: 378.007

RMSE: 17.722 RMSE: 17.484 RMSE: 19.442
R2 Score: 0.926 R2 Score: 0.928 R2 Score: 0.911

29 MSE: 414.655 MSE: 391.740 MSE: 385.436
RMSE: 20.363 RMSE: 19.792 RMSE: 19.632

R2 Score: 0.880 R2 Score: 0.886 R2 Score: 0.888
46 MSE: 615.205 MSE: 558.373 MSE: 546.354

RMSE: 24.803 RMSE: 23.629 RMSE: 23.374
R2 Score: 0.922 R2 Score: 0.929 R2 Score: 0.931

38 MSE: 352.870 MSE: 340.414 MSE: 330.102
RMSE: 18.784 RMSE: 18.450 RMSE: 18.168

R2 Score: 0.800 R2 Score: 0.807 R2 Score: 0.813
54 MSE: 235.849 MSE: 224.320 MSE: 293.482

RMSE: 15.357 RMSE: 14.977 RMSE: 17.131
R2 Score: 0.789 R2 Score: 0.800 R2 Score: 0.738

For the training data, the Random Forest model achieved the
highest R² score of 0.921 for Subject 52, demonstrating better
predictive ability compared to the KNN model with an R² score
of 0.912 and the MLP model with an R² score of 0.890. For
Subject 29, the MLP model emerged as the best performer with
an R² score of 0.863, slightly outperforming the RF and KNN
models, which had R² scores of 0.861 and 0.857, respectively.
In the case of Subject 46, the RF model again showed the
highest predictive ability with an R² score of 0.895, while KNN
and MLP had similar performances, with R² scores of 0.880
and 0.879, respectively. Additionally, for Subject 38 the MLP
model achieved the highest R² score of 0.873, indicating better
performance than both the RF and KNN models, which had
R² scores of 0.869 and 0.866, respectively. Finally, for Subject
54, the RF model outperformed the other models with an R²
score of 0.800, followed by the KNN model with an R² score
of 0.772, and the MLP model with the lowest performance at
an R² score of 0.750.

Overall, the RF model consistently executed the highest
R² scores across the majority of subjects, indicating strong

predictive performance. Specifically, the RF model had the
highest R² scores for Subject 52 (0.921), Subject 46 (0.895),
and Subject 54 (0.800). The MLP model performed the best
for Subject 29 (0.863) and Subject 38 (0.873). While the KNN
model showed strong performance, it did not outperform the
RF or MLP models in any subject. These findings imply that
the MLP and KNN models are closely followed by the RF
model, which is the most reliable option for precise predictions
across this dataset.

When evaluating the models on the test data, the RF model
obtained the highest R² score of 0.928 for Subject 52, closely
followed by the KNN model with an R² score of 0.926. The
MLP model had a slightly lower R² score of 0.911. This
indicates that both RF and KNN models performed similarly
well, slightly outperforming the MLP model for this subject.
In the case of Subject 29, the MLP model emerged as the
best performer with an R² score of 0.888. The RF model also
performed well, achieving an R² score of 0.886, while the KNN
model had a slightly lower R² score of 0.880. The differences
in performance were minimal, suggesting that all three models
were effective for this subject, with the MLP model having
a slight edge. For Subject 46, the MLP model demonstrated
the highest predictive performance with an R² score of 0.931,
followed by the Random Forest model with an R² score of
0.929. The KNN model also performed strongly with an R²
score of 0.922, but was slightly surpassed by the other two
models. For Subject 38, the MLP model again accomplished
the highest R² score of 0.813, indicating fitter performance than
both the RF model (R² score of 0.807) and the KNN model (R²
score of 0.800). All three models performed well, but the MLP
model was the best among them for this subject. Finally, for
Subject 54, the RF model exceeded the other models with an
R² score of 0.800. The KNN model followed with an R² score
of 0.789, while the MLP model had the lowest performance
with an R² score of 0.738.

In summary, the performance of each model varied across
different subjects, but overall, the RF and MLP models
frequently demonstrated superior predictive capabilities. Specif-
ically, the Random Forest model achieved the highest R² scores
for Subject 52 (0.928) and Subject 54 (0.800), while the
MLP model led for Subject 29 (0.888), Subject 46 (0.931),
and Subject 38 (0.813). The KNN model showed strong
performance but was generally outperformed by the RF and
MLP models. These results underscore the value of using
multiple models to identify the most effective predictive
approach for different datasets.

We subsequently selected the best-performing model, identi-
fied by its lowest RMSE score of 14.977, as the most effective
approach. To assess the robustness and generalizability of this
model, we applied it to the test data of all subjects, evaluating
its performance across the entire dataset. This approach allowed
us to determine whether the optimized model could maintain
its accuracy and reliability when exposed to diverse subject-
specific data. Table III presents the model’s applicability and
performance metrics for each subject.
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TABLE III. TESTING RESULTS FOR SUBJECTS ON BEST
MODEL

ID RMSE
52 RMSE: 31.300
29 RMSE: 22.552
46 RMSE: 43.736
38 RMSE: 18.716
54 RMSE: 14.977

V. DISCUSSION

In this study, we developed models to predict blood glucose
levels of patients using machine learning algorithms. We tested
three different algorithms: KNN, RF, and MLP on five different
subject’s datasets from the Diatrend dataset. The process for
each subject’s dataset consisted of training, validation, and
testing of the models. The performance of these models was
evaluated based on three metrics namely, R², MSE, and RMSE.
However, for the scope of this study, we narrowed down our
analysis for determining best performance to rely more heavily
on R² and RMSE.

The model hyper-parameters chosen for each patient dataset
impacted the RMSE and R2 values differently for each subject.
KNN algorithm did not yield a high performance in any of
the subjects.

In case of random forest, for subjects 52 and 54, moderate
values of hyper-parameters yielded the highest performance. For
Subject 52, the results indicate that increasing the maximum
depth and number of estimators generally improves model
performance up to a certain point. The lowest MSE and
RMSE values are observed at a maximum depth of 5 and
90 estimators, with an MSE of 15.124 and RMSE of 15.085.
However, further increases in these hyper-parameters do not
lead to substantial improvements and, in some cases, result in
slightly worse performance. The results for Subject 54 show a
slightly different set of trends. Here, the learning rate and the
number of epochs play a crucial role in model performance.
It is clear that excessively high or low learning rates lead to
poor performance, as evidenced by the extremely high MSE
values for learning rates of 0.01 and 0.00001. The most optimal
performance is observed at a learning rate of 0.05 with 90
epochs, yielding an MSE of 17.055. While moderate values of
hyper-parameters tend to yield better performance generally,
the specific sensitivity varies between subjects.

Similarly, in case of subjects 29, 46 and 38, where MLP
demonstrated highest validation performance, model values of
learning rate and epochs resulted in a better model. For Subject
29, the results indicate that the MSE and RMSE tend to stabilize
at lower values when the learning rate is set to 0.001, 0.005, or
0.0005, and the number of epochs ranges from 30 to 60. The
best performance is seen with a learning rate of 0.0005 and 30
epochs, achieving the lowest MSE of 20.440. For Subject 46, a
learning rate of 0.01 with 100 epochs yielded the lowest MSE
of 26.489, suggesting that a higher learning rate combined with
a longer training period can enhance performance. Conversely,
extremely low learning rates (e.g., 0.0001 and 0.00005) resulted
in significantly higher MSE values, highlighting the model

could not converge even with a large number of epochs. For
Subject 38, the optimal performance is observed with a learning
rate of 0.05 and 70 epochs, achieving the lowest MSE of 17.264.
Interestingly, very low learning rates such as 0.00001 lead to
significantly higher MSE values, indicating poor performance
and potentially inadequate learning. This suggests that for this
subject, higher learning rates within a moderate range are more
effective.

While general trends of moderate hyper-parameter values
yielding better results are consistent, specific optimal configu-
rations vary, underscoring the importance of subject-specific
tuning for achieving the best predictive accuracy.

Test results evaluated using the best validation models
provided a few other insights. For Subject 52, the RF model
gave the best result with an R² score of 0.928 and RMSE of
17.484. The MLP model worked best for Subject 29 with an
R² score of 0.888 and RMSE of 19.632 showing the highest
performance. Similarly for Subject 46, the MLP model again
performed best with the highest R² score of 0.931 and RMSE
of 23.374. However, Subject 38 also had the MLP model giving
the most accurate results with R² reaching up to 0.813 and a
relatively low RMSE of 18.168. Lastly, for Subject 54, the RF
model gave the best performance with an R² score of 0.800
and RMSE of 14.977.

Subject-specific performance analysis revealed variability
in model performance across individuals. For Subject 29,
the MLP model performed best, likely due to its ability
to capture the non-linear glucose-insulin relationship. For
Subject 46, the Random Forest model excelled, indicating that
ensemble methods handled data variability effectively. Subject
54 showed lower R² scores across models, suggesting higher
data variability or noise, which warrants further investigation.

Additionally, it became evident when the test data for
all subjects was run through the best-performing model that
creating a uniform, one-size-fits-all model would not be feasible.
The results showed significant variability in RMSE scores
among different subjects, emphasizing the inherent challenges
in developing a single algorithm capable of delivering consistent
performance across a diverse population. This variability
suggests that subject-specific factors, such as unique glucose
dynamics, lifestyle habits, and physiological differences, play a
critical role in determining model accuracy. As a result, relying
solely on a uniform model could lead to suboptimal outcomes
for many individuals, further emphasizing the need to address
these differences through tailored approaches.

These findings underscore the importance of adopting person-
alized modeling techniques rather than a universal solution. By
designing models that account for individual characteristics and
unique data patterns, it becomes possible to enhance prediction
accuracy and optimize clinical outcomes for each subject. The
high variability in RMSE scores also suggests that no single
algorithm is universally superior for all patients, reaffirming the
necessity for a more nuanced approach in algorithm selection
and model development.
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VI. LIMITATIONS & FUTURE WORK

The Diatrend dataset provides useful real-world insights, but
its size and duration limit the applicability of the findings to a
broader group of people. Since the data comes from just 31
days and five subjects, it might not fully capture the range of
blood glucose patterns in a larger, more diverse population. This
small group of subjects means the models might fit too closely
to these individuals, making them less useful for generalization.

Our study focuses on using only past blood glucose levels
and insulin pump data, as these two data sources provide direct
and continuous indicators of glucose trends relevant to Type-
1 Diabetes management. This targeted approach is common
in many studies aiming to develop predictive models. While
additional variables such as diet and exercise play a vital role
in maintaining glucose levels in the human body, including
them in our research would increase model complexity and
data variability, potentially affecting model accuracy without
adequate validation. Therefore, future studies could expand by
integrating these broader data types to capture a more holistic
picture.

We used simple models for their interpretability and computa-
tional efficiency in personalized predictions that analyze data in
one-hour chunks. In the future, incorporating advanced models
like LSTMs or TCNs could help examine longer temporal
patterns, as seen in other studies. Additionally, integrating
interpretability methods, such as Shapley Additive exPlanations
(SHAP) values for assessing feature importance, could further
enhance the clinical applicability of the models.

Future work should involve a larger number of subjects and
longer data collection periods to assess model performance
across diverse populations. Additionally, incorporating the rest
of subjects’ data from Diatrend into the modeling process
could enhance the algorithms’ adaptability and reliability by
leveraging existing datasets to refine predictions and optimize
performance. It is also important to test these models in actual
healthcare settings to evaluate their reliability and usefulness.
Integrating them with continuous glucose monitors and insulin
pumps could pave the way for clinical trials.

Although the study’s small sample size limits its broader
applicability, we have optimized the models for the best
performance with the given data. Expanding the dataset to
include a larger and more diverse population should be a
priority for future research.

To summarize, our study provides a strong foundation for
further research in the field of blood-glucose level prediction.
Future research could focus on additional model fine-tuning and
testing other machine learning approaches. Other facets that can
be considered include the impact of data quality and volume
or understanding and leveraging intra-individual variability to
improve accuracy. The ultimate goal lies in the development of
an optimal prediction system, one that can adapt and learn from
the inputs dynamically while being highly precise and reliable,
offering a personalized solution for patients by integrating
the prediction system into a closed-loop "artificial pancreas"
system.

VII. CONCLUSION

Our research has established a foundation for an optimal
blood glucose prediction system using supervised machine
learning, employing three distinct algorithms: KNN, RF,
and MLP. The results illustrated the promising potential of
this research when further developed. Our models achieved
significant predictive performance as indicated by RMSE and
R² metrics, demonstrated their effectiveness in personalized
glucose level prediction. While accuracy in classification tasks
was not directly applicable here, the high R² values reflected the
models’ ability to explain a substantial proportion of variance
in glucose levels.
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