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Abstract—Accurate grading of Prostate Cancer (PCa) is vital 

for effective treatment planning and prognosis. This study 

introduces an advanced framework for Gleason Grade (GG) 

classification, addressing challenges in accuracy, 

computational efficiency, and interpretability. Utilizing the 

SICAPv2 dataset, which contains annotated prostate biopsy 

Whole Slide Images (WSIs) graded from GG0 to GG5, the 

framework integrates cutting-edge machine learning and deep 

learning techniques. Feature extraction is performed using a 

custom-designed Variational Autoencoder (VAE) with a 

VGG16 backbone, chosen for its computational efficiency, 

while dimensionality reduction with Principal Component 

Analysis (PCA) optimally selects 50 features for classification. 

The classification pipeline combines machine learning models, 

including Support Vector Machines (SVM), logistic regression, 

and random forests, with custom Deep Neural Networks 

(DNNs). SVM with an Radial Basis Function (RBF) kernel 

achieved an accuracy of 84% following hyperparameter 

tuning, while a custom five-layer dense neural network 

incorporating dropout and batch normalization demonstrated 

superior performance with an accuracy of 94.6%. Explainable 

AI (XAI) techniques, such as SHapley Additive exPlanations 

(SHAP), gradient-weighted class activation mapping (Grad-

CAM), and Local Interpretable Model-Agnostic Explanations 

(LIME), enhance model interpretability by providing insights 

into feature importance and aligning predictions with clinical 

expertise. This framework delivers a robust, scalable, and 

interpretable solution for automated GG classification, 

bridging the gap between advanced AI techniques and clinical 

application. 

Keywords- Cancer diagnosis; Dimensionality reduction; 

Explainable AI; Feature extraction; Gleason grade 

classification. 

I.  INTRODUCTION  

Prostate cancer remains a significant global health issue, 

ranking among the leading causes of cancer-related 

mortality in men. The prostate gland [6], located below the 

bladder and comparable in size to a walnut, plays a crucial 

role in male reproductive health by producing seminal fluid. 

Clinical manifestations often include Lower Urinary Tract 

Symptoms (LUTS), haematuria, erectile dysfunction, and 

urinary retention. 

Traditional diagnostic methods, such as Digital Rectal 

Examination (DRE), prostate-specific antigen (PSA) 

screening, and 12-core Transrectal Ultrasound (TRUS)-

guided biopsy, exhibit notable limitations. Over-diagnosis 

rates can reach up to 45%, while clinically significant 

cancers may be missed in 30% of cases. These challenges 

underscore the necessity for advanced diagnostic techniques 

to effectively distinguish aggressive from non-aggressive 

cancer types [1-4]. 

The integration of WSI with Artificial Intelligence (AI) 

presents transformative potential in prostate cancer 

diagnostics, particularly for GG. High-resolution digital 

images of prostate biopsy samples are acquired through 

WSI scanners and undergo preprocessing steps, such as 

normalization and artifact removal, to enhance image 

quality [8]. AI-driven models segment tissue regions and 

extract significant histopathological features using deep 

learning techniques, including Convolutional Neural 

Networks (CNNs) and VAE [5]. 

Following feature extraction, AI models classify tissue 

patterns into respective GG, facilitating precise cancer 

grading. Post-classification validation ensures model 

robustness, while explainability tools such as SHAP, LIME, 

Grad-CAM, and Saliency Maps enhance transparency and 

interpretability. Figure 1 illustrates the developed AI 

pipeline, addressing critical diagnostic challenges by 

improving accuracy, efficiency, and consistency in GG 

assessment. 

This framework integrates VAEs, XAI techniques, and 

preprocessing methods to enhance GG classification 

precision, support personalized clinical decisions, and 

improve PCa outcomes.  In this paper, Section II covers the 

related work, Section III delves into the methods and 

materials, Section IV presents the results and discussions, 

and Section V provides the conclusion.
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Figure 1.  The block diagram shows a hybrid system for GG Group using WSIs, ensuring transparent and accurate PCa diagnosis and treatment with XAI 

techniques

II. RELATED WORK  

The integration of AI into the GG of PCa using WSI has 

brought about significant advancements in accuracy, 

consistency, and efficiency [9], [22].  Firjani et al. [10] laid 

the groundwork by achieving 100% accuracy in classifying 

prostate tissues into benign and malignant using a k-Nearest 

Neighbors (KNN) classifier on Diffusion-Weighted Imaging 

(DWI). Singhal et al. [11] improved segmentation and 

grading of PCa in WSIs of core needle biopsies with a DL 

model combining U-Net and Atrous Spatial Pyramid 

Pooling (ASPP) modules, achieving an accuracy of 89.4% 

and a quadratic-weighted kappa of 0.92. Azizi et al. [12] 

leveraged recurrent neural networks (RNN) on temporal 

enhanced ultrasound (TeUS) data, with Long Short-Term 

Memory (LSTM) networks achieving an accuracy of 0.93, 

an AUC of 0.96, a sensitivity of 0.76, and a specificity of 

0.98. Bulten et al. [13] developed an automatic DL model 

for GG, attaining a quadratic Cohen’s kappa score of 0.918 

using biopsies. Tsuneki et al. [15] employed transfer 

learning to classify WSIs into adenocarcinoma and benign 

lesions, achieving a high ROC-AUC of up to 0.9873. Pati et 

al. [16] introduced WholeSIGHT, a weakly-supervised 

method for joint segmentation and classification, 

demonstrating a Dice coefficient of 0.76 on three public 

PCa WSI datasets. Müller et al. [17] presented 

DeepGleason, an open-source DNN  system for automated 

GG, achieving a macro-averaged F1-score of 0.806, an 

AUC of 0.991, and an accuracy of 0.974. Hammouda et al. 

[18] proposed a multi-stage classification-based DL system 

for GG, achieving a precision of 0.92, recall of 0.89, and 

accuracy of 0.93 on 3,080 WSIs. Duenweg et al. [19] 

highlighted the impact of different WSI scanners on image 

quality, which significantly affects computational analysis 

performance, underscoring the need for standardized WSI 

scanner protocols. Mittmann et al. [20] developed an AI 

system for interpretable GG that mimics pathologist 

explanations, achieving a Dice score of 0.713 ± 0.003 using 

a dataset of 1,015 tissue microarray core images annotated 

by 54 pathologists. Belinga [11] proposed an AI-assisted 

system that improved GG accuracy and consistency, with a 

quadratically weighted Cohen’s kappa of 0.872 compared to 

0.799 without AI assistance, evaluated on 160 biopsies 

graded by 14 observers. Collectively, these studies 

underscore the transformative potential of AI and digital 

pathology in enhancing the diagnostic accuracy and 

consistency of GG in PCa. 

III. METHODS AND MATERIALS 

Hybrid PCa GG uses a custom VAE with a pre-trained 

VGG-16 encoder for feature extraction and a two-layer 

Dense decoder for reconstruction. Trained on SICAPv2 

datasets [5], [7], it ensures accurate GG classification and 

clinical relevance, as shown in Figure 2. To further optimize 

performance, we apply advanced feature reduction 

techniques, including PCA, Singular Value Decomposition 

(SVD), linear discriminant analysis (LDA), and t-distributed 

Stochastic Neighbor Embedding (t-SNE), ensuring 

dimensionality reduction while retaining critical data 

characteristics. The pipeline employs several state-of-the-art 

classifiers—Decision Tree, Random Forest, XGBoost, and 

SVM—which are fine-tuned via hyperparameter 

optimization to improve predictive accuracy. These 

classifiers are evaluated using performance metrics like 

accuracy, precision, recall, and F1-Score to ensure robust 

and reliable results. Furthermore, to enhance model 

transparency and interpretability, we incorporate XAI 

techniques. LIME offers local insights into individual 

predictions, SHAP quantifies global feature contributions, 

Grad-CAM visualizes critical regions in the images, 

saliency Maps highlight influential pixels, and feature Maps 

provide insights into the learning process at various layers. 

This comprehensive approach not only enhances the 
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precision of GG but also supports transparency, ensuring the 

AI model is trustworthy for clinical use, and paves the way 

for more personalized PCa diagnosis and treatment 

strategies. The SICAPv2 dataset [22] (GG0–GG5) provided 

a robust benchmark for validating AI-driven PCa models.

Figure 2.  Implemenation algorithm VAE-Based Hybrid Algorithm for Gleason Grade Classification 

IV. RESULTS AND DISCUSSION 

This section presents the VAE-based hybrid pipeline's 

performance in GG classification, emphasizing key results, 

feature reduction, and XAI techniques.  

A. Feature Extraction by VAE and Feature reduction  

As shown in Table I, VGG-16 is the optimal feature 

extractor for GG classification, balancing quality, 

efficiency, and interpretability by extracting 512 compact 

and effective features. It avoids the redundancy seen in 

ResNet-50 and DenseNet-121, which produce 2048 and 

1024 features, respectively. Despite DenseNet-121 being 

faster, VGG-16's moderate extraction time ensures 

reliability, minimizing overfitting and making it ideal for 

medical imaging. 

TABLE I.  FEATURE EXTRACTION 

VAE 

with 

CNN as 

Encoder 

VAE Performance as Feature Extractor 

No. of 

features 

extracte

d from 

Model 

Feature 

Dimension

s Before 

Flattening 

Time 

taken by 

Model 

for FE 

Time 

taken for 

feature 

Decoding 

Time 

taken for 

PCA 

Transfor

mation 

VGG-16 512 (None, 7, 

7, 512) 

63.06 

sec 

0.55 

sec 

0.05 

sec 

VGG-19 512 (None, 7, 

7, 512) 

65.50 

sec 

0.32 

sec 

0.01  

sec 

ResNet-

50 
2048 

(None, 7, 

7, 2048) 

30.55 

sec 

0.28 

sec 

0.04 

sec 

DenseNet 1024 (None, 7, 33.84 0.32 0.07 

VAE 

with 

CNN as 

Encoder 

VAE Performance as Feature Extractor 

No. of 

features 

extracte

d from 

Model 

Feature 

Dimension

s Before 

Flattening 

Time 

taken by 

Model 

for FE 

Time 

taken for 

feature 

Decoding 

Time 

taken for 

PCA 

Transfor

mation 

-121 7, 1024) sec sec sec 

Feature reduction performance in Table II indicates that 

various CNN models used as VAE encoders achieve similar 

dimensionality reduction to 50 features using PCA, SVD, 

and t-SNE. VGG-16, VGG-19, and ResNet-50 demonstrate 

comparable performance in feature reduction, with ResNet-

50 extracting the highest number of features at 2048. 

DenseNet-121, extracting 1024 features, achieves the 

highest reduction with SVD, reducing features to 137. 

VGG-16 and VGG-19, with 512 features, consistently and 

efficiently reduce dimensionality while maintaining feature 

quality. 

TABLE II.  FEATURE REDUCTION 

CNN Model 

As VAE 

Encoder 

Feature Reduction after VAE 

No. of 

features 

extracted 

from Model 

PCA SVD LDA t-SNE 

VGG-16 512 50 100 1 2 

VGG-19 512 50 93 1 2 

ResNet-50 2048 50 103 1 2 

DenseNet-121 1024 50 137 1 2 
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B. Feature Explainability 

In Table IV, SHAP was the fastest, completing its task in 

0.92 seconds while using only 1.47 MB of memory. LIME, 

although computationally intensive, required the highest 

memory at 9.97 MB. Grad-CAM stood out for its superior 

visual explanations, achieving a good balance with a 

runtime of 1.87 seconds and memory usage of 5.16 MB. 

Saliency maps provided a well-rounded performance, 

combining reasonable speed at 1.15 seconds with moderate 

memory usage of 6.74 MB. Figure 3 illustrates 

explainability techniques: (a) Significant contributions of 50 

features to classification using XAI SHAP, (b) Grad-CAM 

heatmap for GG2 showing lower activation in cooler colors, 

indicating a lower likelihood of malignancy, and (c) Grad-

CAM heatmap for GG4 displaying higher activation in 

warmer colors, highlighting regions significant for 

predicting malignancy. 

TABLE III.  EXPLAINABILITY OF FEATURE  

XAI Technique Time (seconds) Peak Memory Usage (MB) 

SHAP 0.9193 1.4740 

LIME 1.4421  9.9731  

Grad-CAM 1.8705 5.1574 

Saliency Map 1.1513 6.7392 

C. Machine Learnning classification 

In Table IV, the performance metrics for various machine 

learning classification models are as follows: Decision Tree 

achieved accuracy, precision, recall, and F1-score of 0.47. 

Linear Regression showed consistent scores of 0.70 across 

all metrics. Random Forest performed better with scores of 

0.78 across all metrics. XGBoost had moderate performance 

with scores of 0.72. SVM demonstrated the highest 

performance with accuracy and recall at 0.81, and precision 

and F1-score at 0.80. 

TABLE IV.  PERFORMANCE METRICS FOR VARIOUS ML 

CLASSIFICATION  

Metric ML Model 

Decision 
Tree 

Linear 
Regression 

Random 
Forest 

XGBoost SVM 

Accuracy 0.47 0.70 0.78 0.72 0.81 
Precision 0.48 0.71 0.78 0.72 0.80 

Recall 0.47 0.70 0.78 0.72 0.81 
F1-Score 0.47 0.70 0.78 0.72 0.81 

D. Machine Learnning classification with hyperparmeter 

tuning 

In Table V, hyperparameter tuning significantly improved 
model performance. SVM showed the highest gains, with 
accuracy rising from 0.81 to 0.84, precision from 0.80 to 
0.85, recall from 0.81 to 0.84, and F1-score from 0.81 to 
0.84—improvements of 3.7% in accuracy and recall, and 
3.8% in precision and F1-score. Random Forest improved 
from 0.78 to 0.81 in accuracy and recall, while XGBoost's 

accuracy rose from 0.72 to 0.76 and recall from 0.72 to 
0.75. Decision Tree saw the largest improvement, with an 
8.5% boost across all metrics (0.47 to 0.51). Linear 
Regression maintained consistent performance at 0.72. 
Overall, hyperparameter tuning enhanced all models, with 
SVM outperforming others in all metrics. 

TABLE V.  PERFORMANCE METRICS FOR VARIOUS ML 

CLASSIFICATION  WITH HYPERPARMETER TUNING 

Metric 

ML Model hyperparameter 

Decision 
Tree 

Linear 
Regression 

Random 
Forest 

XGBoost SVM 

Accuracy 0.51 0.72 0.81 0.76 0.84 

Precision 0.53 0.72 0.80 0.74 0.85 

Recall 0.51 0.72 0.81 0.75 0.84 

F1-Score 0.51 0.72 0.81 0.75 0.84 

E. Deep learning – Deep neural network 

In Table VI, we evaluated the performance of DNN models 

with different architectures. The DNN model with 3 Dense 

Layers achieved an accuracy of 0.79, precision of 0.81, 

recall of 0.79, and F1-score of 0.80. The performance 

improved with the DNN model featuring 5 Dense Layers, 

which achieved an accuracy of 0.89, precision of 0.90, recall 

of 0.89, and F1-score of 0.89. The model with 5 Dense 

Layers combined with Dropout and Batch Normalization 

demonstrated the best results, with an accuracy of 0.94, 

precision of 0.96, recall of 0.94, and F1-score of 0.95. The 

addition of Dropout and Batch Normalization led to a 

significant improvement, increasing accuracy by 5.6%, 

precision by 6.7%, recall by 5.6%, and F1-score by 6.7% 

compared to the model without these techniques. This 

indicates that Dropout and Batch Normalization played a 

crucial role in boosting the model's overall performance. 

TABLE VI.  DEEP LEARNIG – DNN MODEL 

Metric DL – 
DNN 

with 3 
Dense 
Layers 

DL – 
DNN 

with 5 
Dense 
Layers 

DL – DNN with 5 
Dense Layers + 

Dropout & Batch 
Normalization 

Accuracy 0.79 0.89 94.6 

Precision 0.81 0.90 96 

Recall 0.79 0.89 94 

F1-Score 0.80 0.89 0.95 

F. Comparative Analysis of ML and DL Techniques for 

Prostate Cancer Diagnostics 

The performance comparison shows ML models like SVM 

achieving ~0.84 accuracy, while DL models excelled, with a 

5-layer DNN using dropout and batch normalization 

achieving ~0.94; Figure 4 highlights that DL, combined 

with advanced regularization methods, offers superior 

accuracy and robustness in PCa GG classification.  

4Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-247-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIHealth 2025 : The Second International Conference on AI-Health



 

V. CONCLUSION 

In this study, a comprehensive framework for GG 

classification using WSI of PCa was developed by 

integrating DNN and ML models. VGG-16 was identified 

as the optimal feature extractor, offering a balance of feature 

quality and computational efficiency by extracting 512 

features in 63.06 seconds. It outperformed DenseNet-121 

and ResNet-50 in reducing redundancy and ensuring 

efficient dimensionality reduction through PCA, SVD, and 

t-SNE. Hyperparameter tuning enhanced ML performance, 

with SVM achieving the highest accuracy of 84%, while DL 

models incorporating dropout and batch normalization 

demonstrated significant improvements. A five-layer DNN 

achieved 94.6% accuracy, highlighting the effectiveness of 

regularization in preventing overfitting. A novel aspect of 

this research lies in the integration of XAI techniques to 

improve model interpretability. SHAP provided rapid, 

memory-efficient insights, while Grad-CAM delivered 

detailed visualizations, ensuring transparency in decision-

making. LIME and Saliency Maps further contributed to 

understanding model outputs, underscoring the need for 

transparent AI in clinical settings. Future work will expand 

this framework to larger datasets and explore advanced 

neural architectures and XAI methods, aiming to develop 

scalable, interpretable, and clinically reliable AI models for 

PCa diagnostics. The implementation, tested on an open-

access dataset, could benefit from additional testing on more 

benchmark and clinical datasets to enhance its clinical 

utility.

  

 

 

 

 

 

 

 

Figure 3.  Comparison of Explainability Techniques for Prostate Cancer Gleason Grade Classification (a) Significant contributions of 50 features to 
classification using XAI SHAP (b) Grad-CAM heatmap for GG2 and (c) Grad-CAM heat map for GG4 
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Figure 4.  Evaluating ML and DL Models for Prostate Cancer Diagnostics: A Performance Insight      
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