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Abstract—The paper discusses a novel system for medical
diagnostics that integrates patient data from various sources
to address the fragmentation of healthcare information. By
generating and merging knowledge graphs from raw medical
texts focused on key biomedical entities (Gene, Disease, Chemical,
Species, Mutation, Cell Type), the system facilitates a comprehen-
sive understanding of a patient’s medical history. It accurately
extracts and connects critical entities, creating individual and
combined knowledge graphs that elucidate a patient’s medical
journey. This approach helps bridge diagnostic gaps, offering a
visual tool for practitioners to detect patterns and discrepancies
in patient data. Despite limitations such as language dependency
and validation scope, this system sets the stage for future
enhancements toward a more universally accessible and clinically
useful healthcare system.

Index Terms—medical diagnostics, multi-source diagnosis

I. INTRODUCTION

In modern healthcare systems, a patient often consults with
multiple specialists across different institutions, leading to
multiple diagnostic records. These records, though rich in
information, can often be fragmented and inconsistent [1]. As
a result, for chronic or complex illnesses, a single individual
may have many diagnoses, sometimes different and spanning
different time periods and institutions. While this multitude of
data sources should, in theory, provide a comprehensive view
of a patient’s health, it often results in the opposite: a frag-
mented, and occasionally contradictory puzzle of information
[2]. This overwhelming and fragmented landscape of patient
data can lead to gaps in understanding, potentially causing
misdiagnoses, redundant testing, and even treatment errors
[3]. Knowledge graph (KG) is a systematic way to connect
information and data points to knowledge. These graphs may
effortlessly combine intricate patient data in the context of
medical diagnostics, making them an appropriate solution for
managing discussed challenges [4].

This paper introduces an approach to tackle the prob-
lem of multi-source diagnostic data integration, a process
that involves combining diagnostic information from various
healthcare sources to create a cohesive patient health profile.
The problem is intriguing because resolving it has the potential

to significantly enhance diagnostic accuracy and treatment
efficacy. It’s particularly vital in genetic information and rare
diseases, where integrating scattered and specialized data can
lead to breakthroughs in understanding and treatment. While
previous efforts have made strides in improving data quality
and developing data exchange standards, they often fall short
in addressing the semantic integration of complex medical data
comprehensively. Our work aims to bridge this gap by not only
generating but also merging knowledge graphs from various
diagnostic sources, thereby offering a panoramic and unified
view of a patient’s medical history. This approach stands to
revolutionize how medical professionals access, interpret, and
utilize patient data for more informed decision-making.

In light of these considerations, the primary contributions
of this work are framed around three key research questions:
(RQI) How can individual knowledge graphs be generated
from raw medical texts? (RQII) What mechanism allows for
the merging of these individual graphs while highlighting
unique entities? And (RQIII) How can a visualization tool
assist medical professionals in understanding a patient’s com-
prehensive medical history? Addressing these questions, our
paper outlines the methodology for generating and merging
knowledge graphs, followed by an exploration of a visualiza-
tion tool designed for medical professionals.

The paper is structured as follows: Section II reviews related
works, while Section III presents the motivating scenario
behind our work. The technical details of our approach are
explored in Section IV while Section V and Section VI discuss
the experimental settings and results, respectively. Section VII
provides a discussion on our findings. Finally, we conclude
and discuss future work in the Section VIII.

II. RELATED WORKS

Different approaches and goals have been seen in the field
of building knowledge graphs from medical and biological
texts. In order to provide a more comprehensive representation
of medical situations, some research projects aim to augment
textual data with multiple notations that include genetics, pro-
teomics, symptoms, and more [5] [6]. Others are focused on
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developing knowledge graphs that are specialised to particular
illness types and provide in-depth insights into their complex
dynamics [7]. Moreover, some initiatives, such as [8] and
[9], aim to generate knowledge graphs straight from spoken
dialogues or utterances recorded in-context clinical encounters.
Authors of [8] proposed a method to construct a medical
knowledge graph directly from clinical conversations between
doctors and patients. Unlike this work, our approach aim
at providing a unified visualization that emphasizes patient’s
whole medical journey rather than predictive analysis from
singular clinical conversations. PrimeKG [5] serves as a mul-
timodal knowledge graph for precision medicine, integrating
data from 20 resources to offer insights across ten biological
scales, from protein perturbations to therapeutic drug actions.
[6] introduces the Clinical Knowledge Graph (CKG), an ex-
pansive platform designed to integrate diverse biomedical data,
including proteomics, to facilitate precision medicine. CKG,
encompassing over 16 million nodes and 220 million relation-
ships, aims to represent experimental data, public databases,
and literature while implementing advanced statistical and
machine learning tools to enhance proteomics workflows.
Differently from [5] and [6], our research is tailored towards
unifying diagnostic data from multiple healthcare centres,
providing a comprehensive visual picture of a patient’s medical
trajectory.

III. MOTIVATING SCENARIO

Consider a scenario where distinct diagnostic reports, gen-
erated at different times and by different institutions, capture
varied aspects of a patient’s health. A report from one hos-
pital might highlight specific findings that were either not
observed or not considered pertinent in another [10], [11].
The proposed system ingests diagnostic texts from various
sources and generates individual knowledge graphs. These
graphs, each representing a unique diagnostic perspective, are
then merged into a unified knowledge graph, as illustrated in
Figure 1. This integrated visualization accentuates common
entities and relationships using consistent colours and dis-
tinctly highlights unique entities or pieces of evidence from
each diagnostic source. By offering this consolidated view,
healthcare professionals are equipped with a panoramic under-
standing of an individual’s health trajectory. This enables more
informed decisions, ensures no detail is missed, and potentially
avoids redundant or misguided medical interventions, ensuring
the best possible patient care and improving personalized
medicine [5].

IV. MEDICAL KNOWLEDGE HARMONIZATION

The goal of our system is to transform fragmented di-
agnostic texts into a unified knowledge graph, providing a
holistic understanding of a patient’s medical history. This
transformation is achieved through a series of systematic
steps, as depicted in Figure 1, General Workflow. The figure
delineates our workflow through four pivotal macro-steps: 1)
Named Entity Recognition (NER), where entities are identified
from the raw texts; 2) Relationship Extraction (RE), where re-
lationships between identified entities are extracted; 3) Single

Source Graph Generation, which involves creating individual
knowledge graphs for each diagnostic source of each patient;
and 4) Knowledge Graph Integration, where these individual
graphs are amalgamated into a unified, comprehensive knowl-
edge graph.

A. Input Source Determination and Preprocessing

The system processes multiple diagnostic texts from varied
healthcare environments (Figure 1, Tools), reflecting different
stages of a patient’s medical history. It operates in two modes:
Data Ingestion Mode, which uses a structured dataset to
generate and integrate knowledge graphs, and Manual Mode,
where users manually input diagnostic reports for ad-hoc
analysis. In Manual Mode, reports are uploaded to a specific
folder (diagnostic reports), and the system then extracts and
integrates data into the knowledge graph, similar to the Data
Ingestion Mode. This flexibility allows for both comprehensive
and targeted analyses of patient diagnostics.

B. Entity Recognition and Normalization

Each diagnostic text (T1, T2, ... Tn) undergoes NER to iden-
tify medically relevant entities. This step utilizes NER tech-
niques and tailored for medical and biological texts, ensuring
accurate extraction of entities. For this critical task, our system
employs BERN2 [12], a state-of-the-art tool in the biomedical
domain, which is capable of recognizing and normalizing nine
different entities: Gene, Disease, Chemical, Species, Mutation,
Cell Line, Cell Type, DNA, and RNA. BERN2 adopts distinct
strategies for multi-task NER, ensuring accurate extraction of
entities by navigating through the intricate and domain-specific
language of medical and biological texts. Subsequent to the
entity recognition, BERN2 proceeds with the normalization
of these entities, utilizing dedicated methods that enhance the
precision and reliability of the identified entities within the
diagnostic texts.

C. Relation Extraction

After the entities have been recognized and normalized, the
system advances to the RE stage, which aims to decipher
the relationships between the identified entities within the
diagnostic text. For this endeavor, we use the capabilities
of Bio ClinicalBERT [13]. Bio ClinicalBERT is a model
developed for processing clinical text. It combines BioBERT’s
pretraining on biomedical literature with further training on
MIMIC-III notes, a database of electronic health records from
ICU patients. The model, trained on a variety of notes, is
designed to capture the nuances of clinical language [14].
Despite not being originally designed to discern relationships
between entities, the embeddings from Bio ClinicalBERT,
enriched with substantial biomedical and clinical contextual
information, can be leveraged to infer potential relation-
ships among the identified entities through a heuristic ap-
proach. It’s worth noting that our experiments also leverage
the MIMIC database, aligning our experimental setup with
the intrinsic knowledge and understanding embedded within
Bio ClinicalBERT, thereby ensuring a coherent setting.
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Figure. 1. High-Level Workflow for the system.

D. Knowledge Graph Generation

After extracting entities and their respective relationships,
the system leverages on these to construct individual knowl-
edge graphs for each diagnostic text, utilizing entities as
nodes and their relationships as edges to graphically illustrate
the information embedded within each text. Following the
generation of these individual knowledge graphs, the system
goes to the integration phase, wherein it amalgamates these
multiple graphs into a unified knowledge graph. This consol-
idated graph stands as a coherent synthesis of information,
amalgamating insights from all diagnostic sources and pro-
viding a comprehensive visual depiction of a patient’s entire
medical history. The visually integrated knowledge graph also
highlights common entities and relationships with consistent
colours.

V. EXPERIMENTAL SETTINGS

Here we delve into the specifics of how our research was
conducted, ensuring transparency and reproducibility.

A. Hardware Configuration

The study utilized the Caliban cluster at the University of
L’Aquila, which has multiple nodes with 40 processing units
for parallel execution in the ”mpi” environment. The tests ran
on a CentOS Linux 7.4.1708 system with an Intel Xeon E5-
2698 v4 CPU at 2.20GHz and 141GB RAM.

B. Dataset

Our study uses the MIMIC-IV-Note dataset (version 2.2),
featuring 331,794 discharge summaries and 2,321,355 radiol-
ogy reports, all de-identified for patient confidentiality ( [14]).
We focus on discharge summaries to analyze patients’ medical
histories. For ethics and replication, our dataset and code are

available at PhysioNet [14] and [15], respectively. To replicate
our preprocessed dataset, specific steps are required.

• Filtering for Discharge Notes: We selected discharge
notes from our database for their detailed summaries
of hospital stays, including diagnoses, treatments, and
medical histories.

• Extracting History of Present Illness: We used regex
parsing to extract this section, providing a detailed nar-
rative of the patient’s condition at the time of a specific
hospitalization.

• Adapting for Multiple Hospitalizations: For patients
with several hospital stays, we adjusted the data struc-
ture to isolate each hospitalization, enabling analysis of
medical condition progression across visits.

• Selecting Patients with Multiple Diagnoses: Our dataset
only includes patients with multiple diagnoses to focus
on complex or rare medical histories.

This process resulted in a dataset of 59,051 unique patients,
each with detailed hospitalization records and ’History of
Present Illness’.

C. Software Configuration

For the NER step we used (BERN2 [12]), an advanced
biomedical entity recognition service. The load bern2 model
function processes diagnostic reports to extract and structure
named entities for further use. For the RE step we selected
(Bio ClinicalBERT [13]), a variant of BERT that’s specialized
for clinical and biological texts. This model’s embeddings are
pivotal in our approach to relation extraction. For each pair
of entities in a report, embeddings are generated. Then, the
cosine similarity between entity pairs determines if a relation
exists, creating it if the similarity surpasses a predetermined
threshold fixed to 0,85. For the Knowledge Graph Genera-
tion we considered PyVis v.0.3.1 Accession date: 02/06/2023.
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Figure. 2. Knowledge graph resulting from Medical Report 1 of the
Experiment 1

The entities and relations derived from the aforementioned
steps are organized into individual knowledge graphs using
Networkx v.3.1 Accession date: 02/06/2023.

VI. RESULTS

The experiment we show (detailed in Section VI-A) presents
where the tool analyses the preprocessed dataset of 59,051
patients to produce knowledge graphs for numerous patients.
This hypothetical situation might be similar to situations in
which healthcare systems try to automatically create and
preserve knowledge graphs for a large number of patients to
aid in future consultations and plan creation.

A. Experiment 1: Automated Knowledge Graph Generation in
Data Ingestion Mode

Example Case: Patient #10001876. Number of associated
medical reports: 2.
Medical Report 1: Ms. presented for evaluation of urinary
complaints and after review of records and cystoscopy was
diagnosed with a stage III cystocele and stage I vaginal
prolapse, both of which were symptomatic. She also had severe
vaginal atrophy despite being on Vagifem. Treatment options
were reviewed for prolapse including no treatment, pessary,
and surgery. She elected for surgical repair. All risks and
benefits were reviewed with the patient and consent forms
were signed.
Knowledge Graph for Medical Report 1. In Figure 2,
we report the Individual Knowledge Graph generated by the
system for Medical Report 1. Here only 3 interrelated entities
have been extracted. Such graph is non informative with 7
entities and 13 relations.
Medical Report 2: She is a patient who presents with
rectocele after having a sacral colpopexy and supracervical
hysterectomy in for uterine prolapse and cystocele. At
that time, she had no rectocele at all. She has symptoms
of bulge and pressure in the vagina that has gotten worse
over the past few months. She also complains of feeling of
incomplete emptying. She states that after she goes to the
bathroom, she could go back and urinate some more. She
had some frequency, urgency symptoms, which had resolved
postoperatively. She also has resolved diarrhea after being
started on Zenpep. She is followed by Dr. and her fecal
incontinence has resolved as well as resolved diarrhea.”

Figure. 3. Knowledge graph resulting from Medical Report 2 of Experiment
1

Figure. 4. Knowledge graph representing the merging of Medical Reports 1
and 2 for Experiment 1.

Knowledge Graph for Medical Report 2. In Figure 3
we report the Individual Knowledge Graph generated by the
system for Medical Report 2
Merged Knowledge Graph of Experiment 1. Figure 4
shows the combined knowledge graph from Experiment 1,
highlighting the shared entity cystocele, found in both reports,
as a key connection point. This shared diagnosis suggests an
ongoing or recurrent condition, emphasizing the importance
of continuous monitoring and management. Recognizing such
common conditions is essential for tracking disease progres-
sion or recurrence, aiding healthcare professionals in tailoring
treatment plans to the patient’s long-term medical history and
current condition. Unique entities across reports, represent-
ing different medical conditions and treatments, are equally
critical. For instance, ’vaginal prolapse’ noted in the first
report, and ’rectocele’ and ’fecal incontinence’ in the second,
highlight separate medical issues the patient has faced. These
conditions—cystocele, vaginal prolapse, and fecal inconti-
nence—are interconnected pelvic floor disorders. They involve
the bladder bulging into the vagina, pelvic organ descent, and
loss of bowel control, respectively, often due to weakened
pelvic support ( [16], [17], [18]). This information is vital for
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TABLE I
COMPUTATIONAL TIMES.

Experiment Time Required
Single patient (between 2-6 reports) 20-50 seconds
Entire dataset (59,051 patients) 12-14 days

TABLE II
SPACE USAGE.

Graph Type Memory
average

Memory -
range

Memory (all
patients)

Single Knowledge
Graph

24 KB [6 KB - 42
KB]

6.39 GB

Merged Knowledge
Graph

56 KB [8 KB - 110
KB]

3.9 GB

understanding the comprehensive scope of the patient’s health
challenges and planning appropriate interventions.

B. Computational Time and Space Usage

Creating knowledge graphs for each patient in our large
dataset poses computational challenges. Our methodology
accelerates graph generation, yet processing time escalates
with dataset size, complexity of reports, and the quantity
of entities and relationships. We utilized BERN2 API for
NER, adhering to a 300 request limit per 100 seconds by
incorporating 3-second pauses, prolonging processing for our
dataset of 59,051 patients. The specific processing times are
outlined in Table I. Storage requirements also significantly
impact our experiments, with the space needed for individual
and merged graphs dependent on the complexity and details of
the diagnostic reports. Table II provides space usage statistics,
showing that individual graphs require a total of 6.39 GB,
while merged graphs need 3.9 GB.

VII. DISCUSSION

Addressing the complexity of healthcare information, our
system autonomously creates and combines knowledge graphs
from raw medical texts, navigating this crucial and challenging
domain. Given the enormous variety of medical and biological
entities present in healthcare, it was practical for us to narrow
our primary attention to a small number of biomedical entities.
This emphasis was seen in the studies, which showed the
system’s skill at locating, extracting, and connecting these
chosen elements to create knowledge graphs that depict a
clear and insightful narrative of a patient’s medical journey.
Focusing on a particular group of entities at this point allowed
for deeper and more accurate knowledge as well as opened the
door for methodical extension and inclusion of a wider variety
of entities in the system’s subsequent iterations. The experi-
ments demonstrated the system’s capability to accurately and
coherently navigate medical texts, generating individual and
merged knowledge graphs that highlight key entities and recur-
ring illnesses, essential for understanding a patient’s medical
history and refining therapeutic strategies. The visualization
tool emerged as a vital asset, offering medical professionals
an intelligible visual narrative of a patient’s medical journey,
enhancing understanding and diagnostic ability.

A. Bridging Health Gaps: Societal Benefits of Comprehensive
Medical Views

During brief appointments, some patients may find it diffi-
cult to remember and describe every medical exam, symptom,
or medicine they have ever experienced (older people or
people who are naturally reticent to retell every aspect of their
medical history). Our system addresses these challenges by
integrating multiple diagnostic reports into a unified visual
representation. This ensures that every patient, irrespective of
their background or communicative abilities, benefits from
a comprehensive record that encapsulates their entire health
journey.

B. Cost Efficiency

The proposed approach decreases the risk of unnecessary
medical exams by giving a comprehensive perspective of
a patient’s health, which saves public and private money.
Patients with complex medical histories, such as rare diseases,
benefit most from the system since it makes sure they receive
timely and effective care regardless of how many healthcare
professionals they consult.

C. Global Scalability and Integration into Existing Infrastruc-
ture

The system showed excellent scalability, handling a dataset
of 59,051 patients effectively, essential for managing the
expanding volume of medical data. It’s modular, allowing
updates or replacements of components (e.g., entity extraction,
relation prediction) without affecting the overall workflow.

D. Limitations and Threats to Validity

Input Accuracy: One of the foundational premises of our
system is the reliance on accurate and relevant input. It’s
necessary that users (namely, doctors) provide diagnostic texts
pertaining to the same patient. The system is designed to
compare and integrate these texts, and any discrepancy in the
input, such as including texts from unrelated patients, can lead
to misleading results.

Natural Language Dependency: Our current implemen-
tation is tailored for the English language. This is largely
because we utilize pre-trained tools, which are predominantly
trained on English medical and biomedical terminologies.
While the system demonstrates efficacy with English texts,
its applicability could be limited in regions with different
native languages. Expanding the system’s capability to cater
to diverse languages remains a future target.

Lack of Direct Baselines: It’s challenging to compare our
system directly with existing tools. While many tools extract
entities from biomedical text, there are no tools aiming at
integrating multiple texts into a unified knowledge graph.

E. Future Directions

As our system continues to evolve, one of our primary
goals is to ensure its accessibility and usability worldwide.
To achieve this, we are actively considering the incorporation
of multilingual models, which would enable the system to
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process and understand medical reports in various languages,
catering to a global audience. Moreover, a promising frontier
for our system lies in leveraging the intricate patterns within
the knowledge graphs. Our vision is to utilize dedicated pat-
tern recognition techniques that systematically analyze these
graphs, pinpointing recurring sequences or clusters of entities
and relations that could be indicative of specific medical
conditions or trajectories [19]. For instance, by analyzing
a vast number of knowledge graphs and tracing back the
diagnostic journeys of patients with a particular condition,
we might discern that certain entity relationships frequently
precede the diagnosis of that condition [20].

VIII. CONCLUSION

Healthcare, at its core, revolves around accurate and timely
information. In our study, we demonstrate the power of
software engineering to bridge gaps, connect dots, and pro-
vide a comprehensive view of a patient’s medical journey.
By integrating fragmented medical reports into a unified
knowledge graph, we ensure that no detail is missed. This
holistic approach amplifies the quality of care, particularly for
those who might struggle to articulate their medical experi-
ences. This research underscores the synergy between software
engineering and medical informatics, demonstrated through
a system adept at autonomously generating and merging
knowledge graphs from medical texts. The targeted focus on
specific biomedical entities showcased the system’s precision
in narrating a patient’s medical journey. The experiments
reflected not only the accuracy and utility of this system but
also its potential to significantly impact healthcare by aiding in
timely and informed decision-making. The potential healthcare
ramifications are profound. By reducing redundant medical
exams, we envision a path towards more efficient and cost-
effective healthcare. Moreover, we are committed to utilizing
the knowledge graphs to gain valuable insights, which will
help us develop proactive healthcare strategies and enable early
interventions.
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