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Abstract-Proper management of Emergency Rooms is needed
to improve healthcare and patient satisfaction. Predicting ac-
cesses and hospitalisation rates through Machine Learning ap-
proaches appears promising, especially when coupled with air
pollution and weather data. This work applies both Random For-
est and AutoRegressive Integrated Moving Average approaches
on data related to Brescia’s clinical and environmental data from
2018 to 2022 to predict daily accesses or daily hospitalisations
for cardiovascular and respiratory disorders. The predictions
adhere quite well to the actual data for Random Forest, but less
for AutoRegressive Integrated Moving Average. However, even if
the specific value is not always correctly predicted, the overall
trend seems to be rightly forecasted and performance metrics
are mostly satisfying. Although additional work is required to
improve their performances, results are encouraging and this sort
of geographically-localised time-series forecasting seems feasible.
Future developments will take into consideration the whole
province of Brescia.

Keywords-Forecasting; ER accesses; Hospitalisation; Pollution;
Weather.

I. INTRODUCTION

Being able to properly manage the Emergency Department
(ED) and Emergency Room (ER) is crucial to provide func-
tional healthcare and improve patients’ satisfaction [1]. This
leads to a strong need for accurately predicting visitor volume
and patient admissions to facilitate the planning of resources
and staff for the whole hospital.

Multiple researchers have tried to predict access and admis-
sion rates based on historical ED data by creating scores or
using deep learning (DL) or machine learning (ML) models
(like Recurrent Neural Networks, Logistic Regression, Ran-
dom Forest or Extreme Gradient Boosting) to forecast daily
accesses to the ER [2] [3], the possibility of a patient’s hospital
admission after going through the triage [4] or even the risk
of death [5]. Results were so encouraging, that others looked
for associations with the surrounding environment.

In fact, there is proof that weather affects one’s health,
especially for people who have specific illnesses or healthcare
needs. For example, there seems to be a link between the daily

temperature and ED admissions for cardiovascular diseases or
significant exacerbation of asthma in adults that visit ED [6]
[7]. Generally speaking, regarding cardiovascular disorders,
a worsening of the patient’s well-being and cardiac arrests
appear to be influenced by not only temperature but also
stressors like humidity and atmospheric pressure [8] [9].
Moreover, there is also proof of links between air pollution
and specific illnesses. Substances like PM2.5, PM10, NOx,
O3 and SO2 influence cardiac arrests [10], cardiac arrhythmia
[11], cognitive decline in adult population [12], COVID-19
incidence [13], development of chronic kidney disease [14]
or Type 2 diabetes [15]. PM2.5 and PM10 are also linked
to hospital admissions for cardiovascular [16] and respiratory
diseases [17]. PM2.5 levels also seem to be directly associated
with increased daily ED visits for ulcerative colitis [18], while
solar radiation is inversely associated with inflammatory bowel
disease admissions [19]. There also seems to be a correla-
tion between the number of hospitalised asthma patients and
both weather (i.e., temperature and humidity) and pollution
(i.e., PM2.5, PM10 and NOx) [20]. Finally, ML models (i.e.,
AutoRegressive Integrated Moving Average and Multilayer
Perceptron) have also been applied to try to predict accesses
to the ER by patients affected by infecting respiratory diseases
after being exposed to PM2.5 [21].

Some of these researches are based on long-term exposure
to pollution (even 20-years long [12]), while others are based
on a few days or even same day’s exposure [13] [16] and some
even on both [11]. Based on these literature pieces of evidence,
trying to predict either all accesses to the ED or hospitalisation
post-triage for specific illnesses, working on climate, pollution
and historical accesses time-series belonging to the same area,
seems feasible.

Each year, between 77000 and 80000 patients visit the ER
of the biggest Brescia hospital [22] and 24% of them get
admitted. This was the spark that ignited this work: trying
to accurately predict future accesses to one of Brescia’s EDs
based on both historical and local meteorological and pollution
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data.
This paper contains a description of the analysed materials

and applied methods, i.e., the datasets and the ML approaches
applied to them, in Section II, the reached results in Section
III, a comment on them in Section IV and a few final remarks
in Section V.

II. MATERIALS AND METHODS

In this section, the study design, analysed datasets (both
clinical and environmental data) and applied algorithms are
described.

A. Study Design

This study primarily aims to provide a daily prediction of
the amount of patients visiting the ER of a precise hospital
in the city of Brescia, Italy. Also, a forecast of the number
of hospitalised patients for specific disease classes has been
attempted. This retrospective study was performed based on
daily data (clinical and environmental) for a period from
January 1, 2018, to December 31, 2022. A four-year (i.e.,
2018–2021) dataset was used to train the forecasting models,
while the remaining data were used to test its forecasting
capability. The final dataset that is used to feed the predictive
algorithms is a combination of the clinical and the environ-
mental data.

B. Data Collection: Clinical Data

The original clinical dataset was given by a hospital in
Brescia to GPI for research purposes. The dataset contained all
anonymous ER access data for the period 2018-2022. For each
access (i.e., a person on a specific day) there were as many
rows as the exams the person had undergone; pre-processing
was made in order to have only one row for each ED visit
while maintaining the patient’s data (like the date of ER visit,
their age, sex and zip code of their home address, the list of
medical exams they were subjected to and, in case they were
hospitalised, their diagnosis as an ICD9-CM code).

The following is a description of this dataset.

TABLE I. BRIEF DESCRIPTION OF CLINICAL DATA.

Year Total accesses Median age Male percentage
2018 60176 55 49%
2019 60106 56 49%
2020 47205 58 52%
2021 49571 57 50%
2022 56631 56 51%

In 2018, 12% of patients were below 18 years old, 31%
between 19 and 49, 23% between 50 and 69, 34% above 70.
In 2019, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2020, 9% of patients were below 18 years old, 29% between
19 and 49, 27% between 50 and 69, 35% above 70.
In 2021, 10% of patients were below 18 years old, 30%
between 19 and 49, 26% between 50 and 69, 34% above 70.
In 2022, 12% of patients were below 18 years old, 29%

between 19 and 49, 25% between 50 and 69, 34% above 70.
Amongst the most recurrent diagnoses of the hospitalised
patients, through all years, were pneumonia and chronic heart
failure. Note that this dataset contains accesses of people living
not only in Brescia but also in the province of Brescia and
other places in Italy and abroad. However, what we included
in our final dataset is:

• Daily number of accesses to the ER, limited to those
patients coming only from the city of Brescia

• The rolling mean of the number of the same patients,
applying a seven-day window for calculation.

The following is a description of the dataset restricted to
Brescia.

TABLE II. BRIEF DESCRIPTION OF CLINICAL DATA (CITY OF BRESCIA).

Year Total accesses Median age Male percentage
2018 10389 56 46%
2019 10963 58 47%
2020 9835 61 50%
2021 11082 60 49%
2022 12597 60 49%

In 2018, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2019, 10% of patients were below 18 years old, 29%
between 19 and 49, 24% between 50 and 69, 37% above 70.
In 2020, 8% of patients were below 18 years old, 27% between
19 and 49, 27% between 50 and 69, 38% above 70.
In 2021, 9% of patients were below 18 years old, 28% between
19 and 49, 25% between 50 and 69, 38% above 70.
In 2022, 11% of patients were below 18 years old, 27%
between 19 and 49, 23% between 50 and 69, 39% above 70.

A little bit of contextualisation of this clinical dataset: it is
important to note that the area around Brescia suffered in a
substantial way from the outbreak of the COVID-19 pandemic
and the number of cases affected by coronavirus pneumonia
far exceeds the occurrences of any other diagnosis during
2020. It is possible to observe from these data, and this is
something already reported in previous studies [23] [24], that
the number of accesses to ER decreased significantly from
2019 to 2020: this is explainable because Italy was subjected
to a strict lockdown for several months that year. Hence it
was less likely, for example, for car accidents to happen or
for people wearing masks to get the flu.

C. Data Collection: Environmental Data

The environmental data have been supplied by the startup
Hypermeteo [25] under GPI’s specific request to match the
spatio-temporal dimension of the already-at-disposal clinical
dataset. The environmental data are defined per day and zip
code, guaranteeing spatial-temporal precision. These data are
obtained employing a mathematical model with a resolution
of 10kmx10km, corrected through normalisation and down-
scaling, applied to data by Lombardia’s Regional Environmen-
tal Protection Agency (ARPA [26]) weather stations. While the
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model was built for the entire Lombardia region, data were
extracted for the province of Brescia only and, for this initial
phase of the study, only data from the city of Brescia itself
have been analysed.

The reported variables are:
• Temperature (min and max values) (Tmin, Tmax [°C])
• Humidity (min and max percentage values) (RHmin,

RHmax [%])
• Precipitations (Prec [mm])
• PM10 and PM2.5 [µg/m3]
• NOx, SO2 and O3 [µg/m3]
• Total solar irradiance (SSWtot) [Wh/m2].
For each variable, safety ranges, provided along with the

dataset, were considered in order to give a label (i.e., zero or
one) to each value, to indicate if a value could be considered
safe or not. Depending on the type of variable, either lower
or upper bounds were considered, as reported in Table I.

TABLE III. SAFETY RANGES FOR ENVIRONMENTAL VARIABLES.

Environmental Lower and Upper Bounds
variable Min value Max value
NOx 25 µg/m3 -
PM2.5 15 µg/m3 -
PM10 45 µg/m3 -
O3 100 µg/m3 -
SO2 40 µg/m3 -
Tmin - -10 °C
Tmax 35 °C
RHmin - 15 %
RHmax 95 % -
Prec - 10 mm
SSWtot - 8500 Wh/m2

Regarding the dataset for the city of Brescia, the number of
occurrences in which the data were out of range was computed.
Occurrences are to be intended as a single day of the five years
considered, per single zip code (Brescia has 15 different zip
codes). In the 71% of occurrences, NOx results out of range,
it is the 60% of cases for PM2.5, 20% for PM10, 17% for the
max humidity, 7.7% for the precipitations, 7.4% for O3, 1.8%
for the max temperature and 0 cases out of range for SO2 and
the min temperature.

The issue of having multiple rows of data for the same date
(i.e., one row for each zip code) has been handled similarly as
in a project [27] found during our bibliographic research: each
environmental variable has been labelled with the zip code it
is referred to, and it is used as a column with daily values,
thus grouping all data belonging to the same date on one row.
Again, a clarification on the context: the area surrounding
Brescia is densely inhabited and industrialised, resulting in
one of the most polluted areas in Europe [28].

D. Predictive Algorithm: Random Forest

In order to predict future ER accesses based on our clinical
and environmental data, a Random Forest (RF) approach
was implemented on Python applying the open-source library
Scikit-learn [29]. This model was chosen based on an article
[30] that applied it to a temperature prediction problem: the

analogy with our dataset highlighted this approach as an inter-
esting candidate for this type of analysis. RFs apply sequential
splits to the data such that the separation is maximised in
regards to a homogeneity criterion resulting in a combination
of tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same
distribution for all trees in the forest [3]. The random forest
algorithm picks N random records from the dataset and builds
a decision tree based on them, repeatedly for the chosen
number of trees (in this case, 1000). The topic has been
tackled as a regression problem as we have considered the
target variable (i.e., daily accesses) as a continuous one.

Through the same library cited before, some metrics were
computed to evaluate the results: the Mean Absolute Error
(MAE), the Mean Absolute Percentage Error (MAPE) and the
Accuracy (Acc). Then, when the prediction of the number of
daily hospital admissions for cardiovascular and respiratory
pathologies was attempted, the Symmetric Mean Absolute
Percentage Error (SMAPE) was computed. This analysis was
applied expecting a more evident correlation between environ-
mental, especially pollution, data. These pathological classes
have been selected through their ICD9-CM codes.

The results that are reported in Subsection III-A, are based
on different combinations of the datasets, as we applied the
same model on the entirety of Brescia’s data, only on the
2 most important features and only on cardiovascular and
respiratory disorders data, respectively. In order to highlight
a possible lag effect based on 1- and 5-day lag assumptions,
which means that the observed data of previous days is used to
predict the volume of patient access on a certain day, climate
and pollution data were processed accordingly in order to
create two analogous additional datasets.
The different analyses that were carried out, trying to improve
the model’s accuracy and potentially spot specific patterns, are
divided into four cases:

• A; the RF algorithm was applied to the initial pre-
processed dataset, then on 1-day and 5-day lagged data
and, finally, only on the 2 most important features, as
computed by the model

• B; analogous to A, but the rolling mean feature was
discarded

• C; 1-day lagged data, no rolling mean, but the clinical
data were reduced to only the part linked to hospitalised
patients affected by cardiovascular pathologies, plus on
the 2 most important features

• D; analogous to C, but the clinical data belonged to
respiratory disorders.

Here, are reported the equations [33] for MAE (1), MAPE
(2), SMAPE (3) and Acc (4):

MAE =

D∑
i=1

|xi − yi| (1)

MAPE =
100

N

N−1∑
i=0

yi − ŷi
yi

(2)
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SMAPE =
100

n

n∑
t=1

|Ft −At|
(|At|+ |Ft|)/2

(3)

Acc =
TP + TN

TP + TN + FP + FN
(4)

E. Predictive Algorithm: ARIMA

Trying to improve the results given by the algorithm de-
scribed in Subsection II-D, a ML model for multivariate time-
series prediction was applied to the same data. Specifically, an
AutoRegressive Integrated Moving Average (ARIMA) model
[31], a popular algorithm used in time series analysis and
forecast, through the application of the auto-ARIMA process
[32] in Python. The basic idea of the ARIMA model is to
use a certain mathematical model to describe the random time
series of the data, then predict the future values based on the
past, and present values, through a so-called autoregression.
An ARIMA (p, d, q) model can be described in the following
equation (5).

(1−
p∑

i=1

φiL
i)(1− L)dXt = (1 +

q∑
i=1

θiL
i)εt (5)

where L represents the lag operator, p represents the number
of autoregressive terms, q represents the number of moving
average terms, d represents the degree of differencing and ϕ,
θ and ϵ are relevant parameters.

The performance metrics applied to the model to evaluate
its performances were MAPE (2), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE) and Akaike Information
Criterion (AIC). Here, are reported the equations for MSE
(6), RMSE (7) and AIC (8).

MSE =

D∑
i=1

(xi − yi)
2 (6)

RMSE =

√
1

n
Σn

i=1

(di − fi
σi

)2

(7)

AIC = 2k − 2 ln(L̂) (8)

III. RESULTS

In this section, the obtained preliminary results are reported.
The algorithms have been fed with different datasets that
always include only data related to patients whose home
address’ zip code is inside the city of Brescia.

A. Results: Random Forest

Following, a series of plots is reported: they represent the
predicted values (plotted in violet) versus the actual values
(plotted in blue) for the year 2022, coming from the different
input datasets as explained in Subsection II-D.
First, the results of case A. Figure 1 displays the actual test
values and the predicted ones for the 1-day lagged data.

Here, the obtained metrics for the 1-day lagged dataset (i.e.,
MAE and Acc) and for the 2 most important features, i.e.,

Figure 1. Random Forest’s prediction and actual values for 1-day lagged
data.

rolling mean and day (referring to the number of the day in a
month), (i.e., MAEmostimp and Acc mostimp) are reported:

• MAE = 5.1
• Acc = 84.42%
• MAEmostimp = 5.57
• Accmostimp = 82.63%
Now, the results of case B. Figure 2 displays the actual

test values and the predicted ones for the 1-day lagged data
missing the rolling mean.

Figure 2. Random Forest’s prediction and actual values without considering
the rolling mean.

Here, the obtained metrics are reported (i.e., MAEmostimp

and Accmostimp refer to features day and month):
• MAE = 6.33
• Acc = 82.44%
• MAEmostimp = 7.49
• Accmostimp = 79.29%
For case C, the actual and obtained predicted data are

displayed in Figure 3.

Figure 3. Random Forest’s prediction and actual values for cardiovascular
diseases’ hospitalisations.

The obtained metrics were (with rolling mean and day as
the most important features):

• MAE = 0.51
• MAEmostimp = 0.49
Case D’s plot of predicted and actual values for respiratory

pathologies is Figure 4.
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Figure 4. Random Forest’s prediction and actual values for respiratory
diseases’ hospitalisations.

The obtained metrics were (with rolling mean and day as
the most important features):

• MAE = 1.09
• SMAPE = 67.9%
• MAEmostimp = 1.23
• SMAPEmostimp = 74.9%

In this case, SMAPE was computed, instead of MAPE and
Acc, due to the presence of 0 values in the test array.

B. Results: ARIMA

Here, the results obtained with the auto-ARIMA algorithm
are shown: they represent the predicted values (plotted in
violet) versus the actual values (plotted in green) for the year
2022. This prediction is obtained by feeding the initial dataset
to the algorithm. The plot of the actual test values and the
predicted ones for the same-day data is reported in Figure 5

Figure 5. ARIMA’s prediction and actual values for same-day data.

The obtained metrics were:
• MAPE = 15%
• MSE = 39.5
• RMSE = 6.3
• AIC = 9272.7

IV. DISCUSSION

Results reported in Subsection III-A only refer to 1-day
lagged data because, when the same process was applied to
the same-day data and the 5-day lagged data, results were
quite similar. Hence, in order to show the model performances,
the former was chosen as it seemed to be the best logical
approach. Results reported in Subsection III-B only refer to
same-day data as it was the outcome of an early analysis of
the ARIMA model application to these datasets, thus only the
initial valuations have been implemented.

Visually comparing both models, predictions coming from
the RF algorithm (Figure 1, 2, 3 and 4) appear to adhere better
to the actual data when compared with the ARIMA one (Figure

5). However, even if the specific value is not always correctly
predicted, the overall trend seems to be rightly predicted. This
also happens while changing the considered features, despite
removing historical data like the rolling mean (Figure 2), thus
relying more on the environmental ones. In fact, the forecast
values are underestimated, but the trend is followed quite well.
Still, generally, the RF model also predicts peak values (Figure
4), i.e., surges in hospitalisations, quite aptly.

Please note that when analysing specific pathologies, the
number of hospitalisations is limited to a few people every
day and, sometimes, even none. This is particularly noticeable
as, in this work, only the city of Brescia’s data are used and
it is more obvious for cardiovascular disorders rather than the
respiratory ones, at least during the considered period.

Beyond the visual inspection, the metrics results reported
in Subsection III-A show that the Acc for the RF model
decreases when discarding the rolling mean as an input feature,
but only of 1.98% and the error on the predicted number of
accesses (i. e., MAE) increases from 5.1 to 6.33. This seems to
suggest that when using the historical data through the rolling
mean, the prediction could still be improved, but also that
when this feature is ignored, the forecast performances do not
dramatically worsen. Similar reasoning can be applied to the
approach that uses the two features computed to be the most
important ones, which behaves even less precisely.

Results for the RF application to cardiovascular and res-
piratory data seem to output better punctual predictions, but
MAE values are smaller because of the lower values of daily
hospitalisations (when compared to daily general accesses) and
SMAPE is quite high. This could be due to the nature of the
dataset itself as it is quite small. Regarding the ARIMA metrics
reported in Subsection III-B, the listed AIC value is the one
belonging to the best model identified by auto-ARIMA and
the MAPE value represents a low, but acceptable accuracy.
As expected by the visual inspection, though, MSE and RMSE
values are not adequate.

Based on the aforementioned decrease in ER accesses
during 2019 and 2020 due to the COVID-19 pandemic, an
attempt at training the models only on 2018 and 2019 data
(and still testing them on 2022 ones) was made, hoping to
improve the preciseness of the predictions, but, surprisingly,
in vain. In fact, the hypothesis was to discard the out-of-the-
ordinary data so that the predictions computed merely on the
historical data could be more precise. The results’ worsening
could be further evidence that the previously obtained results
were not only due to historical data but also to environmental
info which influences the correctness of the forecasting.

V. CONCLUSION AND FUTURE WORK

This work represents a starting point towards the time-
series analysis of historical and environmental data for the
prediction of ER accesses and hospitalisations in a specific
geographical area. The objective was only partially reached
as this is a demanding field of application, but results were
generally promising and, under these premises, a predictive
analysis seems feasible. Considering that there are no other
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truly comparable works in the international literature, these
performances are even more encouraging. This being said, the
obtained results cannot be generalised as they were achieved
by analysing a period greatly made up of COVID-19-ridden
years and a quite limited geographical area, so they can only
be used to comment on this specific frame. The performances
could dramatically differ if the analogous pre-processing and
the same models were to be applied to other contexts or even
just on a longer and more stable period.

Future developments of this work will, of course, include
data belonging to the entire province of Brescia and a continu-
ous search for more precise results, with the hope of moving to
ever-growing datasets. It would also be interesting to test other
ML algorithms or apply different pre-processing steps. Never-
theless, any attempt, whether it be successful or inconclusive,
will still gather valuable insight on this yet to be delved into
the topic and shed light on how our surrounding environment
influences human health. This may be the offset of a new
way of managing ER all over the world, monitoring entire
populations and geographical areas, with the final objective of
enabling a smart real-time predictive analysis able to improve
the quality of healthcare and people’s quality of life.
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