
Federated Learning for Distributed Sensing-aided Beam Prediction in 5G Networks 

 

 

Adwitiya Pratap Singh  

Hughes Systique Corporation 

Gurgaon, Haryana, India 

e-mail: Adwitiya.singh@hsc.com 

Chitwan Arora 

Hughes Systique Corporation 

  Gurgaon, Haryana, India  

e-mail: chitwan.arora@hsc.com                                          

Abheek Saha                                        

Hughes Systique Corporation 

  Gurgaon, Haryana, India 

e-mail: abheek.saha@hsc.com

Abstract— The increasing demands for higher data rates have 

caused newer communication systems to move towards higher 

frequency bands. However, during the initial network access, 

the user faces a problem of high beam selection, due to the rich 

scattering environment and the large number of possible beams. 

For high mobility and low latency applications, such as 

vehicular communications, high beam selection overhead is a 

very big problem. Sensing-aided beam prediction using 

environmental sensing information as well as telemetry data can 

be a possible solution to this issue. In this paper, a novel 

approach is suggested that combines real-time series Global 

Positioning System (GPS) data, as well as terrain related   data 

for beam selection. Using the DeepSense dataset, we 

demonstrate that distributed machine learning algorithms, 

while being computationally tractable, can choose the top N 

beams with an accuracy that is comparable to that of centralized 

learning, but faster than it. The novelty of our work lies in the 

usage of this data set to simulate federated learning and trying 

different techniques to increase accuracy.    

Keywords-Wireless Technology; Artificial Intelligence; Deep 

Learning; Federated learning. 

I.  INTRODUCTION  

Current and future communication systems are moving to 
higher frequency bands. The large available bandwidth at the 
high frequency bands enables these systems to satisfy the 
increasing data rate demands of the emerging applications, 
such as autonomous driving, edge computing, and mixed 
reality [1]. These systems require the deployment of large 
directional antennas at both the Transmitter (Tx) and 
Receiver (Rx). Using directed beams to connect to the 
network introduces a new problem, which is choosing the 
optimal beam from the array of beams present at the 
transmitter. The overhead for the exhaustive scan to find the 
beam is way too high for applications that need low latency, 
hence we have our pain point. The way we are moving 
towards solving this problem is machine learning for 
optimization and forecasting the beams.  

Sensing aided beam prediction seems to be the foot in the 

right direction: The mm-wave communication dependence 

on Line-Of-Sight (LOS) links between Tx and Rx really 

brings into play the sensory aid that can be provided by 

sensors on the transmitter and the receiver side. With the aid 

of GPS and image sensors, the transmitters can decide in 

which direction to point their beams by seeing the traffic 

distribution and identifying the receivers through visual 

sensors. This will narrow down the search done by the 

exhaustive scan during the initial access (as described in [2]). 

Recent work on sensing-aided beam prediction has shown 

unprecedented results in using the sensory data, such as Red, 

green, blue (RGB) images, LIDAR, radar, and GPS positions 

for the beam prediction problem. However, the previous 

research is mainly done on synthetic datasets (datasets which 

have data that have been simulated or created virtually). 

While these datasets provide us insight into how the real time 

model would perform, there is still a disparity between 

modelled performance and real-time performance. Some 

features, such as obstruction and time of day can only be 

simulated on a real time dataset. This is what we are trying to 

achieve in this dataset. In this research paper, we will 

commence by reviewing the previous work conducted in this 

area in Section 2, followed by an in-depth examination of the 

problem in Section 3. Section 4 will focus on the discussion 

of federated learning and the distinct aggregation methods 

employed. Subsequently, we will present our solution 

implementations and results in Section 5 and Section 6, 

respectively. We conclude our work in Section 7. 

II. RELATED WORK 

There has been previous work done on synthetic dataset. 

In [3], the authors found out that in a raytracing 

implementation the deep neural network model was able to 

accurately predict the beam parameters up to 90%. The paper 

also investigated how multiple Remote Radio Heads (RRH) 

working together could be used to increase prediction 

accuracy and how they could be implemented using a hybrid 

edge cloud model. 

The authors of [4] analysed multiple types of Deep Neural 

Networks (DNN). With the use of multi-modal data such as 

LIDAR and using separate machine learning models, they 

achieved an accuracy of 91.2%.  

The authors of [5] propose a beam selection model based 

on Convoluted Neural Network (CNN). Their CNN model 

for the latter should contain 6 layers (2D) and 1 linear layer. 

GPS data was used at this point, plus the added four linear 
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layers. Their results showed 96.9% accuracy in the top 10 

accuracy. 

The authors in [6] focused on LIDAR data. They also 

explored the use of federated learning using different clients 

as well as using CNNs on the different nodes. The LIDAR 

used was from mounted sensors of the vehicles. 

The authors in [7] tested the federated network used for 

mmWave beam-selection against a backdoor attack 

algorithm. Their attack basically consisted of creating 

obstacles on the road at specific locations. The main purpose 

of the attack was two-fold (1) to force the model to output a 

beam in a desired direction (2) to send a low signal strength 

beam. 

In [19], the authors propose a distributed learning 

framework that leverages multiple vehicles as clients, each 

equipped with mmWave communication capabilities. The 

paper explores the effectiveness of this approach and 

demonstrates its ability to achieve accurate beam selection in 

vehicular mmWave systems.  

Compared to the previous research, the novelty of our 

work is two-fold. As opposed to the works cited above, we 

have combined time series GPS data and stacked it with 

image data from the infrastructure and measure the beam 

selection accuracy. This will provide us with results that we 

can expect during practical deployment. 

III. PROBLEM OVERVIEW 

In an mm-wave wireless network, beamforming is an 

important technique used to improve the efficiency and 

capacity of the network. Beamforming involves adjusting the 

directionality of the antenna beams to focus the signal 

towards the intended receiver, rather than broadcasting it in 

all directions. This technique can be particularly effective in 

dense urban environments, where there are many obstacles 

and scattering sources.  

 

 

 

         

 

 

 

The selection of the optimal beam for a given user is a 

rich target for machine learning based algorithms since there 

is no deterministic way to achieve this other than an 

exhaustive search [8]. In the first generation of machine 

learning algorithms, as shown in Fig. 1, gNodeB would be 

running in isolation. The data would be fed separately, and 

models would not be trained on each other datasets which 

would not allow the models to be apprised of different traffic 

distributions that are viewed by neighboring gNodeBs. 

In a real-life deployment, each gNodeB would have a 

view of only a specific location/scenario. To create and run a 

centralized model, the gNodeB should have access to all 

possible data or scenarios. However, it would be 

prohibitively expensive to get the data in one centralized 

place. Therefore, the practical solution would be to move 

towards a distributed model. To properly allocate the beam 

index in a 5G deployment, a gNodeB can use the data of other 

gNodeBs around it. By sharing information with nearby 

gNodeBs, each can better understand the overall network 

conditions and adjust its beamforming accordingly. Data 

sharing requires nodes to collaborate even though their data 

may be different in terms of distribution, quality, and 

quantity. 

However, there are significant challenges to the data 

sharing approach as well. Non-linear aggregation can cause 

the model to move in the opposite direction of the actual 

convergence point, so an optimized aggregation technique 

must be implemented. Sharing data in real-time also requires 

a certain amount of bandwidth that sometimes cannot be 

allocated due to external non-controllable factors [9]. Data 

sharing also brings about the risk of breaches in the network 

as discussed in [10]. 

In the context of V2I (Vehicle to Infrastructure) 

communication, data sharing has several advantages over 

centralized learning, such as the reduction volume of data and 

consequently latency. Furthermore, since each device can 

participate in the training process without the requirement for 

a robust central server, computing resources are employed 

more effectively. For instance, gNodeB can use a trained 

model to choose the appropriate beam for each car in an area 

where it detects numerous vehicles. Like this, gNodeB can 

utilize its learned model to modify its beamforming to avoid 

a certain direction if it detects high interference in that 

direction. 

 

IV. FEDERATED LEARNING 

A. Approach to using Federated Learning  

Federated learning addresses the challenges as mentioned 

in the problem overview section. In our solution, as shown in 

Fig. 2, the gNodeB will identify the nearby towers and let 

them know they have similar data that can aid their beam 

prediction algorithms as well. There are known challenges 

for handling different modalities of data and optimizing the 

training process for every node is a big challenge [11] which 

we discuss in the next section. 

Figure 1. Centralized Beam-selection using AI. 

Individual beam prediction models with no sharing 

Server 2 
 

Server 3 
 

Server 1 
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B. Some downsides and their solutions 

Expensive communication is a huge bottleneck in 

federated learning networks. Since there are millions of end 

devices that are usually connected in the network that at any 

time might be aiding the global model, the computation can 

be slower by many magnitudes [12]. Another problem is 

system reliability; if the network is comprised of many end 

devices such as vehicles, at any given time during a training 

procedure, a local device can dropout due to local system 

failure [13], which can lead to spurious results. Another issue 

is scalability, which also plays a big role, as we cannot waste 

much time during image feature extraction. To mitigate these 

issues, our task is to develop an efficient extractor that is not 

computationally intensive. To reduce the computation 

magnitude, we tried one of two methods: (1) to reduce total 

communication rounds of federated learning and (2) to try to 

reduce the data that is being transferred in the network. 

Hence, when we take the gNodeB as the end devices, we are 

just transferring GPS coordinates in the federated network 

from the vehicles to the base stations, greatly reducing the 

size of data transferred than if we kept vehicles as local 

devices. This will also increase system reliability since the 

chances of one gNodeB going down is significantly lower 

than the failure of a vehicle. To increase the scalability, we 

are using a computationally efficient image extractor rather 

than heavy transfer learning models to extract features from 

base station images. 

C. Aggregation techniques used 

While there are many different aggregations models, the 

best working aggregation model worked with the algorithm 

used by Federated Stochastic Gradient Descent (FSGD). 

FSGD is an alternative to averaging in which the client 

models are updated using Stochastic Gradient Descent (SGD) 

[14] before sending them to the server for aggregation. The 

server then combines the updated models using a weighted 

average. Following are the steps in this aggregation 

technique: 

1) Local Computation 

Initially each model is initialized with the same weights 

rather than independent initializations since according to this 

article [15], common initialization causes better results. The 

base station acts as the local server where the deep learning 

takes place using SGD, also the place where the cars share 

their GPS locations for training. 

2) Model Update 

In this step, each party sends its local model update to a 

central server. The updates are typically compressed using 

techniques like quantization to reduce communication 

overhead. The global model update is given by: 

 

𝛥𝑤(𝑘 + 1) = [1]𝐾 ∗ ∑ (𝑁𝑖|𝑁)
∗𝛥𝑤𝑖(𝑘)

𝑘
𝑖=1             (1) 

 

Where in equation (1) delta wi(k) is the local model 

update of party ‘i’ at iteration k, N is the total size of the data 

held by all parties, and K is the number of parties. The 

weights (Ni / N) ensure that parties with more data contribute 

more to the global update. 

In this step, according to the figure each local server or 

base station needs to send the local model to the central 

server, this happens after all the epochs in that round of every 

client is completed.  

3) Aggregation 

In this step, the central server aggregates the global model 

update and sends the updated model parameters back to the 

parties as shown in equation (2). The aggregation can be done 

using different methods, such as weighted averaging, FSGD, 

proximal and others that have a higher privacy measure. In 

the case of FSGD after the weighted average is formed of the 

given clients then the difference between the current global 

model weights is computed after which we subtract the 

difference to move opposite to the rising gradient and 

towards the convergence. 

 

𝑤𝑡+1 ⇐∑
𝑛𝑘

𝑛
𝑤𝑡+1
𝑘

𝑘

𝑘=1
                         (2) 

 

We contrasted FSGD against two other techniques 

described below.  

Federated Averaging with Momentum (FedAvgM): This 

is an extension of the FedAvg technique that includes 

momentum in the aggregation step. The idea is to maintain a 

Server 

Ɵt
1 

Ɵt
2 

Ɵt
3 

Aggregation 

gNodeB 2 gNodeB 1 

Figure 2. Federated learning from data of multiple gNodeB global 
model creation using aggregation techniques. 

 

gNodeB 3 
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running average of the model weights across multiple rounds 

to improve convergence.  

Federated Proximal: Federated Proximal is a technique 

that uses a proximal operator to enforce sparsity in the model 

updates. The proximal operator is applied to the global model 

parameters before they are sent to the clients, and to the client 

updates before they are sent back to the server. This helps to 

reduce the communication overhead and improve the 

efficiency of the federated learning process. 

 

V. IMPLEMENTATION 

A. Dataset 

We have implemented our model on the use case of 

vehicle-to-infrastructure, specifically scenario (32-34) 

according to the DeepSense6G dataset [16]. The testbed for 

getting data for these scenarios has two units: Unit 1 (a 

stationary unit), which acts as the base station, and Unit 2 (a 

vehicle), which represents the mobile user. Unit 1 is equipped 

with the following devices: 

1) A mmWave reciever  

2) RGB Camera 

3) 3D LIDAR  

4) Radar 

5) GPS 

 

A scenario is a dataset collected from a combination of a 

transmitter (deepsense testbed 1) and receiver (vehicle) at a 

certain location. These scenarios differ from each other in 

terms of either their location or time of day. We use the 

different scenarios to get the independent behavior of the 

gNodeB. 

Each scenario is a temporally ordered combination of 

multiple types of data, which is recorded in every 100ms. 

Corresponding to every timestamp there are 5 instances of 

image data and 2 instances of GPS data. Our algorithm will 

exploit the temporal information in the dataset using Gated 

Recurrent Units (GRUs) will be explained in the further 

section. 

B. Model 

The model receives two inputs: a sequence of position 

coordinates and an image. After batch normalization and 

Rectified linear activation unit (ReLU), the image is run 

through a CNN with four convolutional layers. After being 

flattened and passing through a fully connected layer with 

128 units, batch normalization, and yet another ReLU 

activation function are applied to the output of the final 

convolutional layer. 

The position coordinates are routed via a GRU layer as 

shown in Fig. 3 with two layers and 64 hidden units after 

being first embedded using a linear layer. A fully connected 

layer with 64 units receives the output of the GRU layer at 

every time step. Here we use the gated recurrent unit for 

processing position data since this data is temporally 

corelated. This step allows us to gauge the movement of the 

car in play. Long Short Term Memories (LSTMs) were also 

considered in this step but as our aim was to make this model 

as computationally inexpensive as possible, we went forward 

with the GRU, as shown in the figure below as well as the 

baseline solution [17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outputs of the CNN and the GPS model are 

concatenated, and then passed through another fully 

connected layer with 128 units, followed by another ReLU 

activation function. Finally, the output is passed through a 

linear layer with number of classes units, which produces the 

final classification output. 

The model uses dropout regularization with a rate of 0.5 

to prevent overfitting, and batch normalization to speed up 

training and improve the model's ability to generalize to new 

data. 

 

Figure 3. Visual representation of the GRU architecture used to 
learn the GPS data [9]. 

 

 

 

Figure 4. Focal loss representation of changing the 

modulating factor gamma on the loss [22]. 
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VI.  RESULTS 

There are three phases in the solution that predicts the 

optimal beam index based on the multi modal data. In the 

first, data collection phase the data from local vehicles to be 

sent to gNodeB. Over here, the local gNodeB are initialized 

with the same model, without any fine tuning or aggregation 

from other gNodeB. In the second model update phase, every 

gNodeB shall send their model to the central server to be 

aggregated using federated stochastic gradient descent. All 

the models shall be aggregated to be sent to the local gNodeB 

for the next round. We tested out multiple local epoch 

numbers and came to the optimal number of 5 epoch per 

round. In the last phase, the updated model is sent to the local 

gNodeB to help implement the beam selection using the local 

data. 

 We can see in Fig. 5 that, after 10 rounds (each 

containing 5 epochs), the accuracy seems to be stagnating, as 

noted by the best fit line. We are emphasizing the minimum 

accuracy amongst the peaks since that is the result after 

aggregation. This dip in accuracy is due to the new scenario 

data weights that is introduced to the global model, it maxes 

out at 80% accuracy in beam selection. To understand why 

this happened we compared the baseline model to the 

centralized as well as centralized multi modal model to find 

the disparity that we will face in accuracy. 

The centralized implementation is identical to the 

federated model except that we used the entire dataset at one 

node to train the model at once. Since we have a non-IID 

dataset this is better in terms of accuracy. But as we move 

towards the real-world application, the processing time 

consumed in training the entire dataset at once will incur a 

high latency. As seen in Table I, the best federated model 

results do lag the centralized model, but it covers in time to 

process, since parallel processing of three models at three 

different nodes allowed the model to train 37% faster on the 

CPU. This would be increased even further if the data is 

loaded on to the GPU. 

A further consideration is that in every scenario there was 

a different amount of data available to it, and since the data 

was already non-Independent and identically distributed 

(non-IID) we used focal loss to penalize our model. In the 

focal loss as seen below the modulating factor reduces the 

contribution to the loss from easier examples such as ones 

which have high frequency in the dataset and extends the 

range in which an examples receive low loss [18]. We kept 

the modulating factor to 5 (shown in Fig. 4) as it provided us 

with the best results. 

 

In Table II, we can compare the different aggregation 

techniques used during federated learning. As mentioned 

before in the implementation section, we know that the 

federated stochastic gradient descent worked best amongst 

all. This can be corroborated with theory as well since FSGD 

is slightly immune to the non-IID imbalanced dataset since it 

allows for more local model updates. The use of sampling 

only a subset of the local data to perform the local updates 

helps FSGD pay less attention to outlier data, as well as 

making the gradient correct. This is very important when not 

using such a large dataset such as ours, as well as having a 

small number of nodes. Although the performance could be 

further improved if we were able to introduce more types of 

scenarios of V2I from the Deepsense dataset hence increasing 

our number of nodes. 

Models 
Top 5 of 

64 

Top 10 of 

64 

FSGD 64 % 80 % 

Proximal 60 % 75 % 

Fed Avg 65 % 76 % 

Models 
Top 5 of 

64 

Top 10 

of 64 

Baseline model (GRU) 77 % 80% 

Centeralized model 83% 90% 

Federated Model 64% 80% 

TABLE I. RESULTS OF DIFFERENT MODELS USED.  

 

 

 

Figure 5.  (a) Displays the accuracy chart of the federated learning model through all the rounds (b) shows the decreasing loss of the same 
federated learning model (c) the accuracy of model that has the same architecture as model before but in centralized environment. 

 

 

TABLE II. RESULTS OF DIFFERENT AGGREGATION TECHNIQUES. 
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VII. CONCLUSION AND FUTURE WORK  

In this paper, we have demonstrated the use of FSGD 

based federated learning optimal beam selection. We used aid 

from sensors to allow a multi-modal model accurately predict 

the beams. The use of other sensors can also prove to be a 

viable option in sensor-aided beam prediction such as 

accelerometers and gyroscopes. Different aggregations 

techniques can be explored to analyze the resultant effect in 

the performance of federated learning. The federated model 

falls prey to overfitting if given a small number of clients, we 

can investigate the behavior by varying the number of active 

clients in federated learning.  

In conclusion, sensing-aided beam prediction is a 

promising solution for the challenges faced by mmWave 

communication systems. The utilization of sensory data 

collected by various sensors can guide the beam management 

process and significantly reduce beam training overhead. In 

real-life deployment it is impractical to get all the data at one 

centralized place for training as a result federated learning 

can be used as a preferable training solution. Although it is 

noticed that the accuracy of the federated model is lesser than 

that of centralized model, we can see that we have a trade of 

between accuracy and practical realization of latency. Our 

work received a top 10 running accuracy score of 80%. 

Federated stochastic gradient descent produced the best 

results in terms of aggregation techniques.    
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