
Comparison of Code Constructions Suitable for High-Throughput Decoding

Sergei Semenov

HiSilicon

Lund Research Center, Sweden

e-mail: sergei.semenov@huawei.com

Jiye Liang

HiSilicon

Beijing, China

e-mail: liangjiye@huawei.co

Mingxu Zhang

HiSilicon

Beijing, China

e-mail: zhangmingxu2@hisilicon.com

Abstract—Two classes of codes allowing high-throughput

decoding: Spatially Coupled Low Density Parity-Check (SC-

LDPC) codes and staircase codes are compared. Accumulate

Repeat-Jagged (ARJ)-based SC-LDPC codes provide better

performance and lower complexity for Soft-Decision Decoding

(SDD). However, the serious drawback of this construction is

the severe performance degradation with code rate increase.

The decoding complexity of SDD might still be too high to

provide very high throughput. Reed-Solomon (RS)-based

staircase codes under Hard-Decision Decoding (HDD) provide

quite good performance with low decoding complexity.

Moreover, the performance changes very smoothly with code

rate increase.

Keywords-SC-LDPC codes; Generalized Product Codes;

staircase codes; high-throughput decoding.

I. INTRODUCTION

Future Beyond-5G use cases are expected to require
wireless speeds in the Terabit/s range. This sets a number of
tough challenges on the physical layer and especially on the
Forward Error Correction (FEC). The code constructions used
in current 3GPP specs can hardly be used to provide this level
of throughput under channel conditions considered in use
cases. Apparently, some specific requirements should be
applied to the choice of a code construction allowing high
throughput decoding. The decoding complexity should be low
enough and the decoding algorithm should be suitable for a
high level of parallelization. Especially useful for high
throughput decoding are codes with high locality property
allowing the decoder to use structures that are independent of
code length in terms of complexity, storage requirements and
latency.

Spatially coupled codes are known for both high locality
and high performance. In this paper, we are comparing two
code constructions, one of which represents the class of SC-
LDPC codes and another the Generalized Product Codes
(GPC). The comparison is done not only in terms of
performance/complexity, but also the ability to create the code
family that can be easily adapted to different code rates is
considered.

The rest of this paper is organized as follows. Section II
describes the code constructions considered in this paper.

Section III describes the decoding of the considered codes.
Section IV addresses the comparison of the considered code
constructions with the focus on ability to provide high
throughput. The conclusions close the article.

II. CONSIDERED CODE CONSTRUCTIONS

The main principle of spatial coupling is that the
codewords 𝐯𝑡 of the block code defined by the parity-check
matrix 𝐇 , instead of being encoded independently, are
interconnected (coupled) with their neighbors at times 𝑡 −
1, 𝑡 − 2,… , 𝑡 − 𝑤 during the encoding procedure. This is
done in such a way that the sequence satisfies the condition

 𝐯𝑡𝐇0
𝑇(𝑡) + 𝐯𝑡−1𝐇1

𝑇(𝑡) + ⋯ + 𝐯𝑡−𝑤𝐇𝑤
𝑇 (𝑡) = 𝟎, ()

where matrices 𝐇0(𝑡), 𝐇1(𝑡), … , 𝐇𝑤(𝑡) result from the
decomposition of the original matrix 𝐇 [6]:

 𝐇0(𝑡) + 𝐇1(𝑡) + ⋯ + 𝐇𝑤(𝑡) = 𝐇, ∀𝑡. ()

It is easy to verify that both code constructions considered
in this paper satisfy (1) and (2), therefore, they define spatially
coupled codes.

A. SC-LDPC codes

The idea of SC-LDPC codes was proposed in [1]. It can be
interpreted as generalization of block and convolutional
coding where the convolutional coding is applied to the words
of some block code rather than to information symbols. One
of the possible ways of constructing SC-LDPC codes is
constructing with the help of coupling of protographs. Recall
that a protograph can be considered as a graph representing
the general structure of a graph-based code, e.g., LDPC code.
A protograph can be represented with the help of a Base-
Graph (BG) matrix 𝐁 where the element 𝑏𝑖,𝑗 shows the

number of edges connecting Check Node (CN) 𝑖 and Variable
Node (VN) 𝑗 in the protograph. The base-graph matrix 𝐁 can
be translated to the parity-check matrix 𝐇 by substituting each
element in 𝐁 by the corresponding permutation matrix of size
(𝑀 × 𝑀), where 𝑀 is the code lifting size. If the number of
edges connecting CN 𝑖 and VN 𝑗 is more than 1 and ,e.g., is

9Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

equal to 𝑘, the corresponding matrix of size (𝑀 × 𝑀) should
be obtained as a sum of 𝑘 permutation matrices. For example,
consider the protograph shown in Figure 1.

Figure 1. Example of an ARJ protograph.

The corresponding base-graph matrix and the example of
parity-check matrix of LDPC code with lifting size 𝑀 = 3 are
represented in (3) and (4):

 𝐁 = [
2 0 0 0 1
3 1 1 1 0
1 2 1 2 0

], ()

𝐇 =

[

1 0 1
1 1 0
0 1 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
1 0 0
0 1 0

1 1 1
1 1 1
1 1 1

0 0 1
1 0 0
0 1 0

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
1 0 0

0 1 1
1 0 1
1 1 0

0 1 0
0 0 1
1 0 0

1 1 0
0 1 1
1 0 1

0 0 0
0 0 0
0 0 0]

. ()

Notice that, without lifting, the protograph shown in
Figure 1 with BG matrix (3) cannot represent any code and
matrix (4) is not a unique representation of BG (3). It is
possible to construct the SC-LDPC code by splitting the
original BG into a set of BG matrices 𝐁𝑖 in such a way that

 𝐁 = ∑ 𝐁𝑖
𝑤
𝑖=0 . ()

where 𝑤 is the SC memory.
Then, the BG of the SC-LDPC code can be written in the

form of

 𝐁𝐿 =

[

𝐁0

𝐁1 𝐁0

⋮
𝐁𝑤

⋱
…
⋱

⋱
𝐁1 𝐁0

⋱ ⋱
⋱ ⋱ 𝐁0

⋱ 𝐁1

⋱ ⋮
𝐁𝑤]

, ()

where 𝐿 is the number of transmitted consecutive blocks
(initial protographs), i.e., defining the block code of length
𝑀𝐿𝑏𝑣 with the number of CNs 𝑀(𝐿 + 𝑤)𝑏𝑐, where 𝑏𝑣 is the
number of BG VNs and 𝑏𝑐 is the number of BG CNs. The rate
of the corresponding code is

 𝑅𝐿 =
𝐿𝑏𝑣−(𝐿+𝑤)𝑏𝑐

(𝐿+𝑤)𝑏𝑐
. ()

As can be seen from the structure of the BG matrix (6), the
CN degrees at both ends of the code are lower. It should be
noted that CNs with lower degrees (at the ends) improve the
BP decoding. This irregularity caused by the fact that 𝑤 top
and 𝑤 bottom blocks of CNs in (6) are of lower degrees is one
of the main reasons for the excellent performance of SC-
LDPC codes [4]: the small-degree CNs serve as starting points
for the convergence of the iterative decoding process such that
a “wave” of reliable information propagates towards the
middle of the codewords.

A BP decoding analysis of SC-LDPC codes shows that the
performance of the iterative decoder is improved significantly
by spatial coupling. In fact, the results in [4] and [5] show that
asymptotically, as 𝐿 → ∞, the BP threshold is boosted to that
of the optimal Maximum a Posteriori (MAP) decoder. Since
the MAP thresholds of regular LDPC ensembles with
increasing node degrees are known to converge to capacity, it
follows that spatial coupling provides a new way of provably
achieving capacity with low-complexity iterative BP
decoding [6].

 The Quasi-Cyclic LDPC (QC-LDPC) codes are of special
interest due to the fact that they have efficient encoder and
decoder implementations. If each (𝑀 × 𝑀) permutation
matrix substituting non-zero elements in BG is a circulant, the
corresponding matrix 𝐇 defines a QC-LDPC code. In [2]-[3],
the QC-LDPC codes were thoroughly studied and the
effective code construction with ensemble minimum distance
growing linearly with block size was proposed. This code
family is called ARJ construction. An example of a BG
representing ARJ construction is shown in Figure 1 [3].

The ARJ-based SC-LDPC code with memory 𝑤 = 2 was
chosen for the comparison in this paper. As it was mentioned
above the Belief Propagation (BP) decoding threshold
approaches capacity for all SC-LDPC codes with 𝐿 → ∞ .
Except this the ARJ-based SC-LDPC codes show better than
regular code based SC-LDPC codes minimum distance
growth rate [8]. That means minimum distance increases
linearly with block length 𝑛 and for ARJ-based SC-LDPC this
increase is more than for SC-LDPC codes based on regular
codes.

After simple optimization, the following partitioning of
the BG (3) was chosen

 𝐁0 = [
1 0 0 0 0
1 1 0 0 0
0 1 1 1 0

],

 𝐁1 = [
1 0 0 0 0
1 0 0 1 0
0 1 0 0 0

], ()

 𝐁2 = [
0 0 0 0 1
1 0 1 0 0
1 0 0 1 0

].

In case lifting sub-matrices are chosen to be a circulant

(leading to QC code), the optimization of the lifting

10Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

permutation sub-matrices is reduced to the choice of the
circulant powers. The corresponding lifting powers were
optimized for lifting size 𝑀 = 8.

B. Staircase codes

Staircase codes and braided block codes comprise the two
most known representatives of the GPC [17]. Moreover, both
constructions provide quite similar performance. For this
reason, it was decided to limit the scope of the GPC study to
staircase codes only.

Staircase codes introduced in [15] can also be considered
as an example of spatially coupling principle. The staircase
code construction combines ideas from recursive
convolutional coding and block coding. Staircase codes are
completely characterized by the relationship between
successive matrices of symbols. Specifically, consider the
(infinite) sequence 𝐵0, 𝐵1, 𝐵2 , … of (𝑚 × 𝑚) matrices 𝐵𝑖 . For
simplicity, consider each matrix 𝐵𝑖 as a binary matrix (it can
be generalized to non-binary case as well).

Block 𝐵0 is initialized to a reference state known to the
encoder–decoder pair, e.g., an (𝑚 × 𝑚) matrix of zero
symbols. Furthermore, select a conventional linear block code
(e.g., Hamming, Bose–Chaudhuri–Hocquenghem (BCH), RS,
etc.) in systematic form to serve as the component code; this
code 𝐶, is selected to have block length 2𝑚 symbols, of which
𝑟 are parity symbols. Encoding proceeds recursively on the
𝐵𝑖 . For each 𝑖 , 𝑚(𝑚 − 𝑟) information symbols (from the
streaming source) are arranged into the (𝑚 − 𝑟) leftmost
columns of 𝐵𝑖 ; we denote this submatrix by 𝐵𝑖,𝐿 . Then, the

entries of the rightmost 𝑟 columns (this submatrix is denoted
by 𝐵𝑖,𝑅) are specified as follows.

1) Form the (𝑚 × (2𝑚 − 𝑟)) matrix 𝐴 = [𝐵𝑖−1
𝑇 𝐵𝑖,𝐿].

2) The entries of 𝐵𝑖,𝑅 are then computed such that each

of the rows of the matrix [𝐵𝑖−1
𝑇 𝐵𝑖,𝐿 𝐵𝑖,𝑅] is a valid codeword

of 𝐶. That is, the elements in the 𝑗th row of 𝐵𝑖,𝑅 are exactly

the 𝑟 parity symbols that result from encoding the 2𝑚 − 𝑟

“information” symbols in the 𝑗th row of 𝐴.

Generally, the relationship between successive blocks in a

staircase code satisfies the following relation: for any 𝑖 ≥ 1,

each of the rows of the matrix [𝐵𝑖−1
𝑇 𝐵𝑖] is a valid codeword

in 𝐶 . An equivalent description, from which the term
“staircase codes” originates is suggested in Figure 2, in which
(the concatenation of the symbols in) every row (and every
column) in the “staircase” is a valid codeword of 𝐶.
The rate of a staircase code is

 𝑅 = 1 −
𝑟

𝑚
, ()

since encoding produces 𝑟 parity symbols for each set of 𝑚 −
𝑟 “new” information symbols.

At the end of the information sequence, termination can be
used to protect the final information block. In this case, after
𝐿 information blocks enter the encoder, 𝛬 additional all-zero
blocks enter the encoder. Note that the all-zero blocks are not
sent over the channel, but the resulting parity bits are
transmitted.

Figure 2. “Staircase” visualization of staircase codes [15].

Then, the actual rate of the staircase code, including the
tail, is given by

 𝑅 =
𝑚−𝑟

𝑚+𝛬
𝑟

𝐿

. ()

The staircase codes are well suited for HDD. In this case,
low complexity syndrome decoder can be used for decoding a
component code. Efficient, high-throughput table-lookup
based methods for decoding the component codes are
highlighted in [15]. On the other hand, SDD is also possible
to use for a component code decoder [16].

It is easy to verify that the structure of the staircase code
parity-check matrix is very similar to the structure of SC-
LDPC code parity-check matrix (6):

𝐇𝑆𝑡 = [

𝐇2 𝐇1 𝐇0 𝟎 … … 𝟎 …

𝟎 𝟎 𝐇2 𝐇1 𝐇0 𝟎 𝟎 …

𝟎
⋮

𝟎
⋮

 𝟎
 ⋮

 𝟎
 ⋮

 𝐇2

 𝟎
𝐇1

𝟎

 𝐇0

 𝐇2

…
⋱

]. ()

The difference is that, in the staircase code parity-check
matrix, the number of (2𝑚 × 2𝑚) submatrices 𝐇𝑖 is exactly
3, and each bunch of rows in (11) is shifted by the size of 2
sub-matrices. One more attractive property of the staircase
codes is that the minimum distance of the staircase code is no

less than 𝑑𝑚𝑖𝑛
2 , where 𝑑𝑚𝑖𝑛 is the minimum distance of a

component code [15].

III. DECODING OF THE CONSIDERED CODES

In this study, the SC-LDPC codes were decoded with the
help of SDD only. Decoding of the staircase codes was
considered for both SDD and HDD.

A. Decoding of SC-LDPC codes

The convolutional structure of SC-LDPC allows to define
a latency constrained decoder using a sliding window of size
𝑊 . Consider the blocks of VNs of size 𝑀𝑏𝑣 . Due to the
convolutional structure of matrix (6) two VN blocks with
indices 𝑖 and 𝑗 , such that 𝑗 ≥ 𝑖 + 𝑤 + 1 , do not share any
parity-check equation, i.e., VNs from these blocks cannot be

r

11Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

connected to the same CN. Window decoder exploits this
property of the convolutional parity-check matrix of SC-
LDPC code to define a decoder that deals with 𝑊 received
blocks such that 𝑊 ≥ 𝑤 + 1. It has been shown in [7] that
SC-LDPC codes decoded with a window decoder outperforms
LDPC block codes under equal latency.

The most common window decoding uses the VN-
centered strategy where a decoding window of size 𝑊 is
defined by the set of VNs for 𝑊 consecutive blocks (of size
𝑀𝑏𝑣 each). Some VNs on the left-hand side of the decoding
window then share CNs with VNs that have already moved
out of that window. CN → VN messages sent along the
corresponding edges are not updated any longer, i.e., they are
read-only. Similarly, some VNs on the right-hand side of the
decoding window share CNs with VNs that have not yet been
processed by the WD. The messages along the corresponding
edges are also not updated in the current window. In terms of
parity-check matrix, the sliding window decoder of size 𝑊
operates on a section of 𝑊𝑀𝑏𝑐 rows (CNs) and 𝑊𝑀𝑏𝑣
columns (VNs) of the matrix 𝐇𝐿, corresponding to 𝑊 coupled
blocks. Figure 3 depicts the decoding window of size 4 when
assuming an SC-LDPC code with memory 𝑤 = 2. The grey
rectangles correspond to the parts of parity-check matrix not
involved in the decoding process. The parts of parity-check
matrix corresponding to currently (at moment 𝑡) updated VNs
are marked with red. Other parts of parity-check matrix
belonging to the same window are marked with blue.
Performing updates on VNs in the window still requires
access to messages sent along edges connected to previously
decoded VNs, i.e., parts of matrix depicted by green.
However, those accesses are read-only. Moving the sliding
window to the next position means shifting it down by 𝑀𝑏𝑐
CNs and right by 𝑀𝑏𝑣 VNs.

Figure 3. Parts of parity-check matrix involved in window

decoding.

The window BP decoder consists of 𝑊𝑀𝑏𝑐 CNs and
𝑊𝑀𝑏𝑣 VNs. The decoding performance depends on the sub-
block size 𝑏𝑣 and the memory 𝑤 , rather than on 𝐿 . This
locality property allows using decoder structures that are
independent of 𝐿 in terms of complexity, storage requirements
and latency. Since the window size 𝑊 is a decoder parameter,
it can be varied without changing the code, providing a
flexible trade-off between performance and latency [7]. In
general, the storage requirements for the decoder reduces by a

factor of
𝐿

𝑊
 compared to the BP decoder operating on the

length of the whole codeword.

It is assumed that the window decoder uses all iterations
locally inside one window position and only after fully
decoding target VNs, the window is shifted to the next
position. That makes it possible to unroll the iterations, which
can significantly decrease the overall latency up to 𝑁𝐼𝑡𝑀𝑎𝑥
times (where 𝑁𝐼𝑡𝑀𝑎𝑥 is the maximum number of iterations),
keeping the area requirements not too high. The unrolled
window decoder requires CN network of 𝑁𝐼𝑡𝑀𝑎𝑥𝑊𝑀𝑏𝑐 CN
processors, rather than 𝑁𝐼𝑡𝑀𝑎𝑥𝐿𝑀𝑏𝑐 CN processors in case of
decoding the whole codeword.

The complexity of a decoder can be roughly estimated as
follows.

Each CN input should be updated once for each layer.
Considering the structure of sub-matrices (8) we can assume
that each VN in window is updated on average 3 times before
being used in CN processing, which translates to 3𝑊𝑀𝑏𝑣
additions (120𝑊 additions for 𝑀 = 8, 𝑏𝑣 = 5) per window
per iteration. On average, each CN is connected to 5 VNs, i.e.,
each CN processing involves on average 20 box-plus
operations for SP or 20 min operations for MS (since the CN
output should be generated for each of 5 connected VNs and
each CN output involves (5 − 1) = 4 box-plus or min
operations). That gives 20𝑊𝑀𝑏𝑐 = 480𝑊 box-plus or min
operations per window per iteration. We can assume that on
average 5𝑀 LLRs are updated at each layer, which translates
to 5𝑀𝑊𝑏𝑐 = 120𝑊 additions per window per iteration.
Then, the overall decoding complexity can be estimated as
240𝐿𝑁𝐼𝑡𝑀𝑎𝑥𝑊 additions and 480𝐿𝑁𝐼𝑡𝑀𝑎𝑥𝑊 box-plus or min
operations for SP and MS algorithm correspondingly, where
𝐿 is the number of blocks (code length is 𝑀𝐿𝑏𝑣 = 40𝐿), and
𝑁𝐼𝑡𝑀𝑎𝑥 denotes maximum number of iterations. The required
memory can be estimated as 𝑊𝑀𝑏𝑐 = 24𝑊 elements to store
CN outputs in current window.

B. Decoding of staircase codes

Staircase codes in this study were decoded both with SDD
and HDD methods. In SDD, the one-sweep optimal decoding
[10] was used for a component code decoding. In HDD mostly
some low complexity modifications of Bounded Distance
Decoding (BDD) were applied for decoding of a component
code.

Similarly to the SC-LDPC code decoding, the SDD of the
whole staircase code is based on the concept of windowing
decoding. Consider the iterative decoding for window of
length 𝑊 = 3 for simplicity. Assuming that the target block
is 𝐵𝑖 , blocks 𝐵𝑖−1, 𝐵𝑖 and 𝐵𝑖+1 are involved in the iterations.

Denote by 𝐋𝑗
(𝑐ℎ)

 the channel Log-Likelihood Ratios (LLRs)

corresponding to (𝑚 × 𝑚) block 𝐵𝑗 , by 𝐋𝑗
(𝑎𝑝𝑝)

 the a posteriori

probability (APP) LLRs corresponding to APPs obtained after

decoding the component codes, by 𝐋𝑗
(𝑎)

 the a priori LLRs, and

by 𝐋𝑗
(𝑒)

 the extrinsic LLR corresponding to block 𝐵𝑗 . For

window length 𝑊 = 3 the extrinsic LLRs corresponding only
to block 𝐵𝑖 are exchanged in iterations. At first half-iteration
the input for the first 𝑚 symbols of the received sequence 𝐲 is

formed by LLRs chosen from 𝐋𝑖−1
(𝑎𝑝𝑝)

 and the input for symbols

𝑦𝑚+1, … , 𝑦𝑛 is formed by the LLRs from the sum 𝐋𝑖
(𝑎)

+ 𝐋𝑖
(𝑐ℎ)

.

12Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

We assume that block 𝐵𝑖−1 is already decoded, or in case 𝐵1
is the target block, block 𝐵0 is known a priori. At first iteration

a priori LLRs are assumed to be zero, i.e., 𝐋𝑖
(𝑎)

= 𝟎𝑚×𝑚. After

decoding of 𝑚 codewords, the extrinsic LLRs are formed:

 𝐋𝑖
(𝑒)

= 𝐋𝑖
(𝑎𝑝𝑝)

− 𝐋𝑖
(𝑎)

, ()

and the extrinsic LLRs 𝐋𝑖
(𝑒)

 are provided for the second half-

iteration as an a priori information. At second half-iteration

first 𝑚 input LLRs are chosen from the sum 𝐋𝑖
(𝑎)

+ 𝐋𝑖
(𝑐ℎ)

,

where 𝐋𝑖
(𝑎)

 is substituted by the extrinsic LLRs (12) obtained

at first half iteration. The input LLRs corresponding to

symbols 𝑦𝑚+1, … , 𝑦𝑛 are chosen from the LLRs 𝐋𝑖+1
(𝑐ℎ)

. After

decoding, the extrinsic LLRs are provided as an a priori LLRs
for the next iteration.

Now consider the computation complexity of staircase
code SDD. The number of operations (additions and
multiplications) required for one-sweep decoding is half of
needed for the Bahl, Cocke, Jelinek and Raviv (BCJR)

algorithm and can be estimated as 𝑂(𝑛2𝑛−𝑘) per one

codeword, i.e., 𝑂(2𝑚(𝑊 − 1)𝑛2𝑛−𝑘) operations per
iteration per target block. The required memory corresponds

to storage of one section of the trellis, i.e., 2𝑛−𝑘. Calculation
of the extrinsic information requires 2𝑚2(𝑊 − 2) additions
per iteration per block. Then, the overall computation

complexity can be estimated as 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚2(𝑊 − 2) +

𝑂(2𝑚(𝑊 − 1)𝑛2𝑛−𝑘)) operations, where 𝐿 denotes the

number of blocks and 𝑁𝐼𝑡𝑀𝑎𝑥 maximum number of iterations.
Obviously, the overall complexity of SDD grows
exponentially with (𝑛 − 𝑘). Thus, only codes with the low
correcting capability can be considered for a component code.

HDD imposes serious performance loss in comparison
with SDD (usually around 2 dB). On the other hand, using
HDD of a component code can be very attractive from the
computational complexity point of view. Another argument
supporting HDD is that it provides more flexibility in using
different codes as a component code. As it was mentioned
previously the computational complexity of the syndrome-
based decoding grows exponentially with the syndrome size
and therefore the choice of the codes that can be used as a
component code is very limited. Of course, another possible
option is to use BP algorithm for the component code
decoding. However, this option also limits the choice of a
component code since most part of known good codes are not
suitable for BP decoding due to low girth. That limits us to use
LDPC codes as component code but usually short LDPC
codes provide quite low performance and in case of using
longer LDPC codes as component code the decoding
complexity grows fast as well. One of the most attractive
features of HDD is that it is possible to use low-resolution
exchange messages for iterative decoding.
The simplest iterative decoding algorithm of staircase codes is
based on the bounded-distance decoding (BDD) [15]. Usually
it is called iterative BDD (iBDD) algorithm or intrinsic
message passing.

In [11], Extrinsic Message Passing (EMP) algorithm was
proposed. It improves the iBDD performance with almost
negligible decoding complexity increase.

Recently, several hybrid decoding schemes combining
SDD and HDD architectures have been proposed, which
provide a suitable performance-complexity tradeoff between
SDD and HDD. The unifying idea of these schemes is to
employ HDD as the decoding core, while exploiting some
level of soft information to improve the overall decoder
performance. Examples of such an approach can be found in
[12] - [14].

If a linear binary code is used as a component code very
simple syndrome decoding can be used for decoding of a
component code. The complexity of the component code
decoder in this case is defined by the complexity of a
syndrome calculation, which requires (𝑛 − 𝑘)𝑛 XOR
operations. The drawback of this method is quite high

memory requirements, which are 𝑂(2𝑛−𝑘) elements. In this
case, the decoding algorithm is stick to one particular code.

If BCH codes are used as a component code, it is possible
to apply the algebraic decoding. In this case, the
computational complexity of the algorithm can be estmated by

the number of operations in Galois field 𝐺𝐹(2log2 𝑛) . The

overall number of operations in Galois field (including
calculation of error values that is redundant for BCH codes)
can be estimated as 6𝑛𝑡 + 9𝑡2 , where 𝑡 is the number of
correctable errors (error correcting capability of the code). In
this case, the memory requirements are practically negligible
since the memory is used only for storing the coefficients of
polynomials of power no more than (𝑛 − 𝑘).

In the same manner as in SDD, windowed decoding can
be used in HDD as well. In this case, decoding of one target
block requires decoding of 2𝑚(𝑊 − 1) codewords per
iteration. If the EMP is used for HDD the only additional
opeartions needed to calculate the messages is some small
amount of logic operations. In case hybrid approach, e.g., like
in [13] is used, the required additional complexity to calculate
the messages is not negligible. For example, calculation of
LLRs according to [13] requires 2𝑚2(𝑊 − 2) additions per
iteration per block. Then, the overall computation complexity
can be estimated as 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚(𝑊 − 1)(𝑛 − 𝑘)𝑛) XOR

operations and 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚2(𝑊 − 2)) additions, if

syndrome decoder is used and as 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚(𝑊 −

1)(6𝑛𝑡 + 9𝑡2)) operations in Galois field if algebraic

decoding is applied for decoding of a component code. If EMP
(or any other binary message passing) is used 2𝑚2(𝑊 − 2)
bits is enough to store the messages. In case of hybrid
approach, the required memory amount should be increased
according to message resolution, e.g., for ternary message
passing in [13] the memory size increases up to 4𝑚2(𝑊 − 2)
bits. In case the syndrome decoding is used, additional

𝑂(2𝑛−𝑘) memory elements are required. In case of
calculation parallelization, the amount of memory should be
increased according to the number of parallel processes.

IV. COMPARISON OF THE CONSIDERED CODES

In this section, we will try to compare the considered codes
taking into account how easy the code or code family can be

13Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

adapted to different code rates. We will try to compare both
performance and decoding complexity of the codes with
similar parameters.

A. SDD of both SC-LDPC and staircase codes

The most obvious way of adapting the code to the different
code rates is to construct a mother code of low code rate and
then puncture parity-check bits to obtain codes of higher rates.

For comparison the following mother codes were
constructed.

SC-LDPC ARJ based mother code was constructed in line
with the description in Section II with the following
parameters:

- Memory size 𝑤 = 2;
- Lifting size 𝑀 = 8;
- Number of blocks 𝐿 = 55;
- Code length 𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200;
- Mother code rate 𝑅𝑆𝐶−𝐿𝐷𝑃𝐶𝑖𝑛𝑖𝑡

= 0.38.

Windowed SPA layered decoding with window size 𝑊 =
9 blocks and maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 was
used. Floating point messages are used for message passing.

In the staircase mother code, extended (32, 21) BCH code
capable of correcting 2 errors was used as a component code
(𝑚 = 16, 𝑟 = 11) . The staircase mother code parameters
are:

- Number of blocks 𝐿 = 8;
- Number of terminating blocks 𝛬 = 0;
- Code length 𝑁𝑆𝑡 = 2048;
- Mother code rate 𝑅𝑆𝑡𝑖𝑛𝑖𝑡

= 0.31.

Figure 4. Performance comparison of ARJ based SC-LDPC

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200) and staircase code (𝑁𝑆𝑡 = 2048) at Rtarg =

0.4. SDD.

The staircase code was decoded with the help of the SDD
described in Section III.B with window size 𝑊 = 3 blocks
and maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 . The
syndrome based one-sweep decoding was applied for
decoding of a component code. Floating point messages are
used for message passing.

Simulation results for different code rates 𝑅𝑡𝑎𝑟𝑔 are

represented in Figure 4, 5 and 6.
As can be seen from Figure 4, 5 and 6, with target code

rate 𝑅𝑡𝑎𝑟𝑔 = 0.4 , the SC-LDPC code outperforms the

staircase code by more than 1 dB. However, with increasing

target code rate, this performance gap decreases and at
𝑅𝑡𝑎𝑟𝑔 = 0.7 it is negligible. This can be explained by the fact

that the initial mother code rate of the ARJ-based is higher,
but puncturing deteriorates its performance faster than the
performance of the staircase code.

Figure 5. Performance comparison of ARJ-based SC-LDPC

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200) and staircase code (𝑁𝑆𝑡 = 2048) at Rtarg =

0.6. SDD.

Figure 6. Performance comparison of ARJ-based SC-LDPC

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200) and staircase code (𝑁𝑆𝑡 = 2048) at Rtarg =

0.7. SDD.

Comparing the decoding complexity of used decoders
according to estimates in Section III.A and Section III.B we
can observe that the complexity of the staircase decoder is
about 3 - 4 times higher than the complexity of the SC-LDPC
decoder (depending on how to estimate the complexity of the
box-plus operation).

Taking into account the lower computational complexity
and better performance of the ARJ-based SC-LDPC code, it
would be the obvious choice for SDD. On the other hand, the
drawback of this code family is the serious performance
degradation with target rate increase. Most probably with
some optimization efforts it would be possible to find some
specific puncturing patterns that can provide not so fast
performance degradation but it will take time to find optimal
distribution of punctured bits between the sub-matrices of the
parity-check matrix.

14Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

B. HDD for staircase codes

As it was mentioned in Section A, the complexity of SDD
for staircase codes is too high and the performance is inferior
to the performance of the ARJ-based SC-LDPC code at low
code rates. However, the performance of staircase codes does
not drop as fast as the performance of the SC-LDPC codes
with the code rate increase.

Since our goal is to consider the codes that can provide
high throughput, it might be interesting to consider the
possibility of using HDD. As it was discussed in Section III.B,
the staircase codes are especially attractive for the HDD since
some good codes allowing low-complexity algebraic
decoding can be used as a component code. Moreover, the
performance drop due to applying HDD rather than SDD can
be partly compensated by usage of more powerful codes,
which are not possible to use in SDD due to prohibitively high
decoding complexity.

For example, it is possible to consider RS codes as
component codes. Except the good performance one of the
attractive properties of the RS codes is that they belong to the
class of Maximum Distance Separable (MDS) codes for
which any 𝑘 symbols of a codeword, where 𝑘 is the number
of information symbols, forms the information sequence. Due
to this property all puncturing patterns for RS codes are
equally good and there is no need in designing special
puncturing patterns when adapting the mother code for the
target code rate.

In this section, we consider the comparison of longer
codes. We again apply SDD for decoding of the SC-LDPC
code, but of lower complexity. We consider Min-Sum (MS)
algorithm rather than Sum-Product Algorithm (SPA) and
decrease the exchanged message resolution. High resolution
of the exchanged messages can hinder achieving high
throughput since it will require a lot of additional wiring in
comparison with the low resolution message passing leading
to serious limitation in possible parallelizing of computations.
Thus, the binary message passing is especially attractive for
high throughput decoders. In our simulations, we decrease the
message resolution to 3 bits.

The parameters of the SC-LDPC ARJ-based mother code
used in the simulations are as follows:

- Memory size 𝑤 = 2;
- Lifting size 𝑀 = 8;
- Number of blocks 𝐿 = 510;
- Code length 𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400;
- Mother code rate 𝑅𝑆𝐶−𝐿𝐷𝑃𝐶𝑖𝑛𝑖𝑡

= 0.398.

Windowed MS layered decoding with window size 𝑊 =
18 blocks and maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5
was used. 3 bits messages are used for message passing.

In the staircase mother code, extended (32, 23) RS code

over the 𝐺𝐹(25) capable of correcting 4 errors was used as a
component code, i.e., the code length in bits is 32 ∙ 5 = 160
(𝑚 = 80 𝑏𝑖𝑡𝑠, 𝑟 = 45 𝑏𝑖𝑡𝑠) . The staircase mother code
parameters are:

- Number of blocks 𝐿 = 3;
- Number of terminating blocks 𝛬 = 1;
- Code length 𝑁𝑆𝑡 = 22800;
- Mother code rate 𝑅𝑆𝑡𝑖𝑛𝑖𝑡

= 0.368.

 The staircase code was decoded with the help of the
binary message passing with window size 𝑊 = 3 blocks and
maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 , the algebraic
decoding of the component RS code was used. Notice, that
despite the exchanged messages have 5 bit resolution, this is
5 bit message per 𝐺𝐹(25) symbol, i.e., per 5 bits. Thus, we
can consider it as a binary message passing.

Performance comparison of the ARJ-based SC-LDPC
code (MS decoding, 3 bit message) and (32, 23)-RS-based
staircase code (𝑚 = 80 𝑏𝑖𝑡𝑠 , 1 bit message) is shown in
Figures 7, 8 and 9.

Figure 7. Performance comparison of ARJ based SC-LDPC

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400) and RS-based staircase code (𝑁𝑆𝑡 = 22800)

at Rtarg = 0.4. MS decoder for SC-LDPC, HDD for staircase code.

Figure 8. Performance comparison of ARJ based SC-LDPC

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400) and RS-based staircase code (𝑁𝑆𝑡 = 22800)

at Rtarg = 0.5. MS decoder for SC-LDPC, HDD for staircase code.

As can be seen from Figures 7, 8 and 9, the performance
of the ARJ based SC-LDPC code deteriorates much faster
with the target rate increase than the performance of the RS-
based staircase code. At the same time, the performance of the
RS-based staircase code changes quite smoothly with code
rate increase.

Comparison of the decoding complexity depends on how
to estimate the computational complexity of min operation
and the operation in Galois field. Assuming that the
computational complexity of the min operation is equal to

15Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

addition complexity, and the operation in Galois field has the
same complexity (addition in Galois field is equivalent to
XOR operation and multiplication is equivalent to addition on
modulo (𝑛 − 1) , where 𝑛 is the RS code length, or both
operations can be implemented with Look-Up Table (LUT)),
we can estimate that the decoding complexity of the ARJ
based SC-LDPC code is 7 – 8 times greater than that of RS-
based staircase code.

Figure 9. Performance comparison of ARJ based SC-LDPC

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400) and RS-based staircase code (𝑁𝑆𝑡 = 22800)

at Rtarg = 0.7. MS decoder for SC-LDPC, HDD for staircase code.

Moreover, with current parameters the amount of memory
needed for storing the exchanged messages in window for
ARJ based SC-LDPC code is about 200 times more than for
the RS-based staircase code if the messages in BP decoder are
stored in (𝑏𝑐 ∙ 𝑀 ∙ 𝑊 × 𝑏𝑣 ∙ 𝑀 ∙ 𝑊) matrix. More realistic is
the case when each message simply consists of value and
address. The number of messages in windowed MS decoding
of SC-LDPC code can be estimated as 5𝑏𝑐 ∙ 𝑀 ∙ 𝑊 = 2160.
Assuming that there are 𝑏𝑣 ∙ 𝑀 ∙ 𝑊 = 720 VNs in window,
each CN→VN message comprises 3 bits bearing the value and
10 bits address. That gives 2160 ∙ 13 = 28080 bits, which
4.3 times more than 6400 bits needed for messages in staircase
decoder with window size 3.

One obvious drawback of the RS-based staircase codes is
less flexibility with the choice of the code length since it
should be a multiple of 𝑚2. This value depends on the choice
of the RS code. However, here some optimization is also
possible. For example, for Galois field 𝐺𝐹(2𝑝) if 𝑝 is not a
prime the field element can be represented differently (e.g. as
a (1 × 𝑝) vector or as a (𝑞1 × 𝑞2) matrix, where 𝑞1 ∙ 𝑞2 = 𝑝).
Then, one representation leads to 𝑚 = 𝑝2𝑝−1 and another to
𝑚 = 𝑞22

𝑝−1 . In first case, 𝑝2𝑝−1 RS codes should be
decoded at each half-iteration for each block. The second

representation leads to necessity to decode
𝑞22𝑝−1

𝑞1
 codes. Of

course, the performance in case of second representation
should be less than in first case but it could worth of
considering. An example of staircase codes based on different
representation of 𝐺𝐹(24) symbol is shown in Figure 10.

Two representation of 𝐺𝐹(24) symbol ((2 × 2) and (1 ×
4)) leads to the staircase codes with different block size and
therefore different code length. Both codes in Figure 10

comprise 4 information blocks and 1 terminating block (𝛬 =
1). Obviously both codes have the same original rate 𝑅 =
0.3243. Representation (2 × 2) gives the block size 𝑚 = 16
(8 RS codes must be decoded in block), which leads to the
original code length 𝑁𝑆𝑡 = 1184, and representation (1 × 4)
gives the block size 𝑚 = 32 (32 RS codes must be decoded
in block) leading to the original code length 𝑁𝑆𝑡 = 4736. As
can be seen from the performance curves in Figure 10, the
behavior of both codes is quite similar with changing target
code rate.

Figure 10. Performance of staircase code based on (16, 11) RS

code with different representation of GF(2^4) symbol. (2 × 2) and
(1 × 4).

In case performance provided by the HDD of RS codes is
not enough, two other options can be considered. One of them
is to apply soft decoding of RS codes based on Guruswami-
Sudan (GS) list decoding [18]. Another is to consider LDPC
codes as a component code. On the other hand, both options
lead to severe complexity increase. For example, even
applying Nielsen interpolation to GS, overall complexity of

the list decoding is 𝑂 (𝑛2 (
𝑛

𝑘
)

1 2⁄

𝑟5) [19], which again

narrows the choice of a component code.

V. CONCLUSIONS

The performance and complexity comparison of the ARJ
based SC-LDPC codes and staircase codes shows that SDD
SC-LDPC codes provide better performance and lower
complexity than the staircase codes. However, the
performance of SC-LDPC codes deteriorates very fast with
code rate increase.

The usage of HDD together with the powerful RS codes
brings a benefit of significant complexity decrease with an
affordable performance loss. Moreover, the performance of
the RS-based staircase codes changes quite smoothly with the
code rate increase. One more benefit of HDD of the RS-based
staircase codes is the possibility of usage of binary message
passing, which decreases significantly the amount of data
exchange between the nodes. The latter property is especially
important for reaching a high throughput.

Therefore, the HDD of the RS-based staircase code can be
considered as a good option for high-throughput decoding. In
case higher performance will be needed, one of the interesting
directions could be considered: the usage of LDPC codes as
component codes in staircase code and BP decoding of a
component code.

16Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

REFERENCES

[1] A. Jimenez Felstrom and K. Zigangirov, “Time-varying
periodic convolutional codes with low-density parity-check
matrix,” IEEE Trans. Inf. Theory, vol. 45, pp. 2181 – 2191,
September 1999.

[2] D. Divsalar, C. Jones, S. Dolinar, and J. Thorpe, “Protograph
Based LDPC Codes with Minimum Distance Linearly
Growing with Block Size,” IEEE Globecom 2005, pp. 1152 –
1156, 2005.

[3] D. Divsalar, S. Dolinar, C. Jones, and K. Andrews, “Capacity-
approaching protograph codes,” IEEE Journal on Select Areas
in Communications, vol. 27, no. 6, pp. 876 – 888, 2009.

[4] M. Lentmaier, A. Sridharan, D. Costello, and K. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 56, pp. 5274 –5289, Oct.
2010.

[5] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold
saturation via spatial coupling: Why convolutional LDPC
ensembles perform so well over the BEC,” IEEE Trans. Inf.
Theory, vol. 57, pp. 803–834, Feb. 2011.

[6] M. Lentmaier, I. Andriyanova, N. Hassan, and G. Fettweis,
”Spatial Coupling - A way to Improve the Performance and
Robustness of Iterative Decoding,” Proc. European Conf.
Networks and Communications (EuCNC), pp. 1 – 4, 2015.

[7] N. Hassan, M. Lentmaier, and G. Fettweis, “Comparison of
LDPC block and LDPC convolutional codes based on their
decoding latency,” in Proc. Int. Symp. on Turbo Codes &
Iterative Inf. Proc., pp. 225 – 229, Aug. 2012.

[8] D. Mitchell, M. Lentmaier, and D. Costello, “Spatially coupled
LDPC codes constructed from protographs,” IEEE Trans. Inf.
Theory , vol. 61, no. 9, pp. 4866 – 4889, 2015.

[9] K. Klaiber, S. Cammerer, L. Schmalen, and S. ten Brink,
“Avoiding Burst-like Error Patterns in Windowed Decoding of
Spatially Coupled LDPC,'' Proc. IEEE 10th International
Symposium on Turbo Codes & Iterative Information
Processing (ISTC), pp. 1 – 5, 2018.

[10] T. Johansson and K. Sh. Zigangirov, “A simple one-sweep
algorithm for optimal APP symbol decoding of linear block

codes,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 3124–3129,
Nov. 1998.

[11] Y. Jian, H. Pfister, K. Narayanan, R. Rao, and R. Mazahreh,
“Iterative Hard Decision Decoding of Braided BCH Codes for
High Speed Optical Communication,” Proc. GLOBECOM, pp.
2376 – 2381, 2013.

[12] A. Sheikh, A. Graell i Amat, G. Liva, C. Häger, and H. D.
Pfister, “On low-complexity decoding of product codes for
high-throughput fiber-optic systems,” in Proc. IEEE Int. Symp.
on Turbo Codes & Iterative Inf. Proc. (ISTC), Hong Kong, pp.
1 – 5, Dec. 2018.

[13] A. Sheikh, A. Graell i Amat, G. Liva, and A. Alvarado,
“Refined reliability combining for binary message passing
decoding of product codes,” arXiv, 2020. [Online].
Available:https://arxiv.org/abs/2006.00070, pp. 1 – 5, 2020.

[14] A. Sheikh, A. Graell i Amat, G. Liva, and A. Alvarado, “Novel
High-Throughput Decoding Algorithms for Product and
Staircase Codes based on Error-and- Erasure Decoding,”
arXiv, 2020, [Online]. Available:
https://arxiv.org/abs/2008.02181, pp. 1 – 12, 2020.

[15] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J.
Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” IEEE/OSA
J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, Jan. 2012.

[16] X. Dou, M. Zhu, J. Zhang, and B. Bai, “Soft-Decision Based
Sliding-Window Decoding of Staircase Codes,” IEEE 10th
International Symposium on Turbo Codes & Iterative
Information Processing, pp. 1 – 5, 2018.

[17] C. Häger, H. D. Pfister, A. Graell i Amat, and F. Brännström,
”Density Evolution for Deterministic Generalized Product
Codes on the Binary Erasure Channel at High Rates,” IEEE
Trans. Inf. Theory, vol. 63, no. 7, pp. 4357 – 4378, 2017.

[18] V. Guruswami and M. Sudan, “Improved Decoding of Reed-
Solomon Codes and Algebraic Geometry Codes,” IEEE Trans.
Inform. Theory, vol. 45, no. 6, pp. 1757 – 1767, 1999.

[19] G. Kabatiansky, E. Krouk, and S. Semenov, “Error Correcting
Coding and Security for Data Networks,” Wiley, 2005.

17Copyright (c) IARIA, 2022. ISBN: 978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications

