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Abstract—Two classes of codes allowing high-throughput 

decoding: Spatially Coupled Low Density Parity-Check (SC-

LDPC) codes and staircase codes are compared. Accumulate 

Repeat-Jagged (ARJ)-based SC-LDPC codes provide better 

performance and lower complexity for Soft-Decision Decoding 

(SDD). However, the serious drawback of this construction is 

the severe performance degradation with code rate increase. 

The decoding complexity of SDD might still be too high to 

provide very high throughput. Reed-Solomon (RS)-based 

staircase codes under Hard-Decision Decoding (HDD) provide 

quite good performance with low decoding complexity. 

Moreover, the performance changes very smoothly with code 

rate increase.  

Keywords-SC-LDPC codes; Generalized Product Codes; 

staircase codes; high-throughput decoding. 

I.  INTRODUCTION  

Future Beyond-5G use cases are expected to require 
wireless speeds in the Terabit/s range. This sets a number of 
tough challenges on the physical layer and especially on the 
Forward Error Correction (FEC). The code constructions used 
in current 3GPP specs can hardly be used to provide this level 
of throughput under channel conditions considered in use 
cases. Apparently, some specific requirements should be 
applied to the choice of a code construction allowing high 
throughput decoding. The decoding complexity should be low 
enough and the decoding algorithm should be suitable for a 
high level of parallelization. Especially useful for high 
throughput decoding are codes with high locality property 
allowing the decoder to use structures that are independent of 
code length in terms of complexity, storage requirements and 
latency. 

Spatially coupled codes are known for both high locality 
and high performance. In this paper, we are comparing two 
code constructions, one of which represents the class of SC-
LDPC codes and another the Generalized Product Codes 
(GPC). The comparison is done not only in terms of 
performance/complexity, but also the ability to create the code 
family that can be easily adapted to different code rates is 
considered.  

The rest of this paper is organized as follows. Section II 
describes the code constructions considered in this paper. 

Section III describes the decoding of the considered codes. 
Section IV addresses the comparison of the considered code 
constructions with the focus on ability to provide high 
throughput. The conclusions close the article. 

 

II. CONSIDERED CODE CONSTRUCTIONS 

The main principle of spatial coupling is that the 
codewords 𝐯𝑡 of the block code defined by the parity-check 
matrix 𝐇 , instead of being encoded independently, are 
interconnected (coupled) with their neighbors at times 𝑡 −
1, 𝑡 − 2,… , 𝑡 − 𝑤  during the encoding procedure. This is 
done in such a way that the sequence satisfies the condition 

 𝐯𝑡𝐇0
𝑇(𝑡) + 𝐯𝑡−1𝐇1

𝑇(𝑡) + ⋯ + 𝐯𝑡−𝑤𝐇𝑤
𝑇 (𝑡) = 𝟎, () 

where matrices 𝐇0(𝑡), 𝐇1(𝑡), … , 𝐇𝑤(𝑡) result from the 
decomposition of the original matrix 𝐇 [6]:  

 𝐇0(𝑡) +  𝐇1(𝑡) + ⋯ + 𝐇𝑤(𝑡) = 𝐇,   ∀𝑡. () 

It is easy to verify that both code constructions considered 
in this paper satisfy (1) and (2), therefore, they define spatially 
coupled codes.  

A. SC-LDPC codes  

The idea of SC-LDPC codes was proposed in [1]. It can be 
interpreted as generalization of block and convolutional 
coding where the convolutional coding is applied to the words 
of some block code rather than to information symbols. One 
of the possible ways of constructing SC-LDPC codes is 
constructing with the help of coupling of protographs. Recall 
that a protograph can be considered as a graph representing 
the general structure of a graph-based code, e.g., LDPC code. 
A protograph can be represented with the help of a Base-
Graph (BG) matrix 𝐁  where the element 𝑏𝑖,𝑗  shows the 

number of edges connecting Check Node (CN) 𝑖 and Variable 
Node (VN) 𝑗 in the protograph. The base-graph matrix 𝐁 can 
be translated to the parity-check matrix 𝐇 by substituting each 
element in 𝐁 by the corresponding permutation matrix of size 
(𝑀 × 𝑀), where 𝑀 is the code lifting size. If the number of 
edges connecting CN 𝑖 and VN 𝑗 is more than 1 and ,e.g., is 
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equal to 𝑘, the corresponding matrix of size (𝑀 × 𝑀) should 
be obtained as a sum of 𝑘 permutation matrices. For example, 
consider the protograph shown in Figure 1. 

 

 
 

Figure 1. Example of an ARJ protograph. 

The corresponding base-graph matrix and the example of 
parity-check matrix of LDPC code with lifting size 𝑀 = 3 are 
represented in (3) and (4):  

 𝐁 = [
2 0 0 0 1
3 1 1 1 0
1 2 1 2 0

], () 

𝐇 =

[
 
 
 
 
 
 
 
 
1 0 1
1 1 0
0 1 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
1 0 0
0 1 0

1 1 1
1 1 1
1 1 1

0 0 1
1 0 0
0 1 0

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
1 0 0

0 1 1
1 0 1
1 1 0

0 1 0
0 0 1
1 0 0

1 1 0
0 1 1
1 0 1

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 
 

. () 

Notice that, without lifting, the protograph shown in 
Figure 1 with BG matrix (3) cannot represent any code and 
matrix (4) is not a unique representation of BG (3). It is 
possible to construct the SC-LDPC code by splitting the 
original BG into a set of BG matrices 𝐁𝑖 in such a way that  

 𝐁 = ∑ 𝐁𝑖
𝑤
𝑖=0 . () 

where 𝑤 is the SC memory. 
Then, the BG of the SC-LDPC code can be written in the 

form of  

 𝐁𝐿 =

[
 
 
 
 
 
 
 
 
 
𝐁0

𝐁1 𝐁0

⋮
𝐁𝑤

⋱
…
⋱

⋱
𝐁1 𝐁0

⋱ ⋱
⋱ ⋱ 𝐁0

⋱ 𝐁1

⋱ ⋮
𝐁𝑤]

 
 
 
 
 
 
 
 
 

, () 

where  𝐿  is the number of transmitted consecutive blocks 
(initial protographs), i.e., defining the block code of length 
𝑀𝐿𝑏𝑣 with the number of CNs 𝑀(𝐿 + 𝑤)𝑏𝑐, where 𝑏𝑣 is the 
number of BG VNs and 𝑏𝑐 is the number of BG CNs. The rate 
of the corresponding code is 

 𝑅𝐿 =
𝐿𝑏𝑣−(𝐿+𝑤)𝑏𝑐

(𝐿+𝑤)𝑏𝑐
. () 

As can be seen from the structure of the BG matrix (6), the 
CN degrees at both ends of the code are lower. It should be 
noted that CNs with lower degrees (at the ends) improve the 
BP decoding. This irregularity caused by the fact that 𝑤 top 
and 𝑤 bottom blocks of CNs in (6) are of lower degrees is one 
of the main reasons for the excellent performance of SC-
LDPC codes [4]: the small-degree CNs serve as starting points 
for the convergence of the iterative decoding process such that 
a “wave” of reliable information propagates towards the 
middle of the codewords. 

A BP decoding analysis of SC-LDPC codes shows that the 
performance of the iterative decoder is improved significantly 
by spatial coupling. In fact, the results in [4] and [5] show that 
asymptotically, as 𝐿 → ∞, the BP threshold is boosted to that 
of the optimal Maximum a Posteriori (MAP) decoder. Since 
the MAP thresholds of regular LDPC ensembles with 
increasing node degrees are known to converge to capacity, it 
follows that spatial coupling provides a new way of provably 
achieving capacity with low-complexity iterative BP 
decoding [6]. 

 The Quasi-Cyclic LDPC (QC-LDPC) codes are of special 
interest due to the fact that they have efficient encoder and 
decoder implementations. If each (𝑀 × 𝑀)  permutation 
matrix substituting non-zero elements in BG is a circulant, the 
corresponding matrix 𝐇 defines a QC-LDPC code. In [2]-[3], 
the QC-LDPC codes were thoroughly studied and the 
effective code construction with ensemble minimum distance 
growing linearly with block size was proposed. This code 
family is called ARJ construction. An example of a BG 
representing ARJ construction is shown in Figure 1 [3].  

The ARJ-based SC-LDPC code with memory 𝑤 = 2 was 
chosen for the comparison in this paper. As it was mentioned 
above the Belief Propagation (BP) decoding threshold 
approaches capacity for all SC-LDPC codes with 𝐿 → ∞ . 
Except this the ARJ-based SC-LDPC codes show better than 
regular code based SC-LDPC codes minimum distance 
growth rate [8]. That means minimum distance increases 
linearly with block length 𝑛 and for ARJ-based SC-LDPC this 
increase is more than for SC-LDPC codes based on regular 
codes. 

After simple optimization, the following partitioning of 
the BG (3) was chosen  

     𝐁0 = [
1 0 0 0 0
1 1 0 0 0
0 1 1 1 0

],  

 𝐁1 = [
1 0 0 0 0
1 0 0 1 0
0 1 0 0 0

], () 

   𝐁2 = [
0 0 0 0 1
1 0 1 0 0
1 0 0 1 0

]. 

 
In case lifting sub-matrices are chosen to be a circulant 

(leading to QC code), the optimization of the lifting 

10Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-956-0

AICT 2022 : The Eighteenth Advanced International Conference on Telecommunications



permutation sub-matrices is reduced to the choice of the 
circulant powers. The corresponding lifting powers were 
optimized for lifting size 𝑀 = 8.  

B. Staircase codes  

Staircase codes and braided block codes comprise the two 
most known representatives of the GPC [17]. Moreover, both 
constructions provide quite similar performance. For this 
reason, it was decided to limit the scope of the GPC study to 
staircase codes only.  

Staircase codes introduced in [15] can also be considered 
as an example of spatially coupling principle. The staircase 
code construction combines ideas from recursive 
convolutional coding and block coding. Staircase codes are 
completely characterized by the relationship between 
successive matrices of symbols. Specifically, consider the 
(infinite) sequence 𝐵0, 𝐵1, 𝐵2 , … of (𝑚 × 𝑚) matrices 𝐵𝑖 . For 
simplicity, consider each matrix 𝐵𝑖  as a binary matrix (it can 
be generalized to non-binary case as well). 

Block 𝐵0 is initialized to a reference state known to the 
encoder–decoder pair, e.g., an (𝑚 × 𝑚)  matrix of zero 
symbols. Furthermore, select a conventional linear block code 
(e.g., Hamming, Bose–Chaudhuri–Hocquenghem (BCH), RS, 
etc.) in systematic form to serve as the component code; this 
code 𝐶, is selected to have block length 2𝑚 symbols, of which 
𝑟 are parity symbols. Encoding proceeds recursively on the 
𝐵𝑖 . For each 𝑖 , 𝑚(𝑚 − 𝑟)  information symbols (from the 
streaming source) are arranged into the (𝑚 − 𝑟)  leftmost 
columns of 𝐵𝑖 ; we denote this submatrix by 𝐵𝑖,𝐿 . Then, the 

entries of the rightmost 𝑟 columns (this submatrix is denoted 
by 𝐵𝑖,𝑅) are specified as follows. 

1) Form the (𝑚 × (2𝑚 − 𝑟)) matrix 𝐴 = [𝐵𝑖−1
𝑇  𝐵𝑖,𝐿]. 

2) The entries of 𝐵𝑖,𝑅 are then computed such that each 

of the rows of the matrix [𝐵𝑖−1
𝑇  𝐵𝑖,𝐿 𝐵𝑖,𝑅] is a valid codeword 

of 𝐶. That is, the elements in the 𝑗th row of 𝐵𝑖,𝑅 are exactly 

the 𝑟 parity symbols that result from encoding the 2𝑚 − 𝑟 

“information” symbols in the 𝑗th row of 𝐴. 

 
Generally, the relationship between successive blocks in a 

staircase code satisfies the following relation: for any 𝑖 ≥ 1, 

each of the rows of the matrix [𝐵𝑖−1
𝑇  𝐵𝑖] is a valid codeword 

in 𝐶 . An equivalent description, from which the term 
“staircase codes” originates is suggested in Figure 2, in which 
(the concatenation of the symbols in) every row (and every 
column) in the “staircase” is a valid codeword of 𝐶. 
The rate of a staircase code is  

 𝑅 = 1 −
𝑟

𝑚
, () 

since encoding produces 𝑟 parity symbols for each set of 𝑚 −
𝑟 “new” information symbols. 

At the end of the information sequence, termination can be 
used to protect the final information block. In this case, after 
𝐿 information blocks enter the encoder, 𝛬 additional all-zero 
blocks enter the encoder. Note that the all-zero blocks are not 
sent over the channel, but the resulting parity bits are 
transmitted. 

 

 
Figure 2. “Staircase” visualization of staircase codes [15]. 

Then, the actual rate of the staircase code, including the 
tail, is given by 

 𝑅 =
𝑚−𝑟

𝑚+𝛬
𝑟

𝐿

. () 

The staircase codes are well suited for HDD. In this case, 
low complexity syndrome decoder can be used for decoding a 
component code. Efficient, high-throughput table-lookup 
based methods for decoding the component codes are 
highlighted in [15]. On the other hand, SDD is also possible 
to use for a component code decoder [16]. 

It is easy to verify that the structure of the staircase code 
parity-check matrix is very similar to the structure of SC-
LDPC code parity-check matrix (6):  

𝐇𝑆𝑡 = [

𝐇2 𝐇1 𝐇0 𝟎    …  …    𝟎    …

𝟎 𝟎 𝐇2 𝐇1 𝐇0 𝟎    𝟎    …

𝟎
⋮

𝟎
⋮

 𝟎
 ⋮

  𝟎
  ⋮

  𝐇2

 𝟎
𝐇1

𝟎

 𝐇0

 𝐇2

…
⋱

]. () 

The difference is that, in the staircase code parity-check 
matrix, the number of (2𝑚 × 2𝑚) submatrices 𝐇𝑖 is exactly 
3, and each bunch of rows in (11) is shifted by the size of 2 
sub-matrices. One more attractive property of the staircase 
codes is that the minimum distance of the staircase code is no 

less than 𝑑𝑚𝑖𝑛
2 , where 𝑑𝑚𝑖𝑛  is the minimum distance of a 

component code [15]. 

III. DECODING OF THE CONSIDERED CODES 

In this study, the SC-LDPC codes were decoded with the 
help of SDD only. Decoding of the staircase codes was 
considered for both SDD and HDD.  

A. Decoding of SC-LDPC codes  

The convolutional structure of SC-LDPC allows to define 
a latency constrained decoder using a sliding window of size 
𝑊 . Consider the blocks of VNs of size 𝑀𝑏𝑣 . Due to the 
convolutional structure of matrix (6) two VN blocks with 
indices 𝑖  and 𝑗 , such that 𝑗 ≥ 𝑖 + 𝑤 + 1 , do not share any 
parity-check equation, i.e., VNs from these blocks cannot be 

r
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connected to the same CN. Window decoder exploits this 
property of the convolutional parity-check matrix of SC-
LDPC code to define a decoder that deals with 𝑊 received 
blocks such that 𝑊 ≥ 𝑤 + 1. It has been shown in [7] that 
SC-LDPC codes decoded with a window decoder outperforms 
LDPC block codes under equal latency. 

The most common window decoding uses the VN-
centered strategy where a decoding window of size 𝑊 is 
defined by the set of VNs for 𝑊 consecutive blocks (of size 
𝑀𝑏𝑣 each). Some VNs on the left-hand side of the decoding 
window then share CNs with VNs that have already moved 
out of that window. CN → VN messages sent along the 
corresponding edges are not updated any longer, i.e., they are 
read-only. Similarly, some VNs on the right-hand side of the 
decoding window share CNs with VNs that have not yet been 
processed by the WD. The messages along the corresponding 
edges are also not updated in the current window. In terms of 
parity-check matrix, the sliding window decoder of size 𝑊 
operates on a section of 𝑊𝑀𝑏𝑐  rows (CNs) and 𝑊𝑀𝑏𝑣 
columns (VNs) of the matrix 𝐇𝐿, corresponding to 𝑊 coupled 
blocks. Figure 3 depicts the decoding window of size 4 when 
assuming an SC-LDPC code with memory 𝑤 = 2. The grey 
rectangles correspond to the parts of parity-check matrix not 
involved in the decoding process. The parts of parity-check 
matrix corresponding to currently (at moment 𝑡) updated VNs 
are marked with red. Other parts of parity-check matrix 
belonging to the same window are marked with blue. 
Performing updates on VNs in the window still requires 
access to messages sent along edges connected to previously 
decoded VNs, i.e., parts of matrix depicted by green. 
However, those accesses are read-only. Moving the sliding 
window to the next position means shifting it down by 𝑀𝑏𝑐 
CNs and right by 𝑀𝑏𝑣 VNs. 

 
Figure 3. Parts of parity-check matrix involved in window 

decoding. 

The window BP decoder consists of 𝑊𝑀𝑏𝑐  CNs and 
𝑊𝑀𝑏𝑣 VNs. The decoding performance depends on the sub-
block size 𝑏𝑣  and the memory 𝑤 , rather than on 𝐿 . This 
locality property allows using decoder structures that are 
independent of 𝐿 in terms of complexity, storage requirements 
and latency. Since the window size 𝑊 is a decoder parameter, 
it can be varied without changing the code, providing a 
flexible trade-off between performance and latency [7]. In 
general, the storage requirements for the decoder reduces by a 

factor of 
𝐿

𝑊
 compared to the BP decoder operating on the 

length of the whole codeword. 

It is assumed that the window decoder uses all iterations 
locally inside one window position and only after fully 
decoding target VNs, the window is shifted to the next 
position. That makes it possible to unroll the iterations, which 
can significantly decrease the overall latency up to 𝑁𝐼𝑡𝑀𝑎𝑥 
times (where 𝑁𝐼𝑡𝑀𝑎𝑥 is the maximum number of iterations), 
keeping the area requirements not too high. The unrolled 
window decoder requires CN network of 𝑁𝐼𝑡𝑀𝑎𝑥𝑊𝑀𝑏𝑐  CN 
processors, rather than 𝑁𝐼𝑡𝑀𝑎𝑥𝐿𝑀𝑏𝑐 CN processors in case of 
decoding the whole codeword. 

The complexity of a decoder can be roughly estimated as 
follows. 

Each CN input should be updated once for each layer. 
Considering the structure of sub-matrices (8) we can assume 
that each VN in window is updated on average 3 times before 
being used in CN processing, which translates to 3𝑊𝑀𝑏𝑣 
additions (120𝑊  additions for 𝑀 = 8, 𝑏𝑣 = 5) per window 
per iteration. On average, each CN is connected to 5 VNs, i.e., 
each CN processing involves on average 20 box-plus 
operations for SP or 20 min operations for MS (since the CN 
output should be generated for each of 5 connected VNs and 
each CN output involves (5 − 1) = 4  box-plus or min 
operations). That gives 20𝑊𝑀𝑏𝑐 = 480𝑊 box-plus or min 
operations per window per iteration. We can assume that on 
average 5𝑀 LLRs are updated at each layer, which translates 
to 5𝑀𝑊𝑏𝑐 = 120𝑊  additions per window per iteration. 
Then, the overall decoding complexity can be estimated as 
240𝐿𝑁𝐼𝑡𝑀𝑎𝑥𝑊 additions and 480𝐿𝑁𝐼𝑡𝑀𝑎𝑥𝑊 box-plus or min 
operations for SP and MS algorithm correspondingly, where 
𝐿 is the number of blocks (code length is 𝑀𝐿𝑏𝑣 = 40𝐿), and 
𝑁𝐼𝑡𝑀𝑎𝑥 denotes maximum number of iterations. The required 
memory can be estimated as 𝑊𝑀𝑏𝑐 = 24𝑊 elements to store 
CN outputs in current window.  

B. Decoding of staircase codes  

Staircase codes in this study were decoded both with SDD 
and HDD methods. In SDD, the one-sweep optimal decoding 
[10] was used for a component code decoding. In HDD mostly 
some low complexity modifications of Bounded Distance 
Decoding (BDD) were applied for decoding of a component 
code. 

Similarly to the SC-LDPC code decoding, the SDD of the 
whole staircase code is based on the concept of windowing 
decoding. Consider the iterative decoding for window of 
length 𝑊 = 3 for simplicity. Assuming that the target block 
is 𝐵𝑖 , blocks 𝐵𝑖−1, 𝐵𝑖  and 𝐵𝑖+1 are involved in the iterations. 

Denote by 𝐋𝑗
(𝑐ℎ)

 the channel Log-Likelihood Ratios (LLRs) 

corresponding to (𝑚 × 𝑚) block 𝐵𝑗 , by 𝐋𝑗
(𝑎𝑝𝑝)

 the a posteriori 

probability (APP) LLRs corresponding to APPs obtained after 

decoding the component codes, by 𝐋𝑗
(𝑎)

 the a priori LLRs, and 

by 𝐋𝑗
(𝑒)

 the extrinsic LLR corresponding to block 𝐵𝑗 . For 

window length 𝑊 = 3 the extrinsic LLRs corresponding only 
to block 𝐵𝑖  are exchanged in iterations. At first half-iteration 
the input for the first 𝑚 symbols of the received sequence 𝐲 is 

formed by LLRs chosen from 𝐋𝑖−1
(𝑎𝑝𝑝)

 and the input for symbols 

𝑦𝑚+1, … , 𝑦𝑛 is formed by the LLRs from the sum 𝐋𝑖
(𝑎)

+ 𝐋𝑖
(𝑐ℎ)

. 
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We assume that block 𝐵𝑖−1 is already decoded, or in case 𝐵1 
is the target block, block 𝐵0 is known a priori. At first iteration 

a priori LLRs are assumed to be zero, i.e., 𝐋𝑖
(𝑎)

= 𝟎𝑚×𝑚. After 

decoding of 𝑚 codewords, the extrinsic LLRs are formed:  

 𝐋𝑖
(𝑒)

= 𝐋𝑖
(𝑎𝑝𝑝)

− 𝐋𝑖
(𝑎)

, () 

and the extrinsic LLRs 𝐋𝑖
(𝑒)

 are provided for the second half-

iteration as an a priori information. At second half-iteration 

first 𝑚  input LLRs are chosen from the sum 𝐋𝑖
(𝑎)

+ 𝐋𝑖
(𝑐ℎ)

, 

where 𝐋𝑖
(𝑎)

 is substituted by the extrinsic LLRs (12) obtained 

at first half iteration. The input LLRs corresponding to 

symbols 𝑦𝑚+1, … , 𝑦𝑛 are chosen from the LLRs 𝐋𝑖+1
(𝑐ℎ)

. After 

decoding, the extrinsic LLRs are provided as an a priori LLRs 
for the next iteration. 

Now consider the computation complexity of staircase 
code SDD. The number of operations (additions and 
multiplications) required for one-sweep decoding is half of 
needed for the Bahl, Cocke, Jelinek and Raviv (BCJR) 

algorithm and can be estimated as 𝑂(𝑛2𝑛−𝑘)  per one 

codeword, i.e., 𝑂(2𝑚(𝑊 − 1)𝑛2𝑛−𝑘)  operations per 
iteration per target block. The required memory corresponds 

to storage of one section of the trellis, i.e., 2𝑛−𝑘. Calculation 
of the extrinsic information requires 2𝑚2(𝑊 − 2) additions 
per iteration per block. Then, the overall computation 

complexity can be estimated as 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚2(𝑊 − 2) +

𝑂(2𝑚(𝑊 − 1)𝑛2𝑛−𝑘))  operations, where 𝐿  denotes the 

number of blocks and 𝑁𝐼𝑡𝑀𝑎𝑥 maximum number of iterations. 
Obviously, the overall complexity of SDD grows 
exponentially with (𝑛 − 𝑘). Thus, only codes with the low 
correcting capability can be considered for a component code. 

HDD imposes serious performance loss in comparison 
with SDD (usually around 2 dB). On the other hand, using 
HDD of a component code can be very attractive from the 
computational complexity point of view. Another argument 
supporting HDD is that it provides more flexibility in using 
different codes as a component code. As it was mentioned 
previously the computational complexity of the syndrome- 
based decoding grows exponentially with the syndrome size 
and therefore the choice of the codes that can be used as a 
component code is very limited. Of course, another possible 
option is to use BP algorithm for the component code 
decoding. However, this option also limits the choice of a 
component code since most part of known good codes are not 
suitable for BP decoding due to low girth. That limits us to use 
LDPC codes as component code but usually short LDPC 
codes provide quite low performance and in case of using 
longer LDPC codes as component code the decoding 
complexity grows fast as well. One of the most attractive 
features of HDD is that it is possible to use low-resolution 
exchange messages for iterative decoding. 
The simplest iterative decoding algorithm of staircase codes is 
based on the bounded-distance decoding (BDD) [15]. Usually 
it is called iterative BDD (iBDD) algorithm or intrinsic 
message passing.  

In [11], Extrinsic Message Passing (EMP) algorithm was 
proposed. It improves the iBDD performance with almost 
negligible decoding complexity increase. 

Recently, several hybrid decoding schemes combining 
SDD and HDD architectures have been proposed, which 
provide a suitable performance-complexity tradeoff between 
SDD and HDD. The unifying idea of these schemes is to 
employ HDD as the decoding core, while exploiting some 
level of soft information to improve the overall decoder 
performance. Examples of such an approach can be found in 
[12] - [14]. 

If a linear binary code is used as a component code very 
simple syndrome decoding can be used for decoding of a 
component code. The complexity of the component code 
decoder in this case is defined by the complexity of a 
syndrome calculation, which requires (𝑛 − 𝑘)𝑛  XOR 
operations. The drawback of this method is quite high 

memory requirements, which are 𝑂(2𝑛−𝑘) elements. In this 
case, the decoding algorithm is stick to one particular code. 

If BCH codes are used as a component code, it is possible 
to apply the algebraic decoding. In this case, the 
computational complexity of the algorithm can be estmated by 

the number of operations in Galois field 𝐺𝐹(2log2 𝑛) . The 

overall number of operations in Galois field (including 
calculation of error values that is redundant for BCH codes) 
can be estimated as 6𝑛𝑡 + 9𝑡2 , where 𝑡  is the number of 
correctable errors (error correcting capability of the code). In 
this case, the memory requirements are practically negligible 
since the memory is used only for storing the coefficients of 
polynomials of power no more than (𝑛 − 𝑘). 

In the same manner as in SDD, windowed decoding can 
be used in HDD as well. In this case, decoding of one target 
block requires decoding of 2𝑚(𝑊 − 1)  codewords per 
iteration. If the EMP is used for HDD the only additional 
opeartions needed to calculate the messages is some small 
amount of logic operations. In case hybrid approach, e.g., like 
in [13] is used, the required additional complexity to calculate 
the messages is not negligible. For example, calculation of 
LLRs according to [13] requires 2𝑚2(𝑊 − 2) additions per 
iteration per block. Then, the overall computation complexity 
can be estimated as 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚(𝑊 − 1)(𝑛 − 𝑘)𝑛)  XOR 

operations and 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚2(𝑊 − 2))  additions, if 

syndrome decoder is used and as 𝐿𝑁𝐼𝑡𝑀𝑎𝑥(2𝑚(𝑊 −

1)(6𝑛𝑡 + 9𝑡2))  operations in Galois field if algebraic 

decoding is applied for decoding of a component code. If EMP 
(or any other binary message passing) is used 2𝑚2(𝑊 − 2) 
bits is enough to store the messages. In case of hybrid 
approach, the required memory amount should be increased 
according to message resolution, e.g., for ternary message 
passing in [13] the memory size increases up to 4𝑚2(𝑊 − 2) 
bits. In case the syndrome decoding is used, additional 

𝑂(2𝑛−𝑘)  memory elements are required. In case of 
calculation parallelization, the amount of memory should be 
increased according to the number of parallel processes.  

IV. COMPARISON OF THE CONSIDERED CODES 

In this section, we will try to compare the considered codes 
taking into account how easy the code or code family can be 
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adapted to different code rates. We will try to compare both 
performance and decoding complexity of the codes with 
similar parameters.  

A. SDD of both SC-LDPC and staircase codes  

The most obvious way of adapting the code to the different 
code rates is to construct a mother code of low code rate and 
then puncture parity-check bits to obtain codes of higher rates. 

For comparison the following mother codes were 
constructed. 

SC-LDPC ARJ based mother code was constructed in line 
with the description in Section II with the following 
parameters: 

- Memory size 𝑤 = 2; 
- Lifting size 𝑀 = 8; 
- Number of blocks 𝐿 = 55; 
- Code length 𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200; 
- Mother code rate 𝑅𝑆𝐶−𝐿𝐷𝑃𝐶𝑖𝑛𝑖𝑡

= 0.38. 

Windowed SPA layered decoding with window size 𝑊 =
9 blocks and maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 was 
used. Floating point messages are used for message passing. 

In the staircase mother code, extended (32, 21) BCH code 
capable of correcting 2 errors was used as a component code 
(𝑚 = 16, 𝑟 = 11) . The staircase mother code parameters 
are: 

- Number of blocks 𝐿 = 8; 
- Number of terminating blocks 𝛬 = 0; 
- Code length 𝑁𝑆𝑡 = 2048; 
- Mother code rate 𝑅𝑆𝑡𝑖𝑛𝑖𝑡

= 0.31. 

 
Figure 4. Performance comparison of ARJ based SC-LDPC 

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200) and staircase code (𝑁𝑆𝑡 = 2048) at Rtarg = 

0.4. SDD. 

The staircase code was decoded with the help of the SDD 
described in Section III.B with window size 𝑊 = 3 blocks 
and maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 . The 
syndrome based one-sweep decoding was applied for 
decoding of a component code. Floating point messages are 
used for message passing. 

Simulation results for different code rates 𝑅𝑡𝑎𝑟𝑔  are 

represented in Figure 4, 5 and 6. 
As can be seen from Figure 4, 5 and 6, with target code 

rate 𝑅𝑡𝑎𝑟𝑔 = 0.4 , the SC-LDPC code outperforms the 

staircase code by more than 1 dB. However, with increasing 

target code rate, this performance gap decreases and at 
𝑅𝑡𝑎𝑟𝑔 = 0.7 it is negligible. This can be explained by the fact 

that the initial mother code rate of the ARJ-based is higher, 
but puncturing deteriorates its performance faster than the 
performance of the staircase code. 

 

 
Figure 5. Performance comparison of ARJ-based SC-LDPC 

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200) and staircase code (𝑁𝑆𝑡 = 2048) at Rtarg = 

0.6. SDD. 

 
Figure 6. Performance comparison of ARJ-based SC-LDPC 

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 2200) and staircase code (𝑁𝑆𝑡 = 2048) at Rtarg = 

0.7. SDD. 

Comparing the decoding complexity of used decoders 
according to estimates in Section III.A and Section III.B we 
can observe that the complexity of the staircase decoder is 
about 3 - 4 times higher than the complexity of the SC-LDPC 
decoder (depending on how to estimate the complexity of the 
box-plus operation).  

Taking into account the lower computational complexity 
and better performance of the ARJ-based SC-LDPC code, it 
would be the obvious choice for SDD. On the other hand, the 
drawback of this code family is the serious performance 
degradation with target rate increase. Most probably with 
some optimization efforts it would be possible to find some 
specific puncturing patterns that can provide not so fast 
performance degradation but it will take time to find optimal 
distribution of punctured bits between the sub-matrices of the 
parity-check matrix.   
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B. HDD for staircase codes  

As it was mentioned in Section A, the complexity of SDD 
for staircase codes is too high and the performance is inferior 
to the performance of the ARJ-based SC-LDPC code at low 
code rates. However, the performance of staircase codes does 
not drop as fast as the performance of the SC-LDPC codes 
with the code rate increase.  

Since our goal is to consider the codes that can provide 
high throughput, it might be interesting to consider the 
possibility of using HDD. As it was discussed in Section III.B, 
the staircase codes are especially attractive for the HDD since 
some good codes allowing low-complexity algebraic 
decoding can be used as a component code. Moreover, the 
performance drop due to applying HDD rather than SDD can 
be partly compensated by usage of more powerful codes, 
which are not possible to use in SDD due to prohibitively high 
decoding complexity. 

For example, it is possible to consider RS codes as 
component codes. Except the good performance one of the 
attractive properties of the RS codes is that they belong to the 
class of Maximum Distance Separable (MDS) codes for 
which any 𝑘 symbols of a codeword, where 𝑘 is the number 
of information symbols, forms the information sequence. Due 
to this property all puncturing patterns for RS codes are 
equally good and there is no need in designing special 
puncturing patterns when adapting the mother code for the 
target code rate. 

In this section, we consider the comparison of longer 
codes. We again apply SDD for decoding of the SC-LDPC 
code, but of lower complexity. We consider Min-Sum (MS) 
algorithm rather than Sum-Product Algorithm (SPA) and 
decrease the exchanged message resolution. High resolution 
of the exchanged messages can hinder achieving high 
throughput since it will require a lot of additional wiring in 
comparison with the low resolution message passing leading 
to serious limitation in possible parallelizing of computations. 
Thus, the binary message passing is especially attractive for 
high throughput decoders. In our simulations, we decrease the 
message resolution to 3 bits. 

The parameters of the SC-LDPC ARJ-based mother code 
used in the simulations are as follows: 

- Memory size 𝑤 = 2; 
- Lifting size 𝑀 = 8; 
- Number of blocks 𝐿 = 510; 
- Code length 𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400; 
- Mother code rate 𝑅𝑆𝐶−𝐿𝐷𝑃𝐶𝑖𝑛𝑖𝑡

= 0.398. 

Windowed MS layered decoding with window size 𝑊 =
18  blocks and maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 
was used. 3 bits messages are used for message passing. 

In the staircase mother code, extended (32, 23) RS code 

over the 𝐺𝐹(25) capable of correcting 4 errors was used as a 
component code, i.e., the code length in bits is 32 ∙ 5 = 160 
(𝑚 = 80 𝑏𝑖𝑡𝑠, 𝑟 = 45 𝑏𝑖𝑡𝑠) . The staircase mother code 
parameters are: 

- Number of blocks 𝐿 = 3; 
- Number of terminating blocks 𝛬 = 1; 
- Code length 𝑁𝑆𝑡 = 22800; 
- Mother code rate 𝑅𝑆𝑡𝑖𝑛𝑖𝑡

= 0.368. 

 The staircase code was decoded with the help of the 
binary message passing with window size 𝑊 = 3 blocks and 
maximum number of iterations 𝑁𝐼𝑡𝑀𝑎𝑥 = 5 , the algebraic 
decoding of the component RS code was used. Notice, that 
despite the exchanged messages have 5 bit resolution, this is 
5 bit message per 𝐺𝐹(25) symbol, i.e., per 5 bits. Thus, we 
can consider it as a binary message passing. 

Performance comparison of the ARJ-based SC-LDPC 
code (MS decoding, 3 bit message) and (32, 23)-RS-based 
staircase code (𝑚 = 80 𝑏𝑖𝑡𝑠 , 1 bit message) is shown in 
Figures 7, 8 and 9.  

 

 
Figure 7. Performance comparison of ARJ based SC-LDPC 

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400) and RS-based staircase code (𝑁𝑆𝑡 = 22800) 

at Rtarg = 0.4. MS decoder for SC-LDPC, HDD for staircase code. 

 
Figure 8. Performance comparison of ARJ based SC-LDPC 

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400) and RS-based staircase code (𝑁𝑆𝑡 = 22800) 

at Rtarg = 0.5. MS decoder for SC-LDPC, HDD for staircase code. 

As can be seen from Figures 7, 8 and 9, the performance 
of the ARJ based SC-LDPC code deteriorates much faster 
with the target rate increase than the performance of the RS-
based staircase code. At the same time, the performance of the 
RS-based staircase code changes quite smoothly with code 
rate increase. 

Comparison of the decoding complexity depends on how 
to estimate the computational complexity of min operation 
and the operation in Galois field. Assuming that the 
computational complexity of the min operation is equal to 
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addition complexity, and the operation in Galois field has the 
same complexity (addition in Galois field is equivalent to 
XOR operation and multiplication is equivalent to addition on 
modulo (𝑛 − 1) , where 𝑛  is the RS code length, or both 
operations can be implemented with Look-Up Table (LUT)), 
we can estimate that the decoding complexity of the ARJ 
based SC-LDPC code is 7 – 8 times greater than that of RS-
based staircase code. 

 

 
Figure 9. Performance comparison of ARJ based SC-LDPC 

(𝑁𝑆𝐶−𝐿𝐷𝑃𝐶 = 20400) and RS-based staircase code (𝑁𝑆𝑡 = 22800) 

at Rtarg = 0.7. MS decoder for SC-LDPC, HDD for staircase code. 

Moreover, with current parameters the amount of memory 
needed for storing the exchanged messages in window for 
ARJ based SC-LDPC code is about 200 times more than for 
the RS-based staircase code if the messages in BP decoder are 
stored in (𝑏𝑐 ∙ 𝑀 ∙ 𝑊 × 𝑏𝑣 ∙ 𝑀 ∙ 𝑊) matrix. More realistic is 
the case when each message simply consists of value and 
address. The number of messages in windowed MS decoding 
of SC-LDPC code can be estimated as 5𝑏𝑐 ∙ 𝑀 ∙ 𝑊 = 2160. 
Assuming that there are 𝑏𝑣 ∙ 𝑀 ∙ 𝑊 = 720 VNs in window, 
each CN→VN message comprises 3 bits bearing the value and 
10 bits address. That gives 2160 ∙ 13 = 28080 bits, which 
4.3 times more than 6400 bits needed for messages in staircase 
decoder with window size 3. 

One obvious drawback of the RS-based staircase codes is 
less flexibility with the choice of the code length since it 
should be a multiple of 𝑚2. This value depends on the choice 
of the RS code. However, here some optimization is also 
possible. For example, for Galois field 𝐺𝐹(2𝑝) if 𝑝 is not a 
prime the field element can be represented differently (e.g. as 
a (1 × 𝑝) vector or as a (𝑞1 × 𝑞2) matrix, where 𝑞1 ∙ 𝑞2 = 𝑝). 
Then, one representation leads to 𝑚 = 𝑝2𝑝−1 and another to 
𝑚 = 𝑞22

𝑝−1 . In first case, 𝑝2𝑝−1  RS codes should be 
decoded at each half-iteration for each block. The second 

representation leads to necessity to decode 
𝑞22𝑝−1

𝑞1
 codes. Of 

course, the performance in case of second representation 
should be less than in first case but it could worth of 
considering. An example of staircase codes based on different 
representation of 𝐺𝐹(24) symbol is shown in Figure 10. 

Two representation of 𝐺𝐹(24) symbol ((2 × 2) and (1 ×
4)) leads to the staircase codes with different block size and 
therefore different code length. Both codes in Figure 10 

comprise 4 information blocks and 1 terminating block (𝛬 =
1). Obviously both codes have the same original rate 𝑅 =
0.3243. Representation (2 × 2) gives the block size 𝑚 = 16 
(8 RS codes must be decoded in block), which leads to the 
original code length 𝑁𝑆𝑡 = 1184, and representation (1 × 4) 
gives the block size 𝑚 = 32 (32 RS codes must be decoded 
in block) leading to the original code length 𝑁𝑆𝑡 = 4736. As 
can be seen from the performance curves in Figure 10, the 
behavior of both codes is quite similar with changing target 
code rate. 

 
Figure 10. Performance of staircase code based on (16, 11) RS 

code with different representation of GF(2^4) symbol. (2 × 2) and 
(1 × 4). 

In case performance provided by the HDD of RS codes is 
not enough, two other options can be considered. One of them 
is to apply soft decoding of RS codes based on Guruswami-
Sudan (GS) list decoding [18]. Another is to consider LDPC 
codes as a component code. On the other hand, both options 
lead to severe complexity increase. For example, even 
applying Nielsen interpolation to GS, overall complexity of 

the list decoding is 𝑂 (𝑛2 (
𝑛

𝑘
)

1 2⁄

𝑟5)  [19], which again 

narrows the choice of a component code.  

V. CONCLUSIONS 

The performance and complexity comparison of the ARJ 
based SC-LDPC codes and staircase codes shows that SDD 
SC-LDPC codes provide better performance and lower 
complexity than the staircase codes. However, the 
performance of SC-LDPC codes deteriorates very fast with 
code rate increase. 

The usage of HDD together with the powerful RS codes 
brings a benefit of significant complexity decrease with an 
affordable performance loss. Moreover, the performance of 
the RS-based staircase codes changes quite smoothly with the 
code rate increase. One more benefit of HDD of the RS-based 
staircase codes is the possibility of usage of binary message 
passing, which decreases significantly the amount of data 
exchange between the nodes. The latter property is especially 
important for reaching a high throughput. 

Therefore, the HDD of the RS-based staircase code can be 
considered as a good option for high-throughput decoding. In 
case higher performance will be needed, one of the interesting 
directions could be considered: the usage of LDPC codes as 
component codes in staircase code and BP decoding of a 
component code. 
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