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Abstract—This paper continues previous explorations in the amounts of training data are required to adequately “tréia”
area of deep learning applications in the field of cellular wieless neural networks (NN). Running a multi-layer neural network
networks, specifically the problem of identifying optimal beams in each individual radio unit (RU) for an urban geometry

in a highly directional urban environment, using topographical . . .
data. In our previous work, we have studied the problem with multiple RHs per sq.km. of coverage area is clearly

and demonstrated how deep-learming can be used on static Wasteful (both in terms of computing power as well as
topographical data for prediction of optimal beams. In this energy consumption) and furthermore, very expensive. What

paper, we show a potential architecture for realization of he s required is to use the combined resources of multiple siode
same for a network of nodes in a given area, taking into accoun operating in a common environment, in order to maximally

challenges of computational complexity, response time anthe - . . . .
inherent architecture of the next generation RAN. This is utilize the expensive computing resources in the radiotfron

achieved by usingdeep transfer learningas a way of translating €nd. This is what we shall explore further in this article.
between a global feature space inherent to the coverage area The rest of this paper is organized as follows. In Section Il
and local variations thereof, specific to the location of edt e review the problem in further detail, with a survey of the
radio-unit. _ . __relevant literature. In Section Ill, we review the techrpés
Keywords—Transfer Learning; Deep Learning; Beam predic- . S . e
tion: Distributed/Cloud RAN pf transfer Igarmngand multiview Iearnmgas mod|f|cat|9ns
introduced in the standard deep-learning methodologids an
show how they are relevant to our environment. In Section
IV, we present our analysis of the ITU-R dataset and show
It is well recognized that Deep Learning (DL) is onéhow it is relevant to the problem at hand. The simulations
of the foundational technologies for 5th generation cafllul and corresponding results are work-in-progress and we hope
networks, especially in the problem of beam selection amd report our results in a subsequent revision of this paper.
channel estimation in higher frequency bands (mmwave) for
urban environments where the radio-environment is highly Il. PROBLEM DESCRIPTION
directional. The problem of urban canyons and shadowingin Figure 1, we show the conceptual layout of a 5G cellular
due to buildings is well known [1]. One of the most promisingetwork in an urban environment. As we know, the 5G
technologies to deal with this problem is the use of machimetwork architecture utilizes thetoud Radio Access Network
learning; in this approach, we use Light Detection and Ran(RAN) concept, where the RAN is disaggregated into the
ing (LIDAR) or Global Positioning System (GPS) maps of &adio Unit (RU), the Distributed Unit (DU) and the Core
given urban topology to determine the wireless propagatiomit (CU). The RUs are placed in diverse locations within the
capabilities of the coverage area. It is premised that usiogverage region and are configured to create multiple radio-
deep-learning, we can radically speeden up the processbetims, focusing on specific hotspots. The RUs are connected
optimal beam selection for any given User Terminal (UT), ifo a smaller number of DUs, which provide the baseband
we know its position. To this end, the International Teleeonprocessing. Finally, the CUs are deployed as a cloud and
munications Union (ITU) organized a competition in 202@re designed to provide core signaling and control func-
[2] to explore deep-learning approaches on a multitude tns, including the radio-resource management and beam
real-world data. The authors participated in this comjoetit processing functions. ML algorithms can be hosted in variou
and our approach was recognized as achieving 70% accukgéss within the architecture, most notably within the RAN
prediction of the top-5 beams for a UT in any position ifntelligent controllers (RIC). Some of these schemes have
the coverage region. Other competitors showcased soytioneen explored in [3]. There are many possible configurations
which yielded more than 90% accuracy. of this basic architecture, each pertaining to a differesg u
Given that we are already achieving good results usimgse. A good overview is given in [4].
deep learning, it is time to consider the next step of prattic .
deployment of these technologies in the field. It is herd: Network Operation
that we come up against the biggest engineering challengesThis system works as follows. When a user terminal enters
Deep learning algorithms are well known to be prodigioutie system, it detects a common signaling channel (low
consumers of both computing power and energy; further vdstndwidth, blind detectable) and then signals its position

I. INTRODUCTION
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Figure 2. Conceptual View of GnodeB in ORAN

power and latency, in order to fit within the constraints
of the DU environment. The nrt-RIC, on the other hand,
provides slower control to the DUs using a relatively higher
latency link. It has substantially larger compute and mgmor
to the network. The network responds to it by identifyingesources at its disposal, and can afford to take a global
a list of predicted topV beams for it to use. The UT view of the network, due to its ability to store and process
then successively attempts to setup a high-bandwidth ddaia from multiple DUs and RUs. This will subsequently
connection with the RU servicing each beam in the ligtlay a role in the actual deployment of our ML based beam
till it achieves success. A beam corresponds to a precodipigdiction solution, as we shall discuss in Section IV.
filter f on the transmitter side and a post-coding veator ~We now consider the ML algorithm. The input to the ML
on the receiver side. For a given channel matiiXp,i) is the topographical information about the coverage region
corresponding to the channel experienced between the BMd labelled data corresponding to specific locations withi
at positionp and the base-station/Rithe received signal is the region and the beam/RU to which it maps. The format of
given by (1). the topographical data can take many forms, such as LIDAR
(1) scans [5] from the perspective of individual positions wvith
the coverage area, with the reflections identifying local ob
Obviously, the optimum beam is the one which maximizesacles, along with GPS topographical data and images taken
the signal strength. We assume a large number of fixgg wide-angle cameras. In other literature, topograplias
beams, each identified by a tuple 8f — (b,w, f), where is in the form of 3-d maps (for example, as provided by
b is the beam-id. Each beam is serviced by a given ROpenStreetMaps) or in the form of GPS contour data [6][7].
(this is invisible to the UT, but important for the beanThe labelled data comprises of actual measurements from
allocation problem, as we shall see later). The creation aggecific UTs at specific positions identifying the UT locatio
configuration of the individual beams is done externally anghd the empirically measured optimal beam id (or t§p
available to the network as a database. beams). This will be used to train the DL model.

Clearly, our algorithm for predicting beams based on UT The problem thus can be summarized as follows. Assum-
position has a local (RU specific) as well as a global elemeiny that we have topographical information for the network
to it. Each RU sees an individual view of the environmerjoverage area, how do we build an RU specific view, as
based on the static topographical features relative to &Il as a global view of the propagation characteristics, an
position, as well as the position of the UT. These statisubsequently map this to optimal beam positions.
features include high buildings, wide streets, overpaages _
other similar features which could potentially either obst B- Literature Survey
the signal or provide new reflective paths for it. On the other There is a lot of recent literature in beam identification for
hand, the system as a whole has to take into account thenwave communication. In [5], the problem is presented
alignment for all the RUs relative to a given position tdrom the perspective of the UT attempting to compute the
determine the optimal beam list. optimal beam list, based on LIDAR data. In [8], the authors

Matching the tiered nature of the problem, within th@resent the problem in a vehicular perspective, usinginealt
network as well, there are tiered layers of control. ThelDAR measurements to fingerprint a position relative to
near realtime RAN intelligent controller (rt-RIG$ typically other vehicles in a given highway. In [9], the authors présen
placed in the DU and thélon-Realtime RAN Intelligent a network oriented approach using coordinated beams and a
Controller (nrt-RIC) is typically placed in the core (Figurecentralized deep-learning model, similar to the problem we
2). The rt-RIC provides closed loop control at very tighére addressing. However, the authors use directly measured
latencies, typically focusing on local, high-speed conffbe signal strengths as the input. Each BS individuadgrns
rt-RIC algorithms operate within tight constraints of cang the system and the coordination is purely on the basis of

Multiple Remote Radio Units servicing common coverage area

Figure 1. Conceptual View of Distributed RAN covering anambocation
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selection, not in the model itself. In [10], the authors fecucharacterestics within the environment. It is well knowatth
on the beam sweeping pattern itself as the output to the M&.,DL based learning engine learns features in all its layers,
as opposed to the beam prediction itself. starting with the most generic and moving towards the more

For our particular problem, we shall use the technologgpecific; the problem then becomes selecting the layer mvithi
of transfer learning(TL). The area of transfer learning is anwhich the features are learnt at the optimal level of spetific
active field in DL theory; comprehensive surveys are givel second problem is the applicability of the features and how
in [11][12]. The success of transfer learning is predicatdd use them in the target inference engine. In our particular
on the ability to extract features in the preliminary part ofnvironment, it is not just a matter of weighting the feature
the DL model; this problem is surveyed in [13][14]. Theset, but rather of determining the applicability of a featur
authors in [15][16] analyze the transferability of the exted and its impact on the inference problem as a whole.
features, by selectively migrating some layers of a prexch
DL model and comparing it to the performance of the sa
with randomized starting weights. This is extended in [17] When we have multiple data sets from a single common
into a concept of doint Adaptation Networkwhich will be environment (for example, RSSI readings for different UT
used in the rest of our paper. positions from the perspective of multiple base-statiBhis),

The problem ofmultiview learningis also an area of active a primary problem is the risk of over-fitting, especially it
research; see the surveys in [18]-[20]. The advantage dsta is simply concatenated together and fed into a single DL
multi-view learning is that it enables significant simplton engine. This is the problem that multiview learning tries to
of the input data to be processed at individual nodes, bygusiavoid. On the other hand, simply separating out the data and
commonality to remove redundancies and noise. Multi-vietkeating them completely independent data-sets leadsud-in
learning seems to be peculiarly applicable to a network nofieient training, especially if individual data-sets areadimnor
scenario as we have presented in Section Il. However, themgeven. There are many different ways to implement multi-
doesn’t seem to be much published research in this domaiiew training, each of which focusses on a different aspéct o

the problem. Co-training looks at maximizing the agreement
Ill. A DAPTATIONS OF DEEPLEARNING TO A between different views, whereas multi-kernel learning an
DISTRIBUTED/HIERARCHICAL ENVIRONMENT subspace learning operate by implementing a certain steict

If we analyze our problem from the TL angle, we seen the underlying data-space.
that we have a large number of independently operatin
nodes, each of which has to learn variations of the same datd,
i.e., the topography of the coverage region independelttly.
has been pointed out that we can make substantial savingéVe now come to the realization of the beam-selection
by coordinating the learning procedure in some way. Thagorithm. In our earlier work [21], we described a generic
two major technologies that we have consideredtamasfer realization as a single centralized inference engine asep De
learning and multiview learning which are summarized in Neural Network (DNN) of 11 layers, using UT position
the following Subsections. as the index, in conjunction with the angles of arrival and
departure and signal strength as labels to match optimal
beams with UTs in other, unlabelled positions within the

TL is a method whereby the information acquired bgoverage area. As shown in the ITU-R challenge referenced
particular DL model can bé&ransferredin suitably adapted above, it is possible to augment the data set with other
form to another DL model. The transfer can be cross-domamarametric information. For example, LIDAR/image data is
or (as in our case), intra-domain. In our particular situati highly perspectival; by providing LIDAR based ranging data
we can have a central system whilelarnsabout the topology from individual BS locations, we can augment the empirical
by processing all the path specific data available to theesystwireless information and get better training of individual
and then transfers the learned model to individual RUs farference engines.
their use. To implement the transfer scheme, we need tdn Figure 3, we show conceptually how the beam selection
decide two things. First is what exactly to transfer and tredgorithm works. The algorithm is broken up into two tiers.
second is how to accomplish it. The central algorithm learns the common features of the

While there are many variants of transfer learning, one afban environment and transfers the DNN with pre-trained
the most appealing is that éature basedransfer learning. layers to the RU specific tier. This tier then augments the
In this mode, thdeaturesof the data are extracted and learnDNN with local data and computes the final inference engine.
by the main ML and then transferred to the subsequent MUSor global data, we use the GPS data indexed by position
these MLs take this feature knowledge and further refine Wwith labelled information about UTs which were able to
Features are fairly intuitive (especially when geograghicacquire beams (with associated signal quality). Basedisn th
data is involved) and it is possible to extract them effidientwe can form a top level view of the predicted coverage
from raw data. In our case, a feature could be a large buildify beams which is learned by the engine. In the local
or other artefact that significantly impacts the propagatidier, we augment this information by using signal strength

nf: Multiview Learning

. ARCHITECTURE FORDEEPADAPTATION LEARNING
FOR THERAN BEAM SELECTION PROBLEM

A. Transfer Learning
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