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Abstract—Indoor location tracking is an emerging technology
that enables consumer oriented businesses such as retailers and
hoteliers to better track movement patterns of visitors and
generate key metrics like in/out count (footfall), dwell time
and understand the popular route(s) inside the facility. These
are in turn used for maximizing customer safety, scheduling
of optimal workforce and optimal product placements. In this
paper, a method is demonstrated for user position mapping by
tracking the Wi-Fi signals sent by their smartphones as they
walk through an indoor environment, using only the anonymous
network probing signals emitted intermittently by each device.
Our approach is scalable, unobtrusive and does not require active
participation or installation of any special software on tracked
devices, with minimal infrastructure costs. Since the devices are
not connected to any access point, the signal is anonymized,
which aids in protection of user privacy. It is shown how the
raw metrics are used to generate accurate position data and
ensemble dynamics over a known indoor topology, and how
individual models of human behaviour can be used to predict
mass movement of crowds in an indoor setting.

Keywords—Wi-Fi tracking; Wi-Fi Probe requests; RSSI finger-
print; group dynamics; MAC address randomization

I. INTRODUCTION

Indoor location positioning and non-intrusive tracking of

users, by signals from their Wi-Fi device, is being used in

various industry verticals to gain more insight about their

customer behavior [1]. The insight thus obtained can be

utilized to provide better customer experience. Liu et al in

[2] describe various techniques that are being used for indoor

location positioning and tracking. Some of the techniques

make use of cellular signals for indoor location tracking (see

also [3]). Other methods utilize Bluetooth(BT) or Universal

Wideband (UWB) signals [4]. Accuracy of methods based

on cellular technology is low (50-200 m) [2], and BT based

techniques require a BT tag to be attached to tracked item.

Further, BT and similar techniques have much smaller range

as compared to WiFi signals and hence require a very different

approach. In the rest of the paper, we will limit ourselves

specifically to WiFi as a wireless access technology for our

location determination purpose.

The application that we have in mind is crowd-modelling

in an indoor arena. The key outcome of crowd-modelling is to

know how many people are located in which part of the indoor

arena, i.e., the size of the crowd and further, how the crowd

is moving, within the arena. There are many different sensors

available for this purpose, starting from optical processing of

fixed cameras, footfall sensors, heat sensors, etc. All of them

are similar in that they provide random samples of location

information, which have to be converted to ensemble data.

For our solution, we use Wi-Fi fingerprinting as an equivalent

sensor. As we shall see, our method produces similar sampling

output and our modelling approach may be used for any sensor

based method. In our case the Wi-Fi signals of interest are

the probes sent out by Wi-Fi end-points (typically, mobile

phones carried by individuals) to detect Wi-Fi networks in the

vicinity. We measure the Received Signal Strength Indicator

(RSSI) for each probe received and then use a trained Machine

Learning (ML) model to convert this into an indication of

the zone from which the signal came. This kind of RSSI

fingerprinting methods require training/calibration on each

new place since no two indoor environments have the same

signal propagation characteristics. While there has been a fair

amount of research in this area (see Section II), to the best of

our knowledge, earlier work have not considered all the other

factors which impact the accuracy of location prediction, i.e.,

different types/make of devices, orientation of the device, etc.

We shall show that all of these factors have significant impact

on the accuracy of location estimation.

Typically, most systems which track Wi-Fi devices across

various locations use the Wi-Fi MAC address as a device iden-

tifier. Clearly, there are privacy issues involved in tracking a

device using a permanent identifier. In iOS 8, Apple introduced

MAC randomization [5] to maintain user privacy during active

scan for Wi-Fi networks. Since then, most of the Android

phone OEMs have started doing MAC randomization. In the

latest versions of Android, Google introduced support for

MAC randomization in Android open source project (AOSP),

hence covering nearly all modern devices. Even though it is

possible to predict the location of the Wi-Fi device (identified

by its real MAC or randomized MAC), the randomization of

MAC makes tracking of a device across locations difficult,

given that devices change to a new randomized MAC af-

ter transmitting few messages. Various device fingerprinting

techniques have been identified, which utilize the information

available in Wi-Fi messages (other than MAC address) [5][6].

However these techniques are better suited for identifying the

type or brand of the device rather than a unique instance. Our

method, on the other hand, does not require identification of

individual devices; we use probe-measurements as a random

sampling technique to generate ensemble location data, which

is then fitted to our model.

In the rest of this paper, we use the term Wi-Fi device to refer

to any consumer device with an active Wi-Fi interface (com-

puters, mobile phones, tablets, etc.). We use the term scanner

to refer to special access-points operating in monitor mode

and placed at known locations, running a special application

to capture Wi-Fi signals. One of the scanners is the anchor

scanner, that is used as a reference to generate differential

RSSI signals as mentioned in Section IV. Devices may either
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be training devices, used to train the location prediction

engine, or tracked devices whose readings are captured and

fed to the location prediction engine for location estimation.

The input is in the form of an RSSI fingerprint, comprising of

differential readings from multiple scanners.

The rest of the paper is organized as follows. In Section

II, we cover the current state of the art in Wi-Fi based

indoor location positioning . In Section III, we discuss our

experiments in indoor location calibration and identify the

different non-environmental factors which impact the accuracy

of our method. In Section IV, we give a brief description

of the Machine Learning technique used for the backend

location prediction. In Section V, we show how we convert the

individual location samples to a model of the indoor location

as a whole. Finally in Section VI, we discuss our final results

and potential for future work.

II. LITERATURE REVIEW

Various methods based on Wi-Fi signals are being used

for the localization of devices in the indoor environment.

Some of the techniques perform lateration by measuring the

distance of the Wi-Fi transmitter from Wi-Fi receivers placed

at known locations. The distance is measured by calculating

either the Time of Arrival (ToA) or Time Difference of Arrival

(TDoA) [7]. In order to give accurate results lateration tech-

niques require time synchronization either between the Wi-Fi

transmitter and receiver or between multiple receivers. These

techniques also need a very accurate measurement of arrival

time since a minute error in measurement leads to an error of

a few 100 meters in location calculation [7]. Other techniques

measure the angle of incidence (AoA) of Wi-Fi signal at two

or more Wi-Fi receivers [8]. The angle of incidence is then

used to determine the location of the Wi-Fi transmitter. This

method requires a clear line of sight between transmitter and

receiver, which is not achievable in the indoor environment

for most of the use cases.

The use of RSSI measured value for location determination

has been widely discussed [7][9][10][11]. The most common

RSSI based techniques employ propagation loss models to

measure the distance between the Wi-Fi transmitter and re-

ceiver [12]. Distance between transmitter and three or more

receiver is then used to find the location of the transmitter.

These techniques do not work very well because of multipath

in the indoor environment, given the frequency at which Wi-

Fi operates, as we shall discuss in Section III. However, there

are many other factors which impact the performance. For

example, in [13], the authors have described the difference in

Wi-Fi transmission characteristics in different Wi-Fi devices. It

should be noted that RSSI fingerprinting is being investigated

for millimeter wave radio, including the new 802.11ad Wi-

Fi standards [14]. The problem of converting movement of

ensembles of individuals on a graph have been studied in

multiple contexts. These include the movement of a fluid

within tubes [15][16], the transport of particles in a network

[17], diffusions on graphs with random jumps [18][19][20],

etc. The key constituents of these models are the evolution

function for each particle on each edge and the transition

functions at the vertices, to ensure that there is no build-up

between edges. A good summary is provided in [21].

III. FACTORS IMPACTING RSSI READINGS IN AN INDOOR

ENVIRONMENT

In our solution, we have utilized RSSI based techniques for

location determination; this is known as location patterning

[7]. There are obvious advantages to this technique; it does

not require any specialized hardware and can be implemented

using standard off the shelf Wi-Fi receivers. Further, it does not

require any modification of behaviour, either by the user or by

the user device, since measurements are taken passively based

on the normal scanning behaviour of the device; this makes

the technique less obstrusive and more scalable. The core of

this technique is to learn RSSI patterns (RSSI fingerprint)

for each location of interest and learn how to map these

patterns to transmit locations. This technique consists of two

phases. In the first phase, we use labelled data to calibrate

our algorithm, which also takes into account the peculiarities

of the environment. In the second, we can use real-time

measurements for prediction. Obviously, the placement of the

scanners cannot be changed between the two phases, neither

the environment.

During the calibration phase, the RSSI values of messages

received by scanners are tagged by the known location of

the transmitter and collated to create the RSSI fingerprint

corresponding to a location. The output of this phase is an

RSSI fingerprint database corresponding to each location of

interest. This database is used to match received RSSI tuples

during the prediction phase, as we shall see below.

A. Measurement of RSSI in a closed area

As our work is based on location patterning, using RSSI

readings as the fingerprint, we wish to find all the exogenous

factors which can cause variations in the RSSI readings. To

this end, extensive testing of RSSI readings was done for

different categories of devices in an instrumented environment.

For our experimentation, we used Raspberry Pi 3 B+ boards

with Alfa AWUS036HEH Wi-Fi USB dongles to act as Wi-Fi

scanners. The Alfa AWUS036HEH Wi-Fi USB dongle was put

in monitor mode to sniff Wi-Fi packets while the inbuilt Wi-Fi

of Raspberry Pi provided connectivity to LAN. We used one

of the floors of our office building to install Wi-Fi scanners.

Wi-Fi scanners were hung from the ceiling for better signal

reception. Figure 1 shows the placement of Wi-Fi scanners.

We divided our office floor into zones of similar size and

placed one scanner in each zone. Placement of scanners was

such that it avoided concrete/metal pillars and other wireless

devices. The working of the system is shown in Figure 2.

An application called find3-cli-scanner from the opensource

package [22] was installed on the Raspberry PIs to sniff Wi-

Fi probe packets and forward them to the central server. For

each Wi-Fi device (identified by MAC address) the central

server collates RSSI values received from scanners, forming

a tuple of RSSI values received from all the scanners. For

example, if the RSSI value of a probe request was Rj at

scanner Sj , j ∈ [1..7] a typical RSSI fingerprint tuple with
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Figure 1. WiFi Scanner Placement.

Figure 2. Test and calibration setup.

(a) Standard tuple.

(b) Differential tuple.

Figure 3. RSSI fingerprint formats.

RSSI values from all 7 scanners is shown in Figure 3. For our

test, we collected about 2000 RSSI fingerprints over a duration

of 8 hours for the calibration phase for each learned location.

Collection of RSSI fingerprints over a longer time period

helps in capturing variation caused by movement of users in

measurment environment. RSSI fingerprints collected during

the calibration phase were used to train a ML classification

algorithm. For location prediction, the RSSI fingerprint of a

device is fed to the same ML classification algorithm, which

predicts the probable location of the Wi-Fi device. During our

initial tests with this arrangement, location predictions were

not very accurate, with prediction accuracy ranging from 70%

in the best case to 20% in the worst case. Where we defined

accuracy as the percentage of times when system predicted

the zone correctly. The reasons for accuracy variation will be

explained in the Subsection III-B.

B. Factors impacting location prediction accuracy

Significant variation in RSSI measurements are caused by

non-environmental factors such as the channel, the orientation

of the phone, device type and movement of users near the

transmitting or receiving device. In this section, we shall

report the outcome of experiments that we conducted on the

effect of some of these factors. We start with the frequency

configuration. Wi-Fi access points typically use frequency

hopping, so as to reduce channel specific impairments. In

our case, this means that the RSSI probe from the same

location may be measured by multiple scanners on different

channels, which will then be combined into the same tuple

of measurements as a fingerprint. As it turns out this does

not work, because different channels even within the same

2.4Gz band show wide variation in RSSI readings for the

same scanner-transmitter pair. It is hard to say definitely

whether this is because of noise in those bands or simply

propagation related; however, sporadic interference can be

ruled out, because the effects were sustained over a fairly

large period of time. In our test, a Wi-Fi device (Moto G5

phone) was placed at a known location, and we measured

the RSSI values of packets sent by this device at one of the

scanners. The system was configured initially at Channel 1

(2.412 GHz), and then on channels 5(2.432 GHz), 9(2.452

GHz) and 13(2.472 GHz). Figure 4a shows the differences of

RSSI values of probe requests received on different channels.

There was a difference of about 20dB between the average of

the RSSI values of probe requests received on channels 1 and

13.

Our next experiment considers the effect of phone orien-

tation (angle between transmitter of phone and receiver of

scanner). We conducted a test wherein one Wi-Fi device (Moto

G5 phone) was placed at one of the locations, and RSSI

values of its probes were captured at one of the scanners;

both devices were set to channel 9. RSSI values of probe

requests from Moto G5 were collected at the scanner at 8

different orientations 45◦ apart, for 15 minutes each. Figure

4b shows the average of the RSSI values for each orientation.

The angle between Orientations 1 and 4 was 180◦, and RSSI

values on these two orientations differ by about 18dB. It is

3Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-802-0

AICT 2020 : The Sixteenth Advanced International Conference on Telecommunications



(a) Channel based.

(b) Different orientations.

(c) Different devices.

Figure 4. RSSI variations due to various factors.

clear that the RSSI values change considerably with the change

in orientation. The indoor localization method should consider

the possibility that the tracked device could be placed/carried

in any possible orientation.

Finally, we consider the device itself. It turns out that if

the tracked devices used during the location prediction phase

are different from those with which the training was done, the

accuracy of location prediction reduces significantly, as low

as 20% at some locations. Figure 4c shows the recorded RSSI

values for different Wi-Fi devices placed at the exact same

location and orientation. We can see that the average RSSI

value from OnePlus 6T (-27 dB) and average RSSI value from

Motorola G5 (-39 dB) differ by about 12 dB. Our observations

have been reproduced by other authors [13]; the difference is

due to the combination of chipset, Power-Amp and antennae

used by different manufactures.

IV. A MACHINE LEARNING SOLUTION TO LOCATION

IDENTIFICATION

Based on the factors identified in Section III-B, we have

identified methods by which we can improve the quality of the

RSSI measurements. For example, to take care of the channel

variation, we locked all AP scanners to the same channel. If

the channel is changed, all the APs must switch to the new

channel and a new calibration phase has to take place. For

the other factors, we introduced the concept of differential

readings using one of the Wi-Fi scanners (typically the one

at the center of the coverage area) as an anchor scanner.

For creating an RSSI fingerprint, instead of using absolute

RSSI value, we subtracted the RSSI value at anchor scanner

from RSSI value at every other scanner (Figure 3b). This

takes care of most of variations caused by both the chipset

specific and environmental sources. Differential reading re-

moves the differences caused by Power-Amp and antennae

used in different types of devices. It is possible to designate

any scanner as the anchor, and even introduce multiple anchors

for additional robustness. This will increase the complexity

of the training but add even more robustness to the data. We

shall study this in future work. We used the Machine Learning

package FIND3 [22] for location prediction. The FIND3

package runs multiple machine learning algorithms in parallel

and then chooses the best among them using the Youden’s J-

statistic diagnostic metric [23] as given in equation (1). These

include the K-nearest neighbour, linear SVM, Decision tree,

Random Forest, and Extend Naive Bayes algorithms. Using the

labeled data provided, each algorithm is trained with a subset

of the data and then tested using the remaining part of the data.

The prediction is in the form of a probability factor PL for

each location L. Based on the predictions by ML algorithms

Youden’s J statistic is calculated for each location and each

ML algorithm.

J =
Tp

Tp + Fn

+
Tn

Tn + Fp

− 1

Tp=
∑

IPLe>σ –True Positive

Fp=
∑

IPL>σ, L 6= Le –False Positive

Tn=
∑

IPL<σ∀L ∈ L, Le /∈ L –True Negative

Fn=
∑

IPL<σ∀L ∈ L, Le ∈ L –False Negative

(1)

In the above, σ is an externally supplied goodness-of-fit metric.

A value of 1 for J indicates that the prediction by algorithm is

perfect and the value of 0 indicates the prediction by algorithm

is useless. Based on this metric and a given set of training data,

the FIND3 package will find the best fit model for location

prediction. Using this algorithm, the entire calibration was

done using a single device and then applied the prediction to

multiple different types of devices. We collected more than

2000 samples for each location. After calibration, we per-

formed location prediction for three different types of devices;

Samsung Galaxy S8, Panasonic Eluga A5, and Motorola G5.

We obtained more than 80% prediction accuracy on all of these

devices, within a 3 meter radius of the calibration positions.

V. MODELLING THE GROUP DYNAMICS OF WI-FI USERS

Up to now, we have captured the individual probes from

individual transmitters and resolved these into a location with
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Figure 5. High Accuracy Zones.

a certain probability. In this section, we will see how we can

convert the individual data-points into an aggregate model. To

do this, we first use a spreading function to convert the impulse

data from the samples to a continuous estimate of occupancy

and then try to model this as a stochastic process. The model

will allow us to predict ensemble behaviour, so that we can

convert the movement of individuals into that of a crowd.

The problem of reconstructing occupancy data from sam-

pling is made more complex by the fact that we have no control

over the sampling points and further, that each brand of mobile

transmits probes at different intervals as shown in Table I. The

spreading function must be sufficiently broad so as to capture

this variation, but not so broad that we over-value samples.

As discussed in Section IV, the machine learning algorithm

gives results in terms of specific zones where the access points

are centered with an effective radius of about 3m. In order

to use this, we convert the coverage region into a graph,

where the zones represent edges and the vertices represent

the transitions from one zone to the other (Figure 6). Each

received probe, hence, has to be mapped by the location

mapping algorithm into one or more zones with the associated

probability of fit.

To despread the probing data and estimate the occupancy

function for each zone, we use a root raised cosine spreading

function rrc(T, t, i) with a cutoff of 0.85 and a spreading

interval of 50 seconds. The spreading function rrc(T, t, k)
estimates the likelihood of the transmitter being in the same

zone in the time interval [T − t, T + t] from which we have

received a probe at time T . The computation of the occupancy

function estimate ĉ(l, t) : L × [0..T ] −→ R is the weighted

sum of all the despread samples in that zone, as is shown in

(2). Here L is the set of all locations within the coverage area

and s(l, τ) refers to a probe request received at time τ which

is resolved to be in location l with the probability s(l, t).

ĉ(l, t) :
∑
τ

s(l, τ)rrc(t − τ) (2)

Once we implement this over all the resolved probes s ∈ S, we

have continuous occupancy estimates c(l, t) for all locations l
and for all 0 ≤ t ≤ T .

A. Modeling individual user behaviour

Once we have converted the empirical probe data into

continuous occupancy estimates ĉ(l, t) and the coverage area

into a graph Γ = {N ,V}, we now have to choose a model

to fit the empirical data. The baseline assumption is that all

the users are homogeneous and the basic individual model is

only affected by the edge (location) of the transmitter and the

position within that edge. Within the evolution function, we

have to identify the parameter which captures the effect of

the environment on the particle. If we model the network as

a series of pipes and the individuals within it as a frictionless

fluid, then the cross-section of each pipe (edge) determines the

transport rate within that edge. The entire system of equations

must then be solved simultaneously, taking into account the

topology of the graph, i.e., the number of edges coming

together at each vertex.

In our case, the movement of individual users is modelled by

an Ito Diffusion dxt = b(x)dt + σ(x)dWt, x(0) = a with the

b(), σ() obeying the usual Lipschitz conditions and Wt being

a standard Brownian motion. The diffusion captures both the

variability of the data and the drift of the user within a given

edge. A key statistic is the exit process, which is defined as

follows: given that there are N transmitters in a given edge,

moving as per a given process, what is the likelihood that the

transmitters will exit the edge at a given vertex within the next

Te time period. If we can compute the probability function

P (Te) for the exit time on the eth edge, we can predict the flow

of movement from within an edge to the neighbouring edges.

A second interesting statistic is the transition process, which

determines the user behaviour when she reaches a vortex and

has to choose among the edges meeting at the vortex. In this

paper, we focus on the exit time. For a diffusion starting from

any point a within the known domain, the exit time is given

by Dynkin’s formula (3).

E
a(f(Xt)) = f(a) +

∫ t

0

Af(x)ds (3)

Af = b(x)∂xf +
1

2
σ(x)∂2

xf (4)

By setting boundary conditions f(a) = a, f(1) = 0, we can

convert the above to an ordinary partial differential equation

b(x)∂xu(x) + 1/2σ2(x)∂2
xu(x) + a = 0, which is solvable

using standard techniques. Once we know the function a(x),
we can predict the movement of users from one edge to the

other.
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TABLE I: PROBE REQUEST TRANSMISSION INTERVAL IN SECONDS

Phone Phone Screen On Phone Screen Off Wi-Fi settings screen open

Avg Max Min Avg Max Min Avg Max Min

Samsung Galaxy S8 383 702 96 420 787 120 10 10 10

Motorola G5 124 210 49 1020 1920 286 8 3 11

Samsung Galaxy Tab 4 130 130 130 380 600 120 10 10 10

Panasonic Eluga A5 133 268 15 Does not transmit when screen is off 9 11 8

(a) Mapping of topology. (b) Conversion to graph.

Figure 6. Topological mapping of user locations to a graph.

(a) Probe Data - raw.

(b) Probe data - Fully despread.

Figure 7. Effect of de-spreading on raw probe data.

In our simulation, we use a Brownian Bridge as a model

for the movement of individual users within each edge, as

shown in (5), where each edge is mapped onto [0..1]. The edge

specific drift rate γi. The advantage of the Brownian bridge

is that each user is guaranteed to exit the edge at time γi,

since limt→γi xt = 1. Note that xi
t is normalized with respect

to hypothetical length of the edge Li. The second term is the

transition condition at each vertex (t = 1), where Ij is the

set of vertices which meet at the jth vertex. The entire set of

equations has to be solved for all the edges simultaneously,

with the transition conditions providing the boundary value

functions.

dxi
t =

1− xt

γi − t
dt+ dWt, c

i
0 = 0 (5)

∑
i∈Ij

ci1 = 0 (6)

B. Simulation and mass dynamics

While diffusions on graphs can be solved numerically [24],

or by using vanishing viscosity techniques [18], we opt to

use a simulation method. We seed the prediction by taking

a snapshot of the occupancy data at a time t = 0 and

then use our model to predict the expected cit∀i edges. The

corresponding estimated distribution p(c(T )) is compared with

the actual empirical distribution ĉ(T ) to get an idea of how

close our model is to reality.

A key metric is the correlation of the modelled occupancy

for edges m and n adjacent to each other in the graph 6b.

If ci(t) captures the estimated occupancy of the ith edge,0 ≤
t ≤ T and the edges m,n are adjoining with a drift rate of

1/γi we should see a cross correlation peak for cm(t)cn(t−
1/γi). In figure 8, we have plotted the correlation between

adjacent edges. The first curve shows the correlation of the

empirical data and the second shows the correlation peaks for

the modelled data. We note that the two curves are in relative

match with each other, with the gap between successive peaks

capturing the drift from one branch to the other.
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Figure 8. Transition of crowd across adjacent edges measured

using estimated occupancy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have considered the problem of localization

of users in an indoor environment of known topology, using

only the probes transmitted by their Wi-Fi enabled devices.

By using differential measurements, we have shown that a

machine learning solution can accurately pinpoint the location

within given zones with 80% accuracy, without requiring any

kind of user tracking. Further, we have shown the use of

empirical measurements to reconstruct the group-dynamics of

the ensemble user population by modelling the behaviour of

the individuals as diffusions on a graph. The results show

that is possible to use the observed mass dynamics of users

to derive the individual models of user movements within

zones. Our basic approach of using Machine Learning to

map between RSSI fingerprints and transmitter locations is

a domain of active research. In this paper, we have used

the ML algorithm from FIND3, without any significant re-

architecting. In future work, we would refine the algorithm

to take into account our particular use case. One of the

challenges for FIND3 (as with many other algorithms) is

that it cannot handle incomplete input. In our situation, this

means that probe messages which are not picked up by all

scanners cannot be processed at all and have to be discarded.

In a large indoor arena, it is impractical to expect all probe

messages to be picked up by all scanners. Further, like all

ML based algorithms, the questions of stability, accuracy and

computational requirement require further work. Retraining of

the ML for each change in interior topology is CPU intensive

and slow; hence, we would like to find ways to augment

existing algorithms for minor changes, rather than retrain the

entire ML. This is under active consideration. For the group

dynamics part, we intend to focus on better models of user

behaviour and better metrics for capturing mass dynamics

as measured through empirical data. This will help us to

create more accurate models of user behaviour which can be

validated empirically.
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